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a b s t r a c t

We present a boundary control law that stabilizes the Hartman profile for low magnetic Reynolds
numbers in an infinite magnetohydrodynamic (MHD) channel flow. The proposed control law achieves
stability in the L2 norm of the linearized MHD equations, guaranteeing local stability for the fully
nonlinear system.
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1. Introduction

A backstepping boundary control law is proposed for stabiliza-
tion of the 2D linearized magnetohydrodynamic (MHD) channel
flow, also known as Hartmann flow. This flow is characterized by
an electrically conducting fluid moving between parallel plates in
the presence of an externally imposed transverse magnetic field.
The system is described by the MHD equations which is a combi-
nation of the Navier–Stokes equations and the Maxwell equations.

While control of flows has been an active area for several
years, up until now active feedback flow control developments
have had little impact on electrically conducting fluids moving
in electromagnetic fields. Prior work in this area focuses mainly
on electro-magneto-hydro-dynamic (EMHD) flow control for
hydrodynamic drag reduction, through turbulence control, inweak
electrically conducting fluids such as saltwater. Traditionally two
types of actuator designs have been used: one type generates
a Lorentz field parallel to the wall in the streamwise direction,
while the other one generates a Lorentz field normal to the
wall in the spanwise direction. EMHD flow control has been
dominated by strategies that either permanently activate the
actuators or pulse them at arbitrary frequencies. However, it has
been shown that feedback control schemes, making use of “ideal”
sensors, can improve the efficiency, by reducing control power,
for both streamwise [19] and spanwise [5,4] approaches. From
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a model-based-control point of view, feedback controllers for
drag reduction are designed in [2,16] using distributed control
techniques based on linearization andmodel reduction. Prior work
can also be found in the area of mixing enhancement. In [15],
a controller, designed using Lyapunov methods, that does not
rely on linearization or any type of model reduction is proposed
for optimal mixing enhancement by blowing and suction. In [1],
they discussed optimal perturbations to a magnetohydrodynamic
flow bounded by perfectly insulating or conducting walls and the
energy growth mechanisms with respect to parameters of the
Hartmann flow.

The stability of conducting fluids under the presence of a
magnetic field was studied extensively in [20,11,13,24]. The
method used in this paper for stabilizing the linearized 2D
MHD equations is based on the recently developed backstepping
technique for parabolic systems [17], which has already been
successfully applied to the stabilization of 2D and 3D linearized
Navier–Stokes channel flows [22,6].

We organize this paper as follows. In Section 2 the mathemat-
ical model of the MHD channel is stated, the equilibrium profiles
are obtained, and the MHD equations are linearized around these
equilibrium profiles. Then we convert the linearized MHD equa-
tions into the wave-number space (frequency domain, or Fourier
space) by using the Fourier transform technique. This approach al-
lows separate analysis for each wave number, as all pairs are un-
coupled from each other. Thewave numbers are split into two sets.
For the first set, the controlled set, a normal velocity controller is
designed in Section 3 to put the system into a form where a lin-
ear Volterra operator, combined with boundary feedback for the
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tangential velocity, can transform the original normal velocity PDE
into a stable heat equation. For the second set, the uncontrolled
set, the system is proved to be open loop exponentially stable in
Section 4. In addition, the stability of the system is proved for the
controlled set of wave numbers. Combining these two results, sta-
bility of the closed loop system is proved for all wave numbers in
the wave-number space and in the physical space. In Section 5 we
close the paper with some concluding remarks and discussion of
the future work.

2. Model

2.1. Governing equations

We consider the flow of an incompressible, Newtonian
(constant viscosity), conducting fluid between parallel plates
where an external magnetic field perpendicular to the channel
axis is applied. This flowwas first investigated experimentally and
theoretically by Hartmann [8]. The dimensionless governing
equations include the momentum transport equation,

∂v
∂t

+ (v · ∇)v = −∇P +
1
R
∇

2v + N(j × B), (1)

and the magnetic induction transport equation,

∂B
∂t

= ∇ × (v × B) +
1
Rm

∇
2B, (2)

where v is the velocity field of the fluid, B is the magnetic field,
j is the current density, and P is the pressure. R, Rm, and N are
the Reynolds number, magnetic Reynolds number, and Stuart (or
interaction) number, respectively. The current density is given by
Ampere’s law,

j =
1
Rm

∇ × B. (3)

Both B and v are solenoidal,

∇ · B = 0, (4)
∇ · v = 0. (5)

In this work, we consider MHD flow at low magnetic Reynolds
number Rm [10]. When Rm � 1, the induced magnetic filed is
very small in comparisonwith the appliedmagnetic field. Since the
applied magnetic field B0 is assumed to be static, then ∂B

∂t
= 0 and

B ≈ B0 in (2). In this case, Ohm’s law becomes

j = −∇φ + v × B0, (6)

where φ is the electric potential. Since j is a solenoidal field, a
Poisson equation is obtained for φ by computing the divergence
of Ohm’s law (6). The governing equations of the system become

∂v
∂t

+ (v · ∇)v = −∇P +
1
R
∇

2v + N(v × B0) × B0

−N(∇φ × B0), (7)

∇
2φ = ∇ · (v × B0) = B0 · ω, (8)

∇ · v = 0, (9)

where ω = ∇ × v is the vorticity. Eqs. (7)–(9) are referred to
as the simplified magnetohydrodynamic equations (SMHD). For
the 2-D Hartman flow considered in this work, whose geometrical
configuration is illustrated in Fig. 1 ((x, y) ∈ (−∞,∞) × [0, 1]), we
write v(t, x, y) = U(t, x, y)ı̂+V(t, x, y)̂,B0(t, x, y) = B0(t, x, y)̂ and
P = P(t, x, y), then

(v × B0) × B0 = −B20Uı̂, (10)

∇φ × B0 = (φx ı̂ + φŷ) × B0̂ = φxB0k̂, (11)

ω = ∇ × v =

(
∂V

∂x
−

∂U

∂y

)
k̂, (12)

Fig. 1. 2D Hartman flow.

where ı̂, ̂ and k̂ are the unit vectors of the Euclidean coordinate
system employed here. For the last term ∇φ × B0 in (7), the only
component remaining, φxB0, lies in z-direction. Since we consider
a 2D geometry,

φx(x, y) = 0. (13)

Therefore, the Poisson equation (8) for the electric potential φ(x, y)
reduces to a degenerated ordinary differential equation,φyy(x, y) =

0. Integrating it twice, we obtain

φ(x, y) = C1(x)y + C2(x). (14)

Differentiating with respect to x, and recalling (13), we obtain

C′

1(x)y + C′

2(x) = 0, ∀(x, y) ∈ (−∞,∞) × [0, 1]. (15)

Evaluating this last expression at y = 0 and y = 1 respectively,
we conclude that C1 and C2 must be constants. Assuming non-
conducting walls, i.e.

φy|y=0,1 = 0, (16)

then we can determine φ(x, y) as a constant potential field. The
SMHD Eqs. (7)–(9) can be written now as

Ut + UUx + VUy = −Px +
1
R
(Uxx + Uyy) − NB20U, (17)

Vt + UVx + VVy = −Py +
1
R
(Vxx + Vyy), (18)

Ux + Vy = 0, (19)

with boundary conditions

U = 0, V = 0, at y = 0, ∀x ∈ (−∞,∞), (20)
U = Uc, V = Vc, at y = 1, ∀x ∈ (−∞,∞), (21)

where Uc, Vc are the boundary controls. In order to compute the
equilibrium state we put the boundary controls be zeros, i.e.

U = 0, V = 0, at y = 0, 1,∀x ∈ (−∞,∞). (22)

By differentiating (17) and (18)with respect to x and y, respectively
and recalling the incompressibility condition (19), we find a
Poisson equation for the pressure P(t, x, y),

∇
2P = −2(Vy)

2
− 2VxUy − NB20Ux, (23)

with boundary conditions

Py(t, x, 0) =
Vyy(t, x, 0)

R
, (24)

Py(t, x, 1) =
Vyy(t, x, 1)

R
. (25)

The boundary conditions (24) and (25) are obtained by computing
(18) at y = 0, 1, respectively.
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2.2. Equilibrium solutions

By recalling the incompressibility condition (19) and assuming
the flow fully developed along x-direction, we infer that the
equilibrium profile in the y direction Ve(y), which satisfies
∂Ve/∂y = 0 (we use the superscript ‘e’ to denote the equilibrium
variable). Using the boundary condition at thewalls (22),we obtain
that Ve must be zero. Assuming fully developed and steady state
conditions, (17) reduces to

1
R

∂2Ue

∂y2
− NB20U

e
=

∂Pe

∂x
, (26)

and (18) reduces to ∂Pe/∂y = 0. Since the flow is assumed to be
fully developed in the x direction, we conclude that Ue

= Ue(y),
Pe

= Pe(x) and dPe
dx is constant. The solution of Eq. (26) is given by

Ue(y) = A cosh(
√
RNB0y) + B sinh(

√
RNB0y) −

1
NB20

dPe

dx
. (27)

Using the boundary conditions (22) at the walls we can obtain

A =
1

NB20

dPe

dx
, (28)

B =
1

NB20

dPe

dx
1 − cosh(

√
RNB0)

sinh(
√
RNB0)

. (29)

The equilibrium characterized by Ue, Ve and Pe is unstable for high
Reynolds number, see [9] and references therein.

2.3. Model linearization

We define the fluctuation variables u = U − Ue, v = V − Ve
= V ,

p = P − Pe, and linearize the SMHD Eqs. (17), (18) and (23) around
the equilibrium profile, obtaining a new set of equations given by

ut =
1
R
(uxx + uyy) − Ueux − Ue

yv − px − NB20u, (30)

vt =
1
R
(vxx + vyy) − Uevx − py, (31)

pxx + pyy = −2Ue
yvx − NB20ux, (32)

with boundary conditions

u(x, 0) = 0, (33)
u(x, 1) = Uc(x), (34)
v(x, 0) = 0, (35)
v(x, 1) = Vc(x), (36)

py(x, 0) =
vyy(x, 0)

R
, (37)

py(x, 1) =
vyy(x, 1) + (Vc)xx(x)

R
− (Vc)t(x), (38)

where Uc(t, x, 1) and Vc(t, x, 1) are the tangential and normal
control laws implemented at the boundary y = 1, which are to
be designed in the following section. Boundary conditions (37)
and (38) are obtained by evaluating (31) at the boundaries. The
continuity equation (19) is still verified

ux + vy = 0. (39)

We use the Fourier transform on x-direction, defined as

f (k, y) =

∫
∞

−∞

f (x, y) exp(−2πikx)dx, (40)

f (x, y) =

∫
∞

−∞

f (k, y) exp(2πikx)dk, (41)

to transform the system equations to frequency domain. Note that
we use the same symbol f for both the original f (x, y) and the
transformed f (k, y). In the transform pair (40) and (41), k is called
the wave number. The linearized model (30)–(32) written in the
frequency domain is

ut =
1
R
(−4k2π2u + uyy) − 2kπiUeu − Ue

yv − 2kπip − NB20u, (42)

vt =
1
R
(−4k2π2v + vyy) − 2kπiUev − py, (43)

pyy = 4k2π2p − 4kπiUe
yv − 2kπiNB20u, (44)

with boundary conditions

u(k, 0) = 0, (45)
u(k, 1) = Uc(k), (46)
v(k, 0) = 0, (47)
v(k, 1) = Vc(k), (48)

py(k, 0) =
vyy(k, 0)

R
, (49)

py(k, 1) =
vyy(k, 1) − 4π2k2(Vc)(k)

R
− (Vc)t(k), (50)

where Uc, Vc are the Fourier transforms of the to-be-designed
tangential and normal control laws at the boundary y = 1. The
continuity equation (19) is transformed into the following form

2πkiu(k, y) + vy(k, y) = 0. (51)

One of the properties of the Fourier transform, called Parseval’s
theorem, states that the L2 norm in Fourier space is equal to the L2

norm in physical space, i.e.

‖f‖2
L2 =

∫ 1

0

∫
∞

−∞

f 2(k, y)dkdy =

∫ 1

0

∫
∞

−∞

f 2(x, y)dxdy. (52)

In Section 4, we will use this property to derive L2 exponential
stability in physical space from the same property in Fourier space.
We also define the norm of f (k, y) with respect to y as

‖f (k)‖2
L̂2

=

∫ 1

0
|f (k, y)|2dy. (53)

The relationship between the L̂2 norm and the L2 norm is given by

‖f‖2
L2 =

∫
∞

−∞

‖f (k)‖2
L̂2
dk. (54)

3. Controller design

The linearized system is spatially invariant in the x-direction
and there is no coupling between different wave numbers [3];
this allows us to consider the equations for each wave number
independently. It is a well-known fact [14] that there exist two
wave-number boundsm andM for which the the system (42)–(51)
is exponentially stable without any external control in the range
|k| ≥ M and |k| ≤ m. By a proper design of the control laws Uc(k)
and Vc(k) in this section, we stabilize the system for wave numbers
in the range m < |k| < M. The bounds m and M are estimated by
the Lyapunov method in Section 4.1. We separate the controlled
and uncontrolled setsmathematically using the following function

χ(k) =

{
1, m < |k| < M
0, otherwise. (55)

The transformed Poisson equation for the pressure (44) is an
inhomogenous ordinary differential equation in Fourier space. Its
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solution can be obtained via coefficient variation approach as
follows,

p(k, y) = c1 cosh(2kπy) + c2 sinh(2kπy)

+

∫ y

0

(
2iUe

ξ(k, ξ)v + iNB20u
)
sinh[2kπ(ξ − y)]dξ. (56)

Applying the boundary conditions (49) and (50) we can obtain

c2 =
vyy(k, 0)
2kπR

, (57)

c1 =
vyy(k, 1) − 4π2k2(Vc)(k)

2kπR sinh 2kπ
−

(Vc)t(k)

2kπ sinh 2kπ
−

vyy(k, 0)
2kπR sinh 2kπ

cosh 2kπ

+

∫ 1

0

cosh[2kπ(ξ − 1)]
sinh 2kπ

(
2iUe

ξ(k, ξ)v + iNB20u
)
dξ. (58)

Substituting p(k, y) and (51) into Eq. (42) we rewrite

ut =
1
R
(−4k2π2u + uyy) − 2kπiUeu − Ue

yv − NB20u

− 4kπi
∫ y

0
Ue

ξ(k, ξ)v(k, ξ) sinh[2kπ(y − ξ)]dξ

− 2kπ
∫ y

0
NB20u(k, ξ) sinh[2kπ(y − ξ)]dξ

+ i
cosh[2kπ(y − 1)]

sinh 2kπ
vyy(k, 0)

R

+ 4kπ
cosh 2kπy

sinh 2kπ

∫ 1

0
Ue

ξ(k, ξ)v(k, ξ) cosh[2kπ(ξ − 1)]dξ

+ 2kπ
cosh 2kπy

sinh 2kπ

∫ 1

0
NB20u(k, ξ) cosh[2kπ(ξ − 1)]dξ

− i
cosh 2kπy

sinh 2kπ

(
vyy(k, 1) − 4k2π2Vc(k)

R
− (Vc)t(k)

)
, (59)

with boundary conditions

u(k, 0) = 0, (60)
u(k, 1) = Uc(k). (61)

We do not need to rewrite and control the v equation (43) because
using the continuity equation (51) and the fact that v(k, 0) = 0, we
can write v in terms of u

v(k, y) =

∫ y

0
vy(k,η)dη = −2kπi

∫ y

0
u(k,η)dη. (62)

Thus, if u is stabilized, this dependence means that v is also
stabilized. By using the continuity equation (62) and changing the
order of integration, we can rewrite the second line in (59) as

8k2π2i
∫ y

0

{∫ y

ξ
Ue

η(k,η) sinh[2kπ(y − η)]dη
}
u(k, ξ)dξ. (63)

We can also change the integration order in the fifth line, and add
it to the sixth line to obtain

2kπ
cosh 2kπy

sinh 2kπ

∫ 1

0

{
2Ue

ξ(k, ξ) cosh[2kπ(ξ − 1)]

+ iNB20 sinh[2kπ(1 − ξ)]
}
v(k, ξ)dξ

+ iNB20
cosh 2kπy

sinh 2kπ
Vc(k). (64)

We now design the controllers in two steps. For the first step
we define

(Vc)t = 2kπi
∫ 1

0

{
2Ue

ξ cosh[2kπ(ξ − 1)]

+ iNB20 sinh[2kπ(1 − ξ)]
}
v(k, ξ)dξ − NB20Vc(k)

+
2kπi

[
uy(k, 0) − uy(k, 1)

]
− 4k2π2Vc(k)

R
, (65)

which makes (59) have a strict-feedback form [17]

ut =
1
R
(−4k2π2u + uyy) − 2kπiUeu − NB20u

+ 2kπiUe
y(k, y)

∫ y

0
u(k,η)dη

+ 8k2π2i
∫ y

0

{∫ y

ξ
Ue

η(k,η) sinh[2kπ(y − η)]dη
}
u(k, ξ)dξ

−

∫ y

0
2kπNB20 sinh[2kπ(y − ξ)]u(k, ξ)dξ

+ 2kπ
cosh[2kπ(y − 1)] − cosh(2kπy)

sinh 2kπ
uy(k, 0)

R
. (66)

For simplicity we rewrite (66) as

ut =
1
R
(−4k2π2u + uyy) + λ(k, y)u + g(k, y)uy(k, 0)

+

∫ y

0
f (k, y, ξ)udξ, (67)

where

λ(k, y) = −

(
2kπiUe(k, y) + NB20

)
, (68)

g(k, y) =
2kπ
R

cosh[2kπ(y − 1)] − cosh(2kπy)

sinh 2kπ
, (69)

f (k, y, ξ) = 8k2π2i
∫ y

ξ
Ue

η(k,η) sinh[2kπ(y − η)]dη

+ 2kπiUe
y(k, y) − 2kπNB20 sinh[2kπ(y − ξ)]. (70)

For the second step we note that (67) is a parabolic partial integro-
differential equation and can be stabilized using the backstepping
technique recently introduced in [17]. We define a backstepping
tranformation,

α = u −

∫ y

0
K(k, y,η)u(t, k,η)dη, (71)

that maps, for each wave number k ∈ (m,M), the equation for u
(66) into a heat equation

αt =
1
R
(αyy − 4k2π2α), (72)

α(k, 0) = 0, (73)
α(k, 1) = 0, (74)

The inverse backstepping transformation is defined as

u = α +

∫ y

0
L(k, y,η)α(t, k,η)dη. (75)

By differentiating (71) with respect to t and y (twice), and then
by substituting the obtained derivatives into (72), we arrive at the
following PDE for the kernel K(y,η), in the domainD = {(y,η)|0 ≤

η ≤ y ≤ 1},
1
R

[
Kyy(y,η) − Kηη(y,η)

]
= λ(η)K(y,η) − f (y,η)

+

∫ y

η
K(y, ξ)f (ξ,η)dξ, (76)

with boundary conditions

K(y, y) = −
R

2

∫ y

0
λ(ξ)dξ, (77)

K(y, 0) = −Rg(y) + R
∫ y

0
K(y,η)g(η)dη. (78)

We evaluate the backstepping transform (71) at the boundary y =

1 to obtain

α(k, 1) = u(k, 1) −

∫ 1

0
K(k, 1,η)u(t, k,η)dη. (79)
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Then we substitute (61) and (74) into (79) to obtain the tangential
control law

Uc =

∫ 1

0
K(k, 1,η)u(t, k,η)dη. (80)

Similarly, the equation for the inverse kernel L defined in (75) is

1
R

[
Lyy(y,η) − Lηη(y,η)

]
= −λ(η)L(y,η) − f (y,η)

−

∫ y

η
L(y, ξ)f (ξ,η)dξdη (81)

with boundary conditions

L(y, y) = −
R

2

∫ y

0
λ(ξ)dξ, (82)

L(y, 0) = −Rg(y). (83)

It can be proved that both K and L equations have smooth solutions.
Eqs. (76)–(78) and (81)–(83) can be solved either numerically or
symbolically by using an equivalent integral equation formulation
(that can be solved via a successive approximation series [17]). We
now convert the control laws (65) and (80) back to the physical
space via inverse Fourier transform,

Uc(t, x) =

∫ 1

0

∫
∞

−∞

Qu(x − ξ,η)u(t, ξ,η)dξdη, (84)

Vc(t, x) = h(t, x), (85)

where h verifies the parabolic equation

ht =
1
R
hxx − NB20h(t, x) + l(t, x), (86)

where the function l(t, x) is given by

l(t, x) =

∫ 1

0

∫
∞

−∞

Qv(x − ξ,η)v(t, ξ,η)dξdη

+

∫
∞

−∞

Q0(x − ξ)
[
uy(t, ξ, 0) − uy(t, ξ, 1)

]
dξ, (87)

and the kernel Qu, Qv, and Q0 are defined as,

Qu(x − ξ,η) =

∫
∞

−∞

χ(k)K(k, 1,η) exp(2kπi(x − ξ))dk, (88)

Qv(x − ξ,η) =

∫
∞

−∞

χ(k)2kπi{2Ue
η(k,η) cosh[2kπ(η − 1)]

+ iNB20 sinh[2kπ(1 − η)]} exp(2kπi(x − ξ))dk, (89)

Q0(x − ξ) =

∫
∞

−∞

χ(k)
2kπi
R

exp(2kπi(x − ξ))dk, (90)

andχ(k) is defined in (55). The stable parabolic Eq. (86) determines
the dynamics of the tangential controller. Due to the compatibility
conditions, we let h(0, x) = v(t, x, y)|t=0,y=1 as the initial condition.
The stability results hold for h(0, x) 6= 0 but additional effort
is required to account for the exponentially stable effect of the
compensator internal dynamics.

4. Stability analysis

In Section 3, we have derived control laws for both the normal
and the tangential directions at the boundary y = 1. In this section,
we will prove the stability of the closed-loop system. Our main
result is as follows at the beginning of this section. As a first step,
we prove stability of the uncontrolled set of wave numbers. As a
second step, we show that with the control laws in Section 3, the
controlled set of wave numbers is exponentially stable. Stability in
physical space follows then from stability of all wave numbers.

Theorem 1. For the linearized system (30)–(38) with the feedback
laws (84) and (85), the equilibrium profile u(t, x, y) = v(t, x, y) = 0
is exponentially stable in the L2 sense:

‖u(t)‖2
L2 + ‖v(t)‖2

L2 ≤ C0e
−π2 t

R

(
‖u(0)‖2

L2 + ‖v(0)‖2
L2

)
, (91)

where C0 is defined as

C0 = (1 + 4π2M2) max
k∈(m,M)

{(1 + ‖L‖∞)2(1 + ‖K‖∞)2}, (92)

and the norm ‖ · ‖∞ is defined as ‖f‖∞ = max |f (y,η)|.

4.1. Uncontrolled wave number analysis

For the uncontrolled system (42) and (43), we define the
Lyapunov functional for each wave number k as

E(t) =
1
2

∫ 1

0
(uū + vv̄)dy, (93)

where ū and v̄ denote the complex conjugates of u and v,
respectively. The time derivative of E is
dE(t)
dt

=

∫ 1

0

−4k2π2

R
(uū + vv̄)dy −

1
R

∫ 1

0
(uyūy + vyv̄y)dy

−

∫ 1

0
NB20uūdy −

∫ 1

0
Ue
y

uv̄ + ūv

2
dy. (94)

Since N, the Stuart number, is positive, then we have
dE(t)
dt

≤
−4k2π2

R

∫ 1

0
(uū + vv̄)dy −

1
R

∫ 1

0
(uyūy + vyv̄y)dy

−

∫ 1

0
Ue
y

uv̄ + ūv

2
dy. (95)

Weuse Poincaré inequality [21] to find a bound for the second term
in (95). Let us state the Poincaré inequality first as a lemmawithout
proof.

Lemma 2 (Poincaré Inequality). Given f ∈ H, where

H =

{
f ∈ C0([0, 1])|f (0) = f (1) = 0

}
, (96)

with f ′ piecewise continuous, then

‖f‖ ≤
1
π

‖f ′‖, (97)

where ‖f‖ is given by ‖f‖2
=
∫ 1
0 |f (x)|2dx.

Lemma2 is one of the strongest Poincaré inequality versions. Using
the Poincaré inequality for the second term in (95), we obtain∫ 1

0
(uū + vv̄)dy ≤

1
π2

∫ 1

0
(uyūy + vyv̄y)dy. (98)

As (uv̄ + ūv) is a real number, it satisfies uv̄+ūv
2 = R(uv̄) ≤ |uv̄| =

|u||v| ≤
|u|2+|v|2

2 . Therefore, taking into account (93), we can bound
the time derivative of E(t) in (95) as

dE(t)
dt

≤

[
−8k2π2

R
−

2π2

R
−

dUe(1)
dy

]
E(t). (99)

In (99) we recalled (27) to obtain

Ue
y(y) = A

√
RNB0 sinh(

√
RNB0y) + B

√
RNB0 cosh(

√
RNB0y), (100)

Ue
yy(y) =

R

B0

dPe

dx
sinh[

√
RNB0(1 − y)] + sinh(

√
RNB0y)

sinh(
√
RNB0)

, (101)

then Ue
yy(y) < 0, since dPe

dx < 0 and other terms are positive for any
y ∈ [0, 1]. The negativeness of the derivative Ue

yy(y) then implies
monotonicity of Ue

y on [0, 1], i.e., Ue
y(1) < Ue

y(y) < Ue
y(0). Therefore,

we can use Ue
y(1) to bound the third term in the right side of (95)

and obtain (99).
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Proposition 3. For the linearized system (42)–(50), if m =

π
4R|dUe(1)/dy| , and M =

1
2π

√
R
2

∣∣∣ dUe(1)
dy

∣∣∣, where dUe(1)
dy =

1
B0√

R
N

dPe
dx

cosh(
√
RNB0)−1

sinh(
√
RNB0)

, then for both |k| ≤ m and |k| ≥ M, the
equilibrium u(t, k, y) = v(t, k, y) = 0 of the uncontrolled system is
exponentially stable in the L2 sense, i.e.

‖v(t, k)‖2
L̂2

+ ‖u(t, k)‖2
L̂2

≤ e−
π2 t
R

×

(
‖v(0, k)‖2

L̂2
+ ‖u(0, k)‖2

L̂2

)
. (102)

Proof. Taking into account that dPe
dx < 0 and cosh(

√
RNB0) > 1, we

can show that, for the third term in (99),

dUe(1)
dy

=
1
B0

√
R

N

dPe

dx
cosh(

√
RNB0) − 1

sinh(
√
RNB0)

< 0. (103)

Thus, if |k| ≥
1
2π

√
R
2

∣∣∣ dUe(1)
dy

∣∣∣, then
dE(t)
dt

≤ −
2π2

R
E(t). (104)

Additionally, by using the continuity Eq. (62) we can bound (95) as

dE(t)
dt

≤

[
−8k2π2

R
−

2π2

R
− 4|k|π dUe(1)

dy

]
E(t). (105)

Thus, if |k| ≤
π

4R|dUe(1)/dy| , then

dE(t)
dt

≤ −
π2

R
E(t). (106)

Taking into account (104) and (106), and definition (93), we
conclude that

d
dt

(
‖v(t, k)‖2

L̂2
+ ‖u(t, k)‖2

L̂2

)
≤ −

π2

R

(
‖v(t, k)‖2

L̂2
+ ‖u(t, k)‖2

L̂2

)
. � (107)

In the physical space we can get similar stability property for
the uncontrolled part via the Parseval’s theorem:

Proposition 4. The variables εu(t, x, y) and εv(t, x, y), defined as

εu(t, x, y) =

∫
∞

−∞

(1 − χ(k))u(t, k, y) exp(2kπix)dk, (108)

εv(t, x, y) =

∫
∞

−∞

(1 − χ(k))v(t, k, y) exp(2kπix)dk, (109)

decay exponentially in the L2 sense:

‖εu(t)‖
2
L2 + ‖εv(t)‖

2
L2 ≤ e−

π2 t
R

(
‖εu(0)‖2

L2 + ‖εv(0)‖2
L2

)
. (110)

Proof. Combining Proposition 3 and Parseval’s theorem (52) we
can prove this proposition. �

4.2. Controlled wave number analysis

In this subsection, we prove the exponential stability of the
linearized system with feedback control, not only in Fourier space
but also in physical space, for the controlled set of wave numbers.

Proposition 5. For any wave number k ∈ (m,M), the equilibrium
u(t, k, y) = v(t, k, y) = 0 of the system (42)–(50) with feedback
control laws (65), (80) is exponentially stable in the L2 sense, i.e.

‖v(t, k)‖2
L̂2

+ ‖u(t, k)‖2
L̂2

≤ C0e
−2π2 t

R

×

(
‖v(0, k)‖2

L̂2
+ ‖u(0, k)‖2

L̂2

)
. (111)

Proof. For the heat equation (72), we can compute

‖α(t, k)‖2
L̂2

=

∫ 1

0
|α(t, k, y)|2dy

=

∫ 1

0
α(t, k, y)ᾱ(t, k, y)dy, (112)

with the time derivative

d‖α(t, k)‖2
L̂2

dt
=

∫ 1

0
αtᾱ + ᾱtαdy ≤

1
R

∫ 1

0
αyyᾱ + ᾱyyαdy

= −
2
R

∫ 1

0
αyᾱydy ≤ −

2π2

R

∫ 1

0
αᾱdy. (113)

Then, using Gronwall’s inequality [21], we obtain ‖α(t, k)‖2
L̂2

≤

e
−2π2 t

R ‖α(0, k)‖2
L̂2
. By using (62), (71) and (75), we obtain

α = i
vy −

∫ y
0 K(y,η)vy(t,η)dη

2kπ
, (114)

v = −2kπi
∫ y

0

[
1 +

∫ y

η
L(η, ξ)dξ

]
α(t,η)dη. (115)

By using (75) and (115), we can obtain a bound for(
‖u(t, k)‖2

L̂2
+ ‖v(t, k)‖2

L̂2

)
in terms of ‖α(0, k)‖2

L̂2
, i.e.

‖u(t, k)‖2
L̂2

+ ‖v(t, k)‖2
L̂2

≤ (1 + 4M2π2)(1 + ‖L‖∞)2

× e−
2π2 t
R ‖α(0, k)‖2

L̂2
. (116)

To establish the connection between
(
‖u(t, k)‖2

L̂2
+ ‖v(t, k)‖2

L̂2

)
and ‖α(t, k)‖L̂2 , we recall (71) as follows

‖α(0, k)‖2
L̂2

≤ (1 + ‖K‖∞)2
(
‖u(0, k)‖2

L̂2
+ ‖v(0, k)‖2

L̂2

)
. (117)

Combing (116) and (117), we finish the proof. �

For the controlled part |k| ∈ (m,M), we can obtained the following
property by using Parseval’s theorem:

Proposition 6. Defining

u∗(t, x, y) =

∫
∞

−∞

χ(k)u(t, k, y) exp(2kπix)dk, (118)

v∗(t, x, y) =

∫
∞

−∞

χ(k)v(t, k, y) exp(2kπix)dk, (119)

for the linearized system (30)–(38) with the feedback laws (84) and
(85), the variables u∗(t, x, y) and v∗(t, x, y) decay exponentially:

‖u∗(t)‖2
L2 + ‖v∗(t)‖2

L2 ≤ C0e−
2π2
R t

×

(
‖u∗(0)‖2

L2 + ‖v∗(0)‖2
L2

)
. (120)

Proof. Combine Proposition 5 and the Parseval’s theorem (52). �

By using Propositions 4 and 6 we can obtain the exponential
stability of the linear system (30)–(38) over the entire wave
number range, and finish the proof for Theorem 1.
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4.3. Control efforts of closed-loop system

In this section, we study the control effort required to stabilize
the linearized 2D MHD system. First we estimate bounds for
‖αy(t, k)‖

2
L̂2

and ‖αyy(t, k)‖
2
L̂2
. We note that (72)–(74) are of heat

equations and the solution α ∈ C∞([0, 1] × (0,∞)) if the initial
value α(0, k, y) ∈ C([0, 1])

⋂
L∞([0, 1]) (See Chapter 3 of [7]).

Therefore, we obtain the following proposition right after the same
line of (113) by using the Poincaré inequality in Lemma 2.

Proposition 7. Defining

‖αy(t, k)‖
2
L̂2

=

∫ 1

0
|αy(t, k, y)|

2dy

=

∫ 1

0
αy(t, k, y)ᾱy(t, k, y)dy, (121)

‖αyy(t, k)‖
2
L̂2

=

∫ 1

0
|αyy(t, k, y)|

2dy

=

∫ 1

0
αyy(t, k, y)ᾱyy(t, k, y)dy, (122)

then for any wave number |k| ∈ (m,M),

‖αy(t, k)‖
2
L̂2

≤ e−
2π2 t
R ‖αy(0, k)‖2

L̂2
, (123)

‖αyy(t, k)‖
2
L̂2

≤ e−
2π2 t
R ‖αyy(0, k)‖2

L̂2
, (124)

where α solves (72)–(74).

Proof. We derive the equations of αy and αyy by taking derivatives
both sides of (72)–(74). �

By using the backstepping transformations (71) and (75), we can
obtain the following proposition.

Proposition 8. For |k| ∈ (m,M), we have the following estimates:

(i) ‖uy(t, k)‖
2
L̂2

≤ C1e−
2π2 t
R ‖uy(0, k)‖2

L̂2
, (125)

(ii) ‖uyy(t, k)‖
2
L̂2

≤ C2e−
2π2 t
R ‖uyy(0, k)‖2

L̂2
, (126)

where C1 and C2 are positive constants.

Proof. (i) We recall the backstepping transformations (71) and
(75) to compute

αy = uy − K(k, y, y)u −

∫ y

0
Ky(k, y,η)u(t, k,η)dη, (127)

uy = αy + L(k, y, y)α +

∫ y

0
Ly(k, y,η)α(t, k,η)dη. (128)

We estimate ‖αy‖L̂2 and ‖uy‖L̂2 , and then recall (123) in
Proposition 7 to finish the proof.

(ii) From (71) and (75) we write the following backstepping
transformations
αyy = uyy − K(k, y, y)uy − (2Ky(k, y, y) + Kη(k, y, y))u

−

∫ y

0
Kyy(k, y,η)u(t, k,η)dη,

uyy = αyy + L(k, y, y)αy + (2Ly(k, y, y) + Lη(k, y, y))α

+

∫ y

0
Lyy(k, y,η)α(t, k,η)dη,

and use similar arguments to those used in the proof of i) to
complete the proof. �

Theorem 9. The feedback controls Uc, Vc are L2 functions of x.

Proof. We first consider the expression of the tangential control
which is defined by Uc =

∫ 1
0 K(k, 1,η)u(t, k,η)dη, then

‖Uc‖
2
L2 =

∫
∞

−∞

Uc(t, x)
2dx =

∫
∞

−∞

|Uc|(t, k)
2dk

=

∫
∞

−∞

χ(k)

∣∣∣∣∣
∫ 1

0
K(k, 1,η)u(t, y, k)dη

∣∣∣∣∣
2

dk

≤ 2(M − m) max
m≤|k|≤M

{‖K‖∞}‖u‖2
L2 . (129)

For the tangential control Vc, we take into account the controller
dynamics determined by (85)–(87). We consider the parabolic
system (86)–(87)with the initial value h(0, x) = h0(x), where l(t, x)
is already indicated by the Eq. (87). Then we compute the Fourier
transform of l(t, x) with respect to x, l(t, k) = Ã(t, k) + B̃(t, k) +

C̃(t, k), where

Ã(t, k) = 4kπi
∫ 1

0
Ue

ξ cosh[2kπ(ξ − 1)]v(t, k, ξ)dξ, (130)

B̃(t, k) = −2kπNB20

∫ 1

0
sinh[2kπ(1 − ξ)]v(t, k, ξ)dξ, (131)

C̃(t, k) =
2kπi[uy(t, k, 0) − uy(t, k, 1)]

R
. (132)

Finally, we obtain the following estimates:

|l(t, k)|2 ≤ 3(|Ã|2 + |B̃|2 + |C̃|
2).

Using Cauchy–Schwarz inequality, we can obtain

|l(t, k)|2 ≤ C3‖v(t, k, ·)‖2
L̂2

+ C4‖uyy(t, k, ·)‖2
L̂2
, (133)

where C3, C4 are positive constants. We use Propositions 5 and 8 to
bound the right hand terms in (133) and to obtain

|l(t, k)|2 ≤

(
C5‖v(0, k, ·)‖2

L̂2
+ C6‖uyy(0, k, ·)‖2

L̂2

)
e−

2π2 t
R , (134)

where C5, C6 are positive constants. Integrating (134) in k over
(|k| ∈ [m,M]) we obtain

‖l(t)‖2
L2 ≤

(
C5‖v(0)‖2

L2 + C6‖uyy(0)‖2
L2

)
e−

2π2 t
R . (135)

We now define A as Aξ =
ξxx
R

− NB20ξ on D(A) = {ξ ∈

H1(R)|ξ(t,±∞) = 0}. Thus, A is a generator of a strongly
continuous semigroup (C0-semigroup) {S(t)}, and ‖S(t)‖ ≤ Ce−

ω
2 t ,

t ≥ 0 for some C, ω > 0 [12]. We can set ω = 2
(

π2

R
+ NB20

)
due to

the following estimate

1
2

d
dt

∫
R
|ξ|2dx =

∫
R
ξ

(1
R
ξxx − NB20ξ

)
dx

=
1
R
ξξx

∣∣∣∣∞
−∞

−
1
R

∫
R
ξ2xdx − NB20

∫
R
ξ2dx

≤ −

(
π2

R
+ NB20

) ∫
R
ξ2dx. (136)

By using Gronwall’s inequality we can obtain

‖ξ(t, ·)‖2
L2 ≤ e

−2
(

π2
R +NB20

)
t
‖ξ(0, ·)‖2

L2 .

We let h(t, x) = h0(x), then we have

‖h(t, ·)‖2
L2 =

∥∥∥∥S(t)h0(x) +

∫ t

0
S(t − τ)l(τ, ·)dτ

∥∥∥∥2
L2

≤ ‖S(t)h0(x)‖L2 +

∫ t

0
‖S(t − τ)l(τ, ·)‖2

L2 dτ

≤ C2e−ωt
‖h0‖

2
L2 +

∫ t

0
C2e−ω(t−τ)e−

2π2
R τ
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×

(
C5‖v(0)‖2

L2 + C6‖uyy(0)‖2
L2

)
dτ

= C2
‖h0‖

2
L2e

−ωt
+

C2C5‖v(0)‖2
L2

+ C2C6‖uyy(0)‖2
L2

2NB20

× e−
2π2
R

(
1 − e−2NB20t

)
. (137)

Then we conclude that Vc(t, x) = h(t, x) is a L2 function of x and

lim
t→∞

‖h(t)‖2
L2 = 0. � (138)

5. Conclusions and future work

Wehave designed backstepping-based boundary feedback con-
trollers which exponentially stabilize the 2D magnetohydrody-
namic equations linearized around a Hartmann equilibrium profile
in the L2 sense. The results have been presented in 2D for ease of
notation. Since 3D channels are spatially invariant in both stream-
wise and spanwise direction, the design can be extended to 3D by
applying the Fourier transform in both invariant directions and fol-
lowing similar steps. It is also worth mentioning that the design
can be extended to periodic channel flow, both in 2D and 3D, by
substituting the Fourier transform by a Fourier series.

The controllers derived in this work are written as state
feedback. An observer has been developed based on [18], and is
presented in [23]. DNS simulations will be carried out to show the
performance of this feedback controller in 3D.
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