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Abstract
In tokamak fusion plasmas, control of the spatial distribution profile of the toroidal plasma
current plays an important role in realizing certain advanced operating scenarios. These
scenarios, characterized by improved confinement, magnetohydrodynamic stability, and a high
fraction of non-inductively driven plasma current, could enable steady-state reactor operation
with high fusion gain. Current profile control experiments at the DIII-D tokamak focus on
using a combination of feedforward and feedback control to achieve a targeted current profile
during the ramp-up and early flat-top phases of the shot and then to actively maintain this
profile during the rest of the discharge. The dynamic evolution of the current profile is
nonlinearly coupled with several plasma parameters, motivating the design of model-based
control algorithms that can exploit knowledge of the system to achieve desired performance.
In this work, we use a first-principles-driven, control-oriented model of the current profile
evolution in low confinement mode (L-mode) discharges in DIII-D to design a feedback
control law for regulating the profile around a desired trajectory. The model combines the
magnetic diffusion equations with empirical correlations for the electron temperature,
resistivity, and non-inductive current drive. To improve tracking performance of the system, a
nonlinear input transformation is combined with a linear-quadratic-integral (LQI) optimal
controller designed to minimize a weighted combination of the tracking error and controller
effort. The resulting control law utilizes the total plasma current, total external heating power,
and line averaged plasma density as actuators. A simulation study was used to test the
controller’s performance and ensure correct implementation in the DIII-D plasma control
system prior to experimental testing. Experimental results are presented that show the
first-principles-driven model-based control scheme’s successful rejection of input disturbances
and perturbed initial conditions, as well as target trajectory tracking.

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Motivation

For nuclear fusion to become a commercially viable means
of producing energy, tokamak reactors must be capable of

operating at a high fusion gain (the ratio of power produced
to power required to sustain a discharge) for extended periods
of time, ideally reaching steady-state operation. ITER, the
next experimental step for fusion research, is attempting to
show the scientific feasibility of such operation and must
address numerous challenges in order to be a success. As
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part of this effort, much work has been done to identify and
study advanced tokamak (AT) operating scenarios, marked by
improved confinement, magnetohydrodynamic stability, and a
large fraction of non-inductively driven plasma current arising
from the self-generated bootstrap current. Achieving and
maintaining such scenarios could lead to steady-state operation
and reduced size and cost for future reactors. The approach
to reaching certain AT scenarios involves setting up a suitable
spatial distribution profile of the toroidal plasma current or the
safety factor, q, a related quantity (see definition in section 2),
during the ramp-up and early flattop phases of the discharge and
actively maintaining it throughout the remainder of the shot.
Control of the minimum value of the q profile, qmin(t), is a
requirement for mitigating plasma instabilities, while tailoring
the entire q profile will be necessary to maximize the fraction
of bootstrap current. Developing techniques to actively control
the evolution of the entire q profile is an important issue that
has recently begun to receive a great deal of attention.

1.2. Prior work

In previous experiments in this area [1, 2], real-time feedback
control of scalar parameters characterizing the current profile
was demonstrated. The internal inductance parameter, li, a
measure of the current profile shape, was controlled using
LHCD (lower hybrid current drive) on the Tore Supra tokamak
[1], while feedback control of either q(0, t), the safety factor at
the magnetic axis of the plasma, or qmin(t), the minimum value
of the safety factor profile, was achieved on the DIII-D tokamak
[2] by modifying ECH (electron cyclotron heating) or NBI
(neutral beam injection). In both experiments, simple non-
model-based proportional control laws were used to control
single scalar parameters describing some characteristic of the
current profile. Additional work considering non-model based
real-time control of the current profile can be found in [3–5].

For certain advanced operating scenarios, it may be
necessary to precisely shape the entire current profile. The high
dimensionality of this problem, along with the strong nonlinear
coupling between magnetic and kinetic profiles motivates the
use of model-based control designs that can accommodate
this complexity through embedding the known physics within
the design. By capturing the response of the system to the
available actuators in a control-oriented model, such control
designs can achieve improved performance without the need
for extensive trial-and-error tuning. Control-oriented models
of the current profile dynamics can be divided into two groups:
those created largely from experimental data, and those that
depend on limited experimental data and are primarily first-
principles driven.

Using data gathered during dedicated experiments, system
identification techniques can be used to develop linear dynamic
models of the plasma profile response to various actuators.
This approach has been carried out at JET [6–8], JT-60U, and
DIII-D [9–11]. In these results, data-driven models were used
to design controllers for simultaneously regulating magnetic
and kinetic plasma profiles around desired references during
the flat-top phase of a plasma discharge. Because the data-
driven models are linear, they are only valid close to the

reference scenario used for identification and controllers based
on them may not perform well when the state of the system
moves far from the reference. Additionally, dedicated system
identification experiments are required to apply this approach
to new devices or, potentially, to different operating scenarios.

To avoid the issues associated with identified models,
controllers can be developed using models driven by a first-
principles description of the current profile dynamics. Use of a
first-principles model allows a control design to incorporate the
nonlinear coupling of plasma parameters, enabling improved
system performance and potentially allowing for operation
over a much wider range of conditions than control schemes
based on linear data-driven models. Additionally, first-
principles based controllers can potentially be adapted to
different scenarios or devices without significant changes
to the structure of the control law and while avoiding the
need for dedicated model identification experiments. In
practice, it is often necessary to make some approximations
and simplifications to the first-principles model in order to
facilitate control design or to close the equations of the
model. If these approximations are made carefully, the
performance and flexibility of a first-principles based approach
to control design can be mostly retained while the complexity
of the control design can be greatly reduced. Recently, first-
principles-driven control-oriented models of the evolution of
the plasma magnetic flux have been developed [12–14]. In
[15, 16], the model developed in [13] was used to determine
optimal feedforward actuator trajectories for achieving a
desired safety factor profile, utilizing extremum-seeking and
nonlinear programming approaches. Some recent work on
first-principles-driven feedback control designs have been
presented in [17–21]. In these results, robust, optimal,
and sliding mode techniques are used to design feedback
controllers, which are then tested in simulations.

1.3. Results of this work

The control approach we propose is to combine feedforward
actuator trajectories, calculated offline (as in [15, 16]) or
based on previous experimental results, with a first-principles-
driven model-based feedback control law to adjust the actuator
trajectories in real-time in order to track a desired current
profile evolution. This combined approach adds robustness
and versatility, as it makes it possible to either reproduce
profile evolutions achieved in previous experiments despite
perturbations in initial conditions or other disturbances, or
to track a reference profile evolution for which feedforward
actuator trajectories are not well known, e.g. evolutions which
have not been previously produced in an experiment. In
this work, we focus on the design, implementation, and
experimental testing of a possible approach to the feedback
portion of the current profile control scheme. The controller
is designed to achieve a desired reference trajectory of the
poloidal flux gradient profile, which is inversely related to
the safety factor profile and is denoted in this work as θ .
We base the design on the control-oriented model developed
in [13], which combines the magnetic diffusion equation with
empirical correlations for electron temperature, resistivity, and
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non-inductive current to model the current profile evolution
in low confinement mode (L-mode) discharges in DIII-D.
The dominant input nonlinearities of the model are retained
by choosing a set of virtual actuators, defined by nonlinear
transformations of the physical actuators. The nonlinear
partial differential equation (PDE) describing the current
profile evolution is then discretized in space using a finite
difference method, reducing the system to a high-dimensional
bilinear time-varying model with nonlinear actuation. An
optimal control technique with integral action is used to
synthesize a control law for the nonlinear virtual actuators
based on a linear-time-invariant approximation of the state
dynamics that neglects the bilinear effect. While the
progressive simplification of the model used to facilitate
feedback controller design could be avoided by implementing
more complex control laws, the successful simulation and
experimental results presented in this work validate the
approximations made to some extent. We emphasize that
our approach is one of the first demonstrations of closed-
loop current profile control and, in practice, the ideal trade-
off of design complexity and performance will depend on
many factors, possibly requiring an iterative design process.
Using the plasma current, NBI heating power, and plasma
density as actuators, the optimal control law minimizes a cost
function weighting the error of the profile at several spatial
locations and the actuator effort. By manipulating the weight
matrices, the controller can be intuitively tuned to respond
differently depending on the goals of a particular experiment or
operating scenario. As part of this work, a general framework
for implementing real-time feedforward control of magnetic
and kinetic plasma profiles was implemented in the DIII-D
plasma control system (PCS). The framework and controller
design was studied in simulations and subsequently tested in
a series of experiments to demonstrate the performance of the
control scheme. These results are part of the first experimental
campaign to demonstrate successful current profile control
using a first-principles-driven model-based control design.
Results of our other approaches to first-principles driven
model-based feedback control design that were tested during
the same campaign can be found in [22, 23].

1.4. Organization

The paper is organized as follows. In section 2, a PDE
model for the current profile evolution in L-mode discharges
is introduced. The model reduction process and controller
design are presented in section 3. A discussion of the real-
time implementation and the framework used for simulation is
provided in section 4. Results of a simulation study of the
proposed controller are presented in section 5, and several
experimental test cases are discussed in section 6. Conclusions
and plans for future work are discussed in section 7.

2. Current profile evolution model

We use ρ to represent a coordinate indexing the magnetic flux
surfaces within the tokamak plasma. Any quantity constant on
each surface could be chosen as the indexing variable. Here we

choose a form of mean effective radius of the magnetic surface
as the variable ρ, i.e. πBφ,0ρ

2 = %, where % is the toroidal
magnetic flux and Bφ,0 is the reference magnetic field at the
geometric major radius R0 of the tokamak. We normalize the
quantity by the similarly defined mean effective minor radius of
the last closed magnetic surface, ρb, to obtain ρ̂ = ρ/ρb. The
safety factor, a quantity related to the toroidal current density,
is given by q(ρ, t) = −d%/d&(ρ, t), where & is the poloidal
magnetic flux. This expression can be written as

q
(
ρ̂, t

)
= −

Bφ,0ρ
2
b ρ̂

∂ψ/∂ρ̂
, (1)

where ψ is the poloidal stream function (& = 2πψ), by noting
the constant relationship between ρ and %, i.e. πBφ,0ρ

2 = %,
and the definition of ρb. As the safety factor depends inversely
on the spatial derivative of the poloidal flux, we define

θ
(
ρ̂, t

)
= ∂ψ

∂ρ̂

(
ρ̂, t

)
, (2)

and take this quantity as the to-be-controlled variable.
To obtain a PDE describing the evolution of θ(ρ̂, t),

we start from the well known magnetic diffusion equation
[13, 24, 25], which describes the poloidal magnetic flux
evolution. This equation is given by

∂ψ

∂t
= η(Te)

µ0ρ
2
b F̂ 2

1
ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+ R0Ĥη(Te)

〈j̄NI · B̄〉
Bφ,0

,

(3)

where ψ represents the poloidal stream function, t is time, η

is the plasma resistivity, which is dependent on the electron
temperature, Te, µ0 is the vacuum permeability, j̄NI is the
non-inductive current density (from sources such as NBI,
ECCD, etc), B̄ is the toroidal magnetic field, and 〈 〉 denotes
the flux-surface average of a quantity. F̂ , Ĝ and Ĥ are
spatially varying geometric factors of the DIII-D tokamak that
are described in [13]. The boundary conditions are given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= − µ0

2π

R0

Ĝ
∣∣
ρ̂=1Ĥ

∣∣
ρ̂=1

I (t), (4)

where I (t) is the total plasma current.
Based on experimental observations at DIII-D, simplified

scenario-oriented empirical models for the electron tempera-
ture, non-inductive current density, and plasma resistivity dur-
ing L-mode discharges were identified [13]. The model for the
electron temperature is given by

Te
(
ρ̂, t

)
= kTeT

profile
e

(
ρ̂
) I (t)

√
Ptot(t)

n̄(t)
, (5)

where kTe is a constant, T profile
e (ρ̂) is a reference profile, Ptot(t)

is the total average NBI power and n̄(t) is the line averaged
plasma density. The model for the non-inductive toroidal
current density is given by

〈j̄NI · B̄〉
Bφ,0

= kNIj
profile
NI

(
ρ̂
) I (t)1/2Ptot(t)

5/4

n̄(t)3/2
, (6)
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where kNI is a constant and j
profile
NI (ρ̂) is a reference profile for

the non-inductive current deposition. Since the plasma current
is mainly driven by induction during L-mode discharges, the
effects of the bootstrap current on the poloidal magnetic flux
are neglected in this model. The plasma resistivity η(Te) is
given by

η
(
ρ̂, t

)
= keffZeff

T
3/2

e
(
ρ̂, t

) , (7)

where keff and Zeff are constants.
The models (5), (6), and (7) allow us to write the magnetic

diffusion equation (3) as

∂ψ

∂t
= f1

(
ρ̂
)
u1(t)

1
ρ̂

∂

∂ρ̂

(
ρ̂f4

(
ρ̂
) ∂ψ

∂ρ̂

)
+ f2

(
ρ̂
)
u2(t),

(8)

with boundary conditions given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −k3u3(t), (9)

where

f1
(
ρ̂
)

= keffZeff

k
3/2
Te

µ0ρ
2
b F̂ 2

(
ρ̂
) (

T
profile

e
(
ρ̂
))3/2 , (10)

f2
(
ρ̂
)

=
keffZeffR0kNIĤ

(
ρ̂
)
j

profile
NI

(
ρ̂
)

k
3/2
Te

(
T

profile
e

(
ρ̂
))3/2 , (11)

f4
(
ρ̂
)

= F̂
(
ρ̂
)
Ĝ

(
ρ̂
)
Ĥ

(
ρ̂
)
,

k3 = µ0

2π

R0

Ĝ
∣∣
ρ̂=1Ĥ

∣∣
ρ̂=1

, (12)

u1(t) =
(

n̄(t)

I (t)
√

Ptot(t)

)3/2

, u2(t) =
√

Ptot(t)

I (t)
,

u3(t) = I (t).

(13)

Equation (8) admits diffusivity, interior, and boundary
actuators u1, u2, and u3, respectively, which each represent
nonlinear combinations of the physical actuators, I (t), Ptot(t)
and n̄(t). Note that the controller proposed in this work
will generate waveforms for these physical actuators. These
waveforms represent references to be sent to existing dedicated
controllers for each of the respective quantities.

We expand (8) with the chain rule to obtain

∂ψ

∂t
= f1u1(t)

1
ρ̂

(
ρ̂

∂ψ

∂ρ̂

∂f4

∂ρ̂
+ f4

∂ψ

∂ρ̂
+ ρ̂f4

∂2ψ

∂ρ̂2

)
+ f2u2(t).

(14)

We then insert (2) into (14), resulting in

∂ψ

∂t
= f1u1

1
ρ̂

(
ρ̂θf ′

4 + f4θ + ρ̂f4θ
′) + f2u2, (15)

where (·)′ = ∂/∂ρ̂ and the dependencies on time and
space have been dropped to simplify the representation. By
differentiating (15) with respect to ρ̂, the PDE governing the
evolution of θ(ρ̂, t) is found to be

∂θ

∂t
= h0u1θ

′′ + h1u1θ
′ + h2u1θ + h3u2, (16)

with boundary conditions:

θ

∣∣∣∣
ρ̂=0

= 0, θ

∣∣∣∣
ρ̂=1

= −k3u3, (17)

and where

h0 = f1f4, (18)

h1 = f ′
1f4 + f1f4

1
ρ̂

+ 2f1f
′
4, (19)

h2 = f ′
1f

′
4 + f ′

1f4
1
ρ̂

+ f1f
′
4

1
ρ̂

, −f1f4
1
ρ̂2

+ f1f
′′
4 , (20)

h3 = f ′
2. (21)

3. Model reduction and controller design

3.1. Model reduction via spatial discretization

To reduce the infinite dimensional system (16) describing the
profile evolution to a finite dimensional approximation, we
discretize the spatial domain ρ̂ = [0, 1] into l nodes (equally
spaced at *ρ̂ = 1/(l − 1)) using a central difference formula
for the m = l − 2 interior nodes and forward/backward
difference formulae for the left/right boundary nodes. The
resulting set of ODEs can be expressed as

α̇(t) = Mα(t)v1(t) + Nv2(t) + Zv3(t), (22)

where α = [θ2, . . . , θl−1]T ∈ Rm×1 is the value of θ(ρ̂, t) at
the interior nodes, the control input vectors are given by

[v1(t), v2(t), v3(t)]T = [u1(t), u2(t), u1(t)u3(t)]T ∈ R3×1,

(23)

and the system matrices are M ∈ Rm×m, N ∈ Rm×1 and
Z ∈ Rm×1. The elements of these matrices are given in
appendix A.

We consider vff(t) = [v1ff (t), v2ff (t), v3ff (t)]
T, a set of

feedforward control input trajectories associated with a state
trajectory αff(t) that are computed offline or taken from
experimental measurements with a nominal initial state αff(0).
The feedforward state trajectory satisfies

α̇ff(t) = Mαff(t)v1ff (t) + Nv2ff (t) + Zv3ff (t). (24)

Due to disturbances in the inputs, initial conditions, or
model parameters, a deviation from the desired feedforward
trajectory, z(t) = α(t) − αff(t), may occur. We include the
terms vfb(t) = [v1fb(t), v2fb(t), v3fb(t)] as the feedback portion
of the control inputs (for which a control law will be designed),
allowing us to write

α̇ff(t) + ż = Mαff
(
v1ff + v1fb

)
+ Mz

(
v1ff + v1fb

)

+N
(
v2ff + v2fb

)
+ Z

(
v3ff + v3fb

)
. (25)

By substituting (24) in (25) we obtain a bilinear model. While
we have preserved the dominant input nonlinearities through
the use of the nonlinear transformations (13) and (23), here
we approximately linearize the state dynamics by neglecting
the bilinear terms. This approximation is valid assuming
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v1ff ( v1fb , which can be ensured through the choice of the
control effort weighting matrices in the controller design, or
by assuming αff ( z. Though it would indeed be possible
to account for the bilinear state behavior during the control
synthesis (see [18]), simulations and experiments show the
closed-loop system to be robust to this approximation, such
that we can avoid the extra complexity arising from the bilinear
terms. The dynamics of the error can then be expressed as the
time-varying system

ż = A(t)z + B(t)vfb, (26)

where A(t) = Mv1ff (t) ∈ Rm×m and B(t) =
[Mαff(t), N, Z]. We consider measurement of all of the
states z, i.e., the output equation is y = Cz + Dvfb with C = I

and D = 0.

3.2. Model reduction via singular-value decomposition

We next decouple system (26) at steady-state through singular-
value decomposition of the steady-state transfer function. This
reduces the underactuated, coupled system to a set of relevant
control channels. We can then choose to keep only the most
significant singular values, that is, the control channels through
which the most influence on the system is realized, to further
reduce the problem and avoid using excessive controller effort
to realize small improvements in profile tracking. The details
of this step are provided in appendix B.

Using the ‘significant’ bases obtained through the steady-
state analysis, we can write the dynamic system (26) as

ż = As(t)z + Bs(t)v
∗
fbs

y∗
s = Csz + Dsv

∗
fbs

,
(27)

where y∗
s = ,−1

s UT
s Q1/2y is the significant output, As(t) =

A(t), Bs(t) = B(t)R−1/2Vs , Cs = ,−1
s UT

s Q1/2, Ds = 0,
Q ∈ Rm×m is a symmetric positive definite weighting matrix
for the reference tracking error, and R ∈ R3×3 is a positive
definite weight matrix for the controller effort. Definitions of
the partitions ,s , Us and Vs are given in appendix B.

3.3. LQI optimal control design

At this point, we note that we have reduced the dynamic
system (16) to a linear time-varying system cascaded with
a nonlinear transformation of the physical inputs. A linear-
quadratic-regulator (LQR) optimal control problem could be
solved for the system (26) in order to minimize a cost function
based on a weighted combination of the state z and the control
effort v. However, the classical LQR controller is a static state
feedback control law without a term proportional to the integral
of the error signal, which may cause poor performance in the
presence of disturbances or when tracking a constant nonzero
reference r . We could improve upon the disturbance rejection
and tracking performance by including a term involving the
time integral of the output y in the cost function, thereby
formulating a linear-quadratic-integral (LQI) control problem.
However, since the system (26) has multiple (3) inputs and
many (m, the number of spatial discretization nodes) outputs,

such a design would result in a high order control law. Also,
since the system is underactuated, the resulting controller
could tend to integrate components of the output that are
difficult to control, leading to the use of excessive amounts
of control effort without achieving a worthwhile improvement
in the system performance. By exploiting the previous model
reduction step, we can instead design an LQI controller for the
reduced system (27), which has s (the number of significant
singular values) inputs and outputs. This reduces the order of
the controller and avoids the problem of integrating outputs
that are very difficult to control.

To solve the LQI optimal control design problem, we
define an augmented state vector that includes the integral over
time of the significant output y∗

s

x =
[∫ t

0 y∗
s dt ′

z

]
, (28)

and proceed with a classic LQR design, i.e. we state the optimal
control design problem as

min
vfb

J+ = 1
2

∫ ∞

t0

[
xtQ+x +

(
v∗

fbs

)T
R+v

∗
fbs

]
dt, (29)

where Q+ ∈ Rm+s×m+s is a symmetric positive semi-definite
matrix and R+ is a positive scalar. The optimal control law,
detailed in appendix C, can be written in state-space form as

ẋc = Acxc + Bcz,

vfb = Cc(t)xc + Dc(t)z,
(30)

where xc is the controller state representing the integral of
the significant output, Ac = 0, Bc = ,−1

s UT
s Q1/2, Cc(t) =

−R−1/2VsKI (t) and Dc(t) = −R−1/2VsKP (t).
The control design is illustrated for clarity in figure 1 with

the addition of the optional nonzero reference r . The profile
error e and the integral over time of of the significant error e∗

s

are input to the LQI control law. Note that by updating the
feedforward trajectories and reference profiles used to develop
the first-principles-driven model, the LQI control law can
easily be recalculated for different target profiles and plasma
scenarios. In contrast, a control design based on a data-
driven modeling approach could require additional dedicated
identification experiments to identify an updated model and
retune the control law. Once vfb is calculated by the controller,
the values are added to the feedforward values vff . The result,
v = vff + vfb, is used to determine the required values of the
physical actuators through the inverse of the transformations
(13) and (23), i.e.

I = v3

v1
, Ptot =

(
v2v3

v1

)2

, n̄ =
v2v

2
3

v
4/3
1

. (31)

These nonlinear transformations preserve an important part
of the system dynamics that is neglected in linear-data-driven
approaches.

Finally, because we have chosen an infinite time horizon
for the optimal control problem and the system matrices A+

and B+ remain approximately time-invariant after the short
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Figure 1. LQI control scheme.

ramp-up phase of the discharge, the controller matrices will
be approximately constant for most of the discharge. This
approximation, given in appendix C, significantly simplifies
the implementation of the controller without significantly
impacting performance.

4. Controller implementation in the DIII-D PCS

In this section, we present the real-time control algorithm
implemented in the DIII-D PCS. An overview of the framework
for real-time magnetic and kinetic profile control is provided
in section (4.1). In section (4.2), we describe the simulation
framework, referred to as a Simserver, used to test the control
design and real-time implementation on the PCS prior to
experiments.

4.1. Real-time algorithm

We have implemented a general framework for real-time
feedforward+feedback control of both magnetic and kinetic
profiles in the DIII-D PCS, allowing us to test this and other
profile control designs. The algorithm is designed to be
general enough to allow a variety of control laws to be tested
within the same framework. Through a simple set of menu
selections, an operator can choose which parameters to control,
load a particular set of feedforward actuator trajectories, and
select a feedback control law. Magnetic profiles that can be
controlled include the safety factor, q, the rotational transform,
ι = 1/q, the poloidal magnetic flux, ψ , and the poloidal flux
gradient, θ . Available kinetic profiles include the electron
temperature, the ion temperature, and the toroidal rotation
velocity. The framework also enables testing controllers for
scalar quantities, including the normalized plasma beta βN,
the minimum q, or the internal inductance of the plasma.
The feedback portion of the algorithm is implemented as a
discrete time state-space system with a selectable sampling
time. A sampling time of 20 ms was used in this work based
on the modulation of the MSE (motional Stark effect) beam
used to obtain q profile measurements in real-time. In this
case the beam was on for 10 ms and off for 10 ms. The real-
time magnetic equilibrium reconstruction code rtEFIT [26]

and the real-time charge-exchange recombination code rtCER
[27] interface with the algorithm to provide measurements of
magnetic and kinetic profiles. Since the controller presented in
this work is designed solely for poloidal magnetic flux gradient
profile control, only the diagnostics from rtEFIT were needed
for feedback. The real-time algorithm performs the necessary
coordinate transformation to construct the variable of interest
α (recall that α is the vector of measurements of the θ profile)
from the data provided by rtEFIT, i.e. the plasma current I (t),
the poloidal stream function at the magnetic axis ψaxis and
the plasma boundary ψbdry, and the safety factor q at 64 evenly
spaced points in the normalized flux spatial domain ψn = (ψ−
ψaxis)/(ψbdry − ψaxis). Within the algorithm, the discrete time
approximation of system (30) produces the output vfb, which
is added to the feedforward signal, vff , before being passed
to the nonlinear transformations (31). The resulting output,
I (t), Ptot(t) and n̄(t) is then sent to existing controllers for the
respective quantities. The control framework is designed to
allow us to introduce artificial disturbances through the signal
vd, and to specify feedforward and target trajectories through
the signals αff and r . Because actuator saturation could cause
the integral component of the feedback controller to wind
up and possibly degrade system performance, an anti-windup
compensator is included in the PCS implementation. This
anti-windup scheme, which can be designed for both LTI and
LTV systems, adds an additional input signal to the feedback
portion of the controller. When there is no actuator saturation,
the anti-windup compensator leaves the nominal closed-loop
system unmodified. See [28] for an example of the anti-windup
compensator design employed. A block diagram representing
the PCS implementation is given in figure 2.

4.2. Simserver architecture

The simserver architecture is a simulation environment that
enables real-time control algorithms implemented in the
DIII-D PCS to exchange data with a Matlab/Simulink model
created to generate simulated diagnostics. The Simulink
model must utilize inputs and outputs that are consistent
with the input and output channels of the PCS. This type
of simulation framework enables tests of the real-time code
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Figure 2. DIII-D PCS implementation of magnetic profile control algorithm. Note that the PCS code can either be connected to the DIII-D
tokamak for experiments or, through the simserver architecture, a Simulink model of the magnetic diffusion equation for simulation tests.

and assessment of the effectiveness of control designs prior to
conducting experimental tests [29]. Once the simulation phase
is completed the PCS code can be used to control the actual
device.

To test the proposed control scheme, a Simulink model
of the magnetic diffusion equation (3) was developed and
integrated into a simserver and the real-time implementation of
the controller was programmed into the PCS [30]. In order to
construct the Simulink model, the magnetic diffusion equation
was discretized in space, resulting in a coupled set of ordinary
differential equations that were evolved in time. Since the
real-time EFIT (rtEFIT) reconstruction code is used to provide
the profile measurements to the controller [26], the Simulink
model was created to output the same set of measurements that
is provided to the control algorithm by rtEFIT.

5. Simulation results

In this section, we present results of one part of the
simulation study used to test and tune the controller design and
implementation prior to experimental testing. The simulations
presented here demonstrate the ability of the controller to track
a desired profile evolution for which the necessary feedforward
actuator trajectories are not well known. It is important to note
that, due to the underactuated nature of the problem, not all
arbitrary profiles can be achieved. To obtain an achievable
target evolution, we first simulated the system using a particular
set of feedforward inputs and saved the resulting θ profile
evolution to be used as the target for subsequent simulated
shots. We then programmed a different set of feedforward
inputs (i.e. the controller is not provided with the set of
feedforward inputs used to produce the desired target profile
evolution) and ran two shots: one without feedback (open

loop) and one with feedback (closed-loop). During the closed
loop shot, the controller was turned on from 0.5 to 2.5 s, then
turned off from 2.5 to 3.5 s to see how the uncontrolled system
evolved. From 3.5 s to the end of the simulation, the controller
was turned back on to see if it could recover the desired target
profile. In this study, we utilized the LTI approximation of
the optimal control law (30) and kept one singular value in
the model reduction process since, for the particular weight
matrices used, σ1 ( σ2 > σ3.

Time traces of the safety factor q, which is related to θ
by the relationship (1), are given in figure 3 for several spatial
locations. The results of the open-loop shot and the closed-loop
shot are compared with the target. The controller successfully
drove the closed-loop traces toward the target traces during
the first phase of the shot (t = 0.5 to t = 2.5 s). When
the controller was turned off at t = 2.5 s, the closed-loop
traces moved away from the target and back toward the traces
achieved in the open-loop shot. Finally, when the controller
was turned back on at t = 3.5 s, the closed-loop traces were
driven toward the target traces once again. In figure 4, the q
and θ profiles achieved in the closed-loop shot and the open-
loop shot are compared with the target profiles at several times.
Figure 4(a) shows the controller’s progress toward achieving
the target at the start of the flattop phase, while figure 4(b)
shows that the closed-loop system nearly achieved the desired
profiles by the time it was turned off at t = 2.5 s. Figure 4(c)
shows the error in the profile that resulted after the uncontrolled
drift phase (t = 2.5 s to t = 3.5 s). Progress toward recovery
of the desired profile after the controller was turned back
on is visible in figure 4(d). Finally, the actuator values
during the closed-loop and open-loop shots are compared in
figure 5. It can be seen how, in order to track the target profile
evolution and reject the disturbance in the initial θ profile at
the start of each controlled portion of the shot, the feedback

7



Plasma Phys. Control. Fusion 55 (2013) 105007 M D Boyer et al

Time (s)

q

1 2 3 4 5
1

2

3

4

5

6

7
Target
Closed loop
Open loop

(a) ρ̂ = 0.1
Time (s)

q

1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

(b) ρ̂ = 0.25
Time (s)

q

1 2 3 4 5

1.5

2

2.5

3

(c) ρ̂ = 0.5

Time (s)

q

1 2 3 4 5

2

2.5

3

3.5

4

4.5

5

(d) ρ̂ = 0.65
Time (s)

q

1 2 3 4 5

2.5

3

3.5

4

4.5

5

5.5

6

(e) ρ̂ = 0.8
Time (s)

q

1 2 3 4 5

5

6

7

8

9

10

(f) ρ̂ = 0.95

Figure 3. Time trace of q at various points during the simulation test comparing the target simulation (blue solid), the open-loop simulation
(black dashed–dotted), and the closed-loop simulation (red dashed). Note the effect of turning off the controller during the closed-loop shot
between t = 2.5 s and t = 3.5 s (shaded regions of the plots).
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Figure 4. Comparison of q and θ profiles at various times for the target simulation (q: blue triangular markers, θ : blue circular markers), the
open-loop simulation (q: black dashed, θ : black dashed–dotted), and the closed-loop simulation (q: red solid, θ : red dotted). Progress
toward the target profiles is seen in (a), while the target is nearly achieved in (b). The effect of turning off the controller can be noted in (c).
Recovery of the target profiles after the controller is turned back on can be observed in (d).
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Figure 5. Comparison of actuator values during the open-loop and closed-loop simulations. During the closed-loop simulation, the
feedback control was turned off between t = 2.5 s and t = 3.5 s (shaded regions of the plots).

component of the control scheme modified the feedforward
actuator trajectories.

6. Experimental results

In this section, we present experimental results showing the
controller’s performance on the DIII-D device. As noted in
the previous section, due to actuator saturation limits and the
limited number of actuators, it is not possible to achieve any
arbitrary target profile evolution. This limitation is present
regardless of what type of profile control strategy is used.
Since the goal of these experiments was to test the design
and implementation of a particular feedback control law,
we began the experiments by establishing two achievable θ

profile evolutions. This was done by performing two open
loop (feedforward only) discharges (shot numbers 145477 and
146411) using different actuator trajectories. The resulting
θ profile evolutions were used to generate targets for the
closed-loop (feedforward + feedback) shots (shot numbers
146413, 146414, and 146460). The first two closed-loop
shots utilized the results of the open-loop shots as targets
and test the controller’s reference tracking and disturbance
rejection capabilities, respectively. In the third test, the results
of one of the open-loop shots were modified to create a target
profile that is not necessarily achievable, representing a much
more challenging problem for the control scheme. As we did
in the simulation results, we utilized the LTI approximation
of the optimal control law (30) and kept one singular value in
the model reduction process since, for the particular weight
matrices used, σ1 ( σ2 > σ3.

6.1. Reference tracking

As a test of the reference tracking capability of the controller,
we used the feedforward inputs for shot 146411 with the θ

profile evolution of shot 145477 as the target profile. During
the closed-loop shot, the controller was turned on from 0.5
to 3.0 s, then turned off from 3.0 to 3.5 s to see how the
uncontrolled system would evolve. From 3.5 s to the end of
the shot, the controller was turned back on to see if it could
recover the desired target profile despite the large error caused
by the uncontrolled phase of the discharge.

Time traces ofq at several points along the profile are given
in figure 6. The results of the open-loop shot 146411 and the

closed-loop shot 146413 are compared with the target, which
was generated in the open-loop shot 145477. The controller
successfully drove the closed-loop traces toward the target
traces during the first phase of the shot (t = 0.5 s to t = 3.0 s).
When the controller was turned off at t = 3.0 s, the measured
values of q in shot 146413 moved away from the target and
back toward the values achieved in the open-loop shot 146411.
When the controller was turned back on at t = 3.5 s, the closed-
loop measurements were driven toward the desired target traces
once again. In figure 7, the q and θ profiles achieved in the
closed-loop shot 146413 and the open-loop shot 146411 are
compared with the target profiles obtained from shot 145477
at several times. Figure 7(a) shows the controller’s progress
in achieving the target at the start of the flattop phase, while
figure 7(b) shows that the closed-loop system nearly achieved
the desired profiles by the time it was turned off at t = 3.0 s.
Figure 7(b) shows the error in the profiles that resulted after
the uncontrolled drift phase (t = 3.0 to t = 3.5 s). Progress
toward recovery of the desired profiles after the controller was
turned back on is clear in figure 7(c). Finally, the actuator
requests and achieved values are compared in figure 8. It
should be noted that while the total plasma current was tightly
controlled and the requests were reproduced quite well, the
requests for total power and line averaged density were often
not very closely followed. Despite this additional disturbance,
good tracking results were still achieved.

6.2. Disturbance rejection

In this section, experimental results showing the disturbance
rejection capability of the proposed control scheme are
presented. We used the θ profile evolution measured during the
open-loop shot 145477 as the target for the closed-loop shot
146414. During shot 146414, an artificial input disturbance
of −0.15 MA in the plasma current and −0.5 MW in the
total non-inductive heating power was added to the reference
inputs (taken from 145477) from t = 0.5 to t = 2.5 s. The
feedback controller was turned on from t = 0.5 to t = 2.0 s
to test disturbance rejection and switched off from t = 2.0 to
t = 2.5 s to allow the θ profile to drift away from the desired
one under the influence of the input disturbance. At t = 2.5 s
the disturbance was changed to 0.15 MA in the plasma current
and 0.5 MW in the heating power and the controller was turned
back on to see if the controller could recover the desired profile
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Figure 6. Time trace of q at various spatial locations during the reference tracking experiment. Plots compare the target shot 145477 (blue
solid), the open-loop shot 146411 (black dashed–dotted), and the closed-loop shot 146413 (red dashed). Note the effect of turning off the
controller during the closed-loop shot between t = 3 and t = 3.5 s (shaded regions of the plots).

despite the error caused by both the drift and the presence of
the new disturbance. At t = 4.0 s, the controller was switched
off to observe the effect of the uncontrolled disturbance on the
θ profile.

Time traces of q at several points along the profile are
given in figure 9. The results of the closed-loop shot 146414
are compared with the target generated in the feedforward shot
145477. The controller successfully rejected the disturbance
during the first phase (t = 0.5 to t = 2.0 s) and the effect of the
uncontrolled disturbance was apparent during the drift phase
(t = 2.0 to t = 2.5 s). When the disturbance was changed
and the controller was turned back on at t = 2.5 s, the target
values of q were quickly recovered. Finally, the uncontrolled
response of the system to the second disturbance can be seen
after t = 4.0 s. In figure 10, the q and θ profiles achieved in
the closed loop, disturbed shot 146414 are compared with the
desired reference profiles obtained from shot 145477 at several
times. Figure 10(a) shows that the controller mostly rejected
the disturbance and recovered the desired profiles shortly
before it was turned off at t = 2.0 s. Figure 10(b) shows the
error that resulted from the disturbance after the uncontrolled
drift phase (t = 2.0 to t = 2.5 s) and the successful recovery
of the desired profiles after the controller was turned back on
for a short time can be seen in figure 10(c). The error caused
by the second disturbance after the controller was switched off
is visible in figure 10(d). Finally, the actuator requests and
achieved values are compared in figure 11. It should be noted
that while the total plasma current and total power were tightly
controlled and the requests were reproduced quite well, the
request for line averaged density was not followed as closely.
This represented an additional input disturbance aside from the
one intentionally added to the feedforward input references.

The closed-loop system appeared to be robust to the loose
control of the density.

6.3. Frozen target tracking

In the previous sections, the results of an open-loop shot were
used as the target for the closed-loop shots. This guaranteed
that the target was a physically achievable θ profile evolution.
In this section, we again use the results of an open-loop shot
as the target, however, for a short time interval, we hold the
target profile constant, rather than allowing it to evolve as it
did in open loop. By freezing the target, the controller must
attempt to force the system to evolve in a manner that was
not observed in any open-loop experiments and may not even
be achievable given the fact that the system is underactuated
and that the actuators have magnitude constraints. For the
experiment presented here, the θ profile evolution from the
feedforward shot 145477 was used to generate the target. The
target was made identical to the measured results of 145477
except that the target profile was frozen at t = 1.5 s and held
constant until t = 4.0 s. After t = 4.0 s, the unmodified results
of shot 145477 were utilized as the target profile. In the closed-
loop shot, the controller was active until t = 3.0 s then left off
until t = 4.0 s, when it was turned back on until the end of
the shot.

In appendix B, through analysis of the singular-value
decomposition of the steady-state transfer function of the error
system (26), it is shown that the reference r can be written as
the sum of a component rt that is trackable at steady-state and a
non-trackable component rnt. By adding rt,s (the component of
the trackable reference associated with the significant singular
values) to the feedforward profile evolution, we can obtain a
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Figure 7. Profiles achieved during the reference tracking experiment. Comparison of q and θ profiles at various times for target shot 145477
(q: blue triangular markers, θ : blue circular markers), the open-loop shot 146411 (q: black dashed, θ : black dashed–dotted), and the
closed-loop shot 146413 (q: red solid, θ : red dotted). Progress toward the target profiles is seen in (a), while the target is nearly achieved in
(b). The effect of turning off the controller can be noted in (c). Recovery of the target profiles after the controller is turned back on can be
observed in (d).
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Figure 8. Requested and achieved actuator values during the reference tracking experiment. Comparison of the open-loop shot 145477 and
the closed loop, disturbed shot 146413. During the closed-loop shot, the feedback control was turned off between t = 3.0 s and t = 3.5 s
(shaded regions of plots).

representation of the significant, trackable component of the
target profile, as predicted by the model, i.e.

αtrackable,s = rt,s + αff . (32)

For a target profile not generated directly from experimental or
simulation results, like the frozen target used in this scenario,
the trackable component of the target may differ greatly
from the prescribed target. The trackable target αtrackable,s

can therefore be very useful in interpreting the results of
experiments of this type.

Time traces ofq at several points along the profile are given
in figure 12. The results of the closed-loop shot 146460 and
the open-loop shot 145477 are compared with the prescribed
target, as well as the q associated with the trackable target,
as defined in (32). During the interval in which the target
was frozen, the controller increased the value of q at the edge
of the plasma (see figure 12(f )). The effect of this increase
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Figure 9. Time trace of q at various spatial locations during the disturbance rejection experiment comparing the reference shot 145477 (blue
solid) and the closed loop, disturbed shot 146414 (red dashed). Note the effect of turning off the controller when 2.0 s ! t ! 2.5 s and
t " 4.0 s (shaded regions of the plots).

diffused inward from the boundary and brought the interior
points of the profile closer to the trackable component of the
target at the diffusive time-scale, as seen in figure 12(d) and
the controller would have likely achieved most of the trackable
reference had the test been continued for a longer duration.
When the controller was turned off at t = 3.0 s, the progress
toward achieving the target was lost and the profile relaxed
back toward the results of the open-loop shot. After t = 4.0 s,
feedback was turned back on and the controller regulated the
profile around the target. In figures 13 and 14, respectively, the
q and θ profiles achieved in the open-loop shot 145477 and the
closed-loop shot 146414 are compared with both the desired
and trackable target profiles at several times. Note that there
is a significant difference between the prescribed target and
the trackable target, indicating that the prescribed target did
not lie within the significant output basis. Figures 13(a)–(c)
and 14(a)–(c) show how the controller progressed toward
achieving the trackable component of the target profile over
time. Figures 13(d) and 14(d) shows that the profiles returned
to the open-loop results after the controller was turned off.
Finally, the actuator requests and achieved values are compared
in figure 15. Note that, rather than using the available actuators
excessively in a futile attempt to achieve the component of the
target profile lying outside of the significant output basis, the
optimal controller took into account the results of the SVD
analysis performed in section 3 to track only the significant
component of the target profile and minimize a weighted
combination of the profile error and actuator effort. In practice,
the weight matrices Q and R could be changed by operators
in order to tailor the controller performance to achieve the
goals of a particular experiment. For example, increased
weight could be placed on the interior points of the profile

or on points close to the anticipated location of qmin(t) to
improve tracking of a desired q(0, t) or qmin(t) trajectory,
at the expense of reduced tracking performance in the other
parts of the profile. By including more actuators in the control
scheme, the set of achievable profiles could be expanded and
the target tracking results in experiments like this one could be
improved.

7. Conclusions

We have presented a current profile controller designed
using a first-principles-driven dynamic model (with minimal
parameters determined from experiment) of the evolution of
the poloidal magnetic flux in L-mode discharges in DIII-D.
The feedback controller was designed to complement any
arbitrary set of feedforward inputs and drive the spatial
profile of the variable θ to the desired target profile.
Through a nonlinear transformation of the inputs and spatial
discretization, a finite dimensional, time-varying model for the
profile error was obtained. A singular-value decomposition
technique was utilized to reduce the multi-input multi-
output coupled system to a set of the most relevant control
channels. A linear-quadratic-integral controller was then
designed for the reduced order model. The resulting feedback
control law outputs, added to the feedforward values and
passed through a nonlinear transformation, represent desired
reference values for the total plasma current, non-inductive
power, and plasma density. These references are then sent
to dedicated existing controllers on the DIII-D device. A
simulation study was used to test the implementation and
tune the control law. Experimental results for three different
tests were also presented. These results were part of the
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Figure 10. Profiles achieved during the disturbance rejection experiment. Comparison of q profiles at various times for reference shot
145477 (q: blue triangular markers, θ : blue circular markers) and the closed loop, disturbed shot 146414 (q: red solid, θ : red dashed).
Successful disturbance rejection is seen in (a), while the effect of the uncontrolled disturbance can be noted in (b). Recovery of the target
profiles after the second disturbance is applied and the controller is turned back on can be observed in (c), while the effect of the
uncontrolled disturbance is seen in (d).
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Figure 11. Requested and achieved actuator values during the disturbance rejection experiment. Comparison of the open-loop shot 145477
and the closed loop, disturbed shot 146414. During the closed-loop shot, the feedback control was turned off between t = 3.0 s and
t = 3.5 s and after t = 4.0 s (shaded regions of plots).

first ever experimental campaign to use first-principles-driven
model-based controllers for current profile control. In the
tracking and disturbance rejection cases, the controller was
shown to perform quite well despite the presence of additional
disturbances caused by the physical actuators and noisy real-
time measurements of the θ profile. In the third test, the
controller was tasked with tracking a profile evolution that
had not been produced in previous experiments and was not
necessarily achievable. By taking into account the steady-

state response of the system to the available actuators, the
controller drove the system to the physically achievable profile
shape optimizing a weighted sum of the error measurements
and actuator effort.

We note that although the model used here best describes
the early, inductive phase of the plasma discharge, the
controller performs well throughout the flat-top phase of the L-
mode discharges studied. This is likely because self-generated
non-inductive current sources are typically small in L-mode.
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Figure 12. Time trace of q at various spatial locations during the frozen target tracking experiment comparing the open-loop shot 145477
(blue solid), the closed-loop shot 146460 (red dashed), the target (black dashed–dotted), and the steady-state trackable component of the
target profile as predicted by the model (magenta dotted). Note the effect of turning off the controller in the closed-loop shot between
t = 3.0 s and t = 4.0 s (shaded regions of the plots). Also note the different scale used in each plot.

Additional work will be needed to extend the model to H-mode
discharges, for which the self-generated non-inductive current
source neglected by the model used here becomes significant.
Work toward developing a nonlinear control-oriented PDE
model of the poloidal magnetic flux profile during H-mode
discharges will be carried out using a similar approach to the
one used in this work, with the inclusion of a bootstrap current
model like the one presented in [31]. Additional degrees of
freedom will be incorporated by modeling co-injection neutral
beams, counter-injection neutral beams, and electron cyclotron
heating separately. In doing so, controllability of the profile
should be improved, expanding the set of achievable profile
evolutions. The long term goal is the development of first-
principles-driven model-based feedforward+feedback control
strategies for simultaneous control of magnetic and kinetic
plasma profiles during H-mode discharges.
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Appendix A. Model reduction via spatial
discretization

The elements of the system matrices for the interior node i = 2
are given by

M1,1 = h2(*ρ̂) − 2h0(*ρ̂)

(*ρ̂)2
, M1,2 = h0(*ρ̂)

(*ρ̂)2
+

h1(*ρ̂)

2*ρ̂
,

N1 = h3(*ρ̂), Z1 = 0. (A.1)

The elements of the system matrices for the interior region,
3 ! i ! m, are given by

Mi−1,i−2 = h0 (*x)
(
*ρ̂

)2 − h1 (*x)

2*ρ̂
, (A.2)

Mi−1,i−1 = h2 (*x) − 2h0 (*x)
(
*ρ̂

)2 , (A.3)

Mi−1,i = h0 (*x)
(
*ρ̂

)2 +
h1 (*x)

2*ρ̂
, (A.4)

Ni−1 = h3 (*x) , Zi−1 = 0, (A.5)

where *x = (i − 1)*ρ̂. The elements of the system matrices
for the interior node i = l − 1 are given by

Mm,m = h2
(
*x∗) − 2h0 (*x∗)

(
*ρ̂

)2 , (A.6)

Mm,m−1 = h0 (*x∗)
(
*ρ̂

)2 − h1 (*x∗)

2*ρ̂
, (A.7)

Nm = h3
(
*x∗) , Zm = −k3

(
h0 (*x∗)
(
*ρ̂

)2 +
h1 (*x∗)

2*ρ̂

)

,

(A.8)

where *x∗ = m*ρ̂. The remaining entries in the M matrix
are zero. Note that the values of θ at the boundary nodes i = 1
and i = l are known from the boundary conditions (17) and
are therefore not included as states of the reduced model (22).

Appendix B. Model reduction via singular-value
decomposition

Noting that all of the states are assumed to be measured (i.e.,
y = z), and by assuming closed-loop stability, we can write
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Figure 13. Profiles achieved during the frozen target tracking experiment. Comparison of q profiles at various times for open-loop shot
145477 (black dashed), the closed-loop shot 146460 (red solid), and the target (blue dotted). The steady-state trackable component of the
target profile as predicted by the model is also shown (magenta triangular markers). Progress toward achieving the trackable component of
the target profile is visible in (a), (b) and (c). After the controller is turned off at t = 3.00 s, the profile relaxes back to the profile achieved in
open loop, as seen in (d).

the steady-state input-output relationship of (26) as

ȳ = z̄ = −Ā−1B̄v̄fb = Ḡv̄fb, (B.1)

where steady-state values are denoted with an overbar. We
then define the weighted steady-state transfer function

G̃ = Q1/2ḠR−1/2 ⇔ Ḡ = Q−1/2G̃R1/2, (B.2)

where Q ∈ Rm×m is a symmetric positive definite weighting
matrix for the tracking error and R ∈ R3×3 is a positive
definite weight matrix for the controller effort. The singular-
value decomposition of (B.2) is given by G̃ = U,V T where
, = diag(σ1, σ2, σ3) ∈ R3×3 and U ∈ Rm×3, and V ∈ R3×3

are unitary matrices, i.e.,

UTU = I, V TV = V V T = I, (B.3)

where I is the identity matrix. Using (B.2) and the singular-
value decomposition of G̃, the steady-state input-output
relation (B.1) can then be expressed as

ȳ = Q−1/2U,V TR1/2v̄fb. (B.4)

Since the columns of the matrix Q−1/2U, define a basis for the
subspace of obtainable steady-state output values, we can write

ȳ = Q−1/2U,ȳ∗ where ȳ∗ ∈ R3×1. Noting this, there may
be some component of the reference r that does not lie in this
subspace. We therefore write the reference vector as the sum
of a trackable component rt and a non-trackable component
rnt, i.e. r = rt + rnt , where

rt = Q−1/2U,r∗ ⇔ r∗ = ,−1UTQ1/2r
(
,−1UTQ1/2rnt = 0

)
. (B.5)

We can also define v̄∗
fb = V TR1/2v̄fb and use (B.4) to show that

there is a one-to-one relationship between the inputs v̄∗
fb and

the outputs ȳ∗, i.e.

ȳ∗ = ,−1UTQ1/2ȳ

= ,−1UTQ1/2Q−1/2U,V TR1/2v̄fb = v̄∗
fb. (B.6)

The bases obtained through singular-value decomposition
of the model for particular choices of weight matrices are
shown in figure B1. The input singular vectors V TR1/2 show
the contribution of each component of v̄fb to the input v̄∗

fb,
while the output singular vectors Q−1/2U, show contribution
of each component of ȳ∗ to ȳ, weighted by the associated
singular value. Essentially, the three profiles in figure B1(b)
represent the steady-state output that would result from a step
input in each of the three components of v̄∗

fb. Clearly, the first
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Figure 14. Profiles achieved during the frozen target tracking experiment. Comparison of θ profiles at various times for open-loop shot
145477 (black dashed), the closed-loop shot 146460 (red solid), and the target (blue dotted). The steady-state trackable component of the
target profile as predicted by the model is also shown (magenta circular markers). Progress toward achieving the trackable component of the
target profile is visible in (a), (b) and (c). After the controller is turned off at t = 3.00 s, the profile relaxes back to the profile achieved in
open loop, as seen in (d).
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Figure 15. Requested and achieved actuator values during the frozen target tracking experiment. Comparison of the open loop shot 145477
and the closed-loop shot 146460. During the closed-loop shot, the feedback control was turned off between t = 3.0 and t = 4.0 s (shaded
regions of plots).

input can produce the largest effect on the profile, while a step
input in the third component of v̄∗

fb produces little change in the
output. The first profile represents the preferred direction of the
system and the dominant shape of the trackable reference rt .
The smaller magnitude of the other two profiles indicates that
it takes significantly more control effort to track components
of the reference in those directions.

For the model reduction process, we consider the task of
minimizing the steady-state performance index

J̄ = ēTQē + v̄T
fbRv̄fb, (B.7)

where ē = ȳ − r̄ = Q−1/2U,(ȳ∗ − r∗) = Q−1/2U,(ē∗).
Since system (B.6) is a square decoupled system, the
performance index can be expressed as

J̄ =
(
ē∗)T

,2ē∗ +
(
v̄∗

fb

)T
v̄∗

fb =
3∑

i=1

σ 2
i

(
ē∗

i

)2 +
(
v̄∗

fbi

)2
. (B.8)

We note that the ith singular value acts as a weight on the
ith component of the error in (B.8). Therefore, if σi ( σi+1,
the tracking error associated with σi+1 will contribute little
to the performance index compared to the ith component.
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Figure B1. (a) Input singular vectors V TR1/2 and (b) output singular vectors Q−1/2U, resulting from the SVD analysis for
R = I, Q = diag[1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5].

To avoid spending excessive control effort (through v∗
fbi

) on
realizing insignificant reductions in the performance index,
we can separate the singular values into s significant singular
values ,s and n negligible singular values ,n. We then write

U = [Us Un] , V = [Vs Vn] , , =
[
,s 0
0 ,n

]
,

(B.9)

ē∗ =
[
ē∗
s ē∗

n

]T
, v̄∗

fb =
[
v̄∗

fbs
v̄∗

fbn

]T
,

where
ē∗
s = ,−1

s UT
s Q1/2ē, v̄∗

fbs
= V T

s R1/2v̄fb

ē∗
n = ,−1

n UT
n Q1/2ē, v̄∗

fbn
= V T

n R1/2v̄fb

⇒ ē ≈ Q−1/2Us,s ē
∗
s

v̄fb ≈ R−1/2Vsv̄
∗
fbs

.
(B.10)

We can then utilize the ‘significant’ bases obtained through the
steady-state analysis to approximate the cost function (B.8) as

J̄ ≈ J̄s =
(
ē∗
s

)T
,2

s ē
∗
s +

(
v̄∗

fbs

)T
v̄∗

fbs
, (B.11)

and the dynamic system (26) as

ż = As(t)z + Bs(t)v
∗
fbs

y∗
s = Csz + Dsv

∗
fbs

,
(B.12)

where As(t) = A(t), Bs(t) = B(t)R−1/2Vs , Cs =
,−1

s UT
s Q1/2, Ds = 0.

Appendix C. LQI optimal controller design

Based on the definition of the state x in (28), we can write the
augmented system dynamics

ẋ = A+(t)x + B+(t)v
∗
fbs

, (C.1)

where A+(t) =
[

0s×s Cs
0m×s As(t)

]
and B+(t) =

[
Ds

Bs(t)

]
. We then

proceed with a classic linear-quadratic-regulator (LQR) design
for (C.1), i.e. we state the optimal control design problem as

min
vfb

J+ = 1
2

∫ ∞

t0

[
xtQ+x +

(
v∗

fbs

)T
R+v

∗
fbs

]
dt, (C.2)

where Q+ ∈ Rm+s×m+s is a symmetric positive semi-definite
matrix and R+ is a positive scalar. The optimal control law is
given by

v∗
fbs

(t) = −K(t)x(t), (C.3)

where K(t) ∈ Rs×m+s is given by

K(t) = R−1
+ BT

+ (t)S+(t), (C.4)

and S+(t) is the solution to the matrix differential Riccati
equation

Ṡ+ = −S+A+ − AT
+S+ + S+B+R

−1
+ BT

+ S+ − Q+, (C.5)

subject to the condition S+(∞) = 0. The first s elements of
K(t) represent the integral gains, KI(t), corresponding to each
of the significant outputs y∗

s , while the remaining elements are
state feedback gains KP (t). We can then express the optimal
control law as

v∗
fbs

(t) = −KI(t)

∫ t

0
y∗

s dt ′ − KP (t)z. (C.6)

We note the definitions of v∗
fbs

, y∗
s , to write the control law as

vfb = −R−1/2VsKI (t)

×
∫ t

0

(
,−1

s UT
s Q1/2z

)
dt ′ − R−1/2VsKP (t)z. (C.7)

Finally, the controller can be put into a state-space form

ẋc = Acxc + Bcz,

vfb = Cc(t)xc + Dc(t)z,
(C.8)

where xc is the controller state representing the integral term in
(C.7), Ac = 0, Bc = ,−1

s UT
s Q1/2, Cc(t) = −R−1/2VsKI (t)

and Dc(t) = −R−1/2VsKP (t).
Because we have chosen an infinite time horizon for the

optimal control problem and the system matrices A+ and B+

remain approximately time-invariant after the short ramp-up
phase of the discharge, S+ will be approximately a constant
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matrix S̄+ for most of the discharge. The matrix S̄+ can be
obtained by solving the algebraic Riccati equation

0 = −S̄+A+(tf ) − AT
+ S̄+ + S̄+B+(tf )R−1

+ BT
+ (tf )S̄+ − Q+,

(C.9)

where tf is a time during the flat-top phase. Utilizing this
approximation, the controller gain could be reduced to a
constant K̄ = R−1

+ BT
+ (tf )S̄+ and the linear time-varying (LTV)

system (30) would become linear and time-invariant (LTI).
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