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Abstract
In a magnetic fusion reactor, the achievement of a certain type of plasma current
profiles, which are compatible with magnetohydrodynamic stability at high
plasma pressure, is key to enable high fusion gain and non-inductive sustainment
of the plasma current for steady-state operation. The approach taken toward
establishing such plasma current profiles at the DIII-D tokamak is to create the
desired profile during the plasma current ramp-up and early flattop phases. The
evolution in time of the current profile is related to the evolution of the poloidal
flux, which is modeled in normalized cylindrical coordinates using a partial
differential equation usually referred to as the magnetic diffusion equation.
The control problem is formulated as an open-loop, finite-time, optimal control
problem for a nonlinear distributed parameter system, and is approached using
extremum seeking. Simulation results, which demonstrate the accuracy of the
considered model and the efficiency of the proposed controller, are presented.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The need to optimize the tokamak concept for the design of an economical, possibly steady-
state, fusion power plant has motivated extensive international research aimed at finding the
so-called advanced tokamak (AT) operational scenarios [1]. Such regimes are characterized by
a high confinement state with improved magnetohydrodynamic (MHD) stability, which yields
a strong improvement of the plasma performance quantified by the increase in the energy
confinement time and plasma pressure. In such conditions a dominant fraction of the plasma
current is the self-generated bootstrap current, and the requirement on externally driven current
for steady-state operation is reduced.
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Figure 1. Poloidal flux in a tokamak.

Setting up a suitable current profile, characterized by a weakly reversed magnetic shear,
has been demonstrated to be a key condition for one possible advanced scenario with
improved confinement and possible steady-state operation [2–4]. It has been demonstrated
that simultaneous real-time control of the current and pressure profiles could lead to the steady-
state sustainment of an internal transport barrier (ITB), and so to a stationary optimized plasma
regime. It has also been suggested that global current profile control, eventually combined
with pressure profile control, can be an effective mechanism for neoclassical tearing mode
(NTM) control and avoidance. A key goal in control of an AT discharge is to maintain current
and pressure profiles that are compatible with both MHD stability at high toroidal beta and at
a high fraction of the self-generated bootstrap current. This will enable high fusion gain and
increase the fraction of non-inductive current for steady-state operation.

It is possible to use the poloidal component of the helicoidal magnetic lines to define
nested toroidal surfaces corresponding to constant values of the poloidal magnetic flux. As is
illustrated in figure 1, the poloidal flux ψ at a point P in the (r, z) cross section of the plasma
(i.e. poloidal cross section) is the total flux through the surface S bounded by the toroidal ring
passing through P , i.e. ψ = ∫

Bpol dS. The safety factor q is a measure of the pitch of the
helicoidal magnetic field line lying on the magnetic surface, i.e. of the relation between the
toroidal and the poloidal components of the helicoidal magnetic field line, q = d�/dψ . In a
tokamak discharge, the toroidal field (TF) coils are operated so as to produce an approximately
constant TF. Thus, the q profile is considered in most cases to be a function of the variable
poloidal field (PF), or equivalently of the poloidal flux, i.e. q = q(ψ). When the plasma shape
is controlled at steady-state equilibrium, the PF coil currents are nearly constant. Therefore,
changes in the PF, and therefore in the poloidal flux ψ , are dominated by changes in the
spatial distribution of the plasma toroidal current density (the current profile). Through this
chain of dependences, it can be seen that the safety factor q profile depends on the current
profile (and vice versa). Thus, many physicists speak interchangeably of the current profile
and the q-profile. Another quantity related to q is its inverse, known as the rotational transform
ι(ψ) = 1/q(ψ). It can be shown that ι(ψ) is proportional to the total current inside the flux
surface represented by the poloidal flux value ψ .

Recent experiments in different devices around the world (JET, DIII-D, JT-60U [5], Tore
Supra [6, 7]) have demonstrated significant progress in achieving profile control. At JET,
different current and temperature gradient target profiles have been reached and sustained
for several seconds during the flattop current phase [3, 4]. The control scheme relies on
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the experimental identification of a linearized static response model, using lower hybrid
current drive (LHCD), ion cyclotron resonance heating (ICRH) and neutral beam injection
(NBI) as actuators. The controller, which finally reduces to a proportional-integral regulation
incorporating information of the static response of the system, has been shown effective when
rapid plasma events are absent. If the controller is expected to respond to rapid transients,
such as MHD phenomena, which may displace the system on a short timescale during the slow
evolution of the current density profile toward its desired shape, information of the dynamic
response of the system must be incorporated into the controller synthesis. Exploiting the
different time scales of kinetic and magnetic variables, a dynamic model has recently been
identified at JET and used for the synthesis of a two-time-scale controller [8]. In contrast to the
JET approach, experiments at DIII-D focus on creating the desired q profile during the plasma
current ramp-up and early flattop phases with the aim of maintaining this target profile during
the subsequent phases of the discharge. Active feedback control of the evolution of q(0) and
qmin during the initial phase of the discharge has already been demonstrated at DIII-D [9, 10]
changing the plasma conductivity through electron heating, and therefore modifying the rate
of relaxation of the current profile. The q profile is obtained in real time from a complete
equilibrium reconstruction using data from the motional stark effect (MSE) diagnostic. The
controller requests a power level to the actuator (electron cyclotron heating (ECH) or neutral
beam heating (NBH)) which is equal to preprogrammed feed-forward value plus the error in
q times a proportional gain (P controller). Present limitations of this controller (oscillations
and instability), the high dimensionality of the problem and the strong coupling between the
different variables describing the dynamics of the current profile of the plasma motivate the
design of a model-based, multi-variable controller that takes into account the dynamics of the
q response to the different actuators. Since the actuators that are used to achieve the desired
target profile are constrained by physical limitations, experiments have shown that some of the
desirable target profiles may not be achieved for all arbitrary initial conditions. Therefore, a
perfect matching of the desirable target profile may not be physically possible. In practice, the
objective is to achieve the best possible approximate matching in a short time window [T1, T2]
during the early flattop phase of the total plasma current pulse, as shown in figure 2. Thus,
such a matching problem can be treated as an optimal control problem for a nonlinear partial
differential equation (PDE) system.

Extremum seeking [11] is employed in this work to tackle a finite-time optimal control
problem for a nonlinear, distributed-parameter system. Extremum seeking is applicable to
systems where the input-to-output map, possible nonlinear, is unknown but has an extremum.
The objective of the extremum seeking algorithm is to find the set of input parameters that
achieve the extremum. In this work, we use extremum seeking to obtain the evolutions of
the control inputs in the time interval [0, T ] that minimize the quadratic error between the
actual current profile at time T ∈ [T1, T2] and a desired target profile. This work is aimed at
saving long trial-and-error periods of time currently spent by fusion experimentalists trying to
manually adjust the time evolutions of the actuators to achieve the desired current profile at
sometime T ∈ [T1, T2] during the early stage of the flattop phase.

This paper is organized as follows. In section 2, the control-oriented dynamic model for
the poloidal flux evolution during the inductive phase used for control design is described. In
addition, a comparison between the response of the proposed dynamic model and experimental
data from DIII-D is provided. However, as will become clear during the presentation of the
results, the proposed control approach does not depend on this particular model, and more
complex and accurate models can be used. Section 3 describes the control objectives during the
different phases of the discharge. An open-loop control approach based on extremum seeking
is introduced in section 4. A simulation study showing the effectiveness of the extremum
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Figure 2. The total plasma current evolution can be roughly divided into two phases: the ramp-up
phase and the flattop phase. The control problem focuses on phase I that includes the ramp-up
phase and the first part of the flattop phase. The control goal is to drive the magnetic flux profile
from some initial arbitrary condition to a predefined target profile at some time T between the time
window [T1, T2], which is in the flattop phase.

seeking optimal control method is presented in section 5. Finally, conclusions and identified
future work are presented in section 6.

2. Current profile evolution model

2.1. Control-oriented dynamic model

With the ultimate goal of enabling model-based active control of the current profile at DIII-D,
particularly in closed-loop, a control-oriented model for the dynamic evolution of the poloidal
flux profile during and just following the ramp-up of the plasma current has recently been
proposed [12]. The magnetic diffusion equation is combined with empirical correlations
obtained at DIII-D for the temperature and non-inductive current to introduce a simplified
dynamic model describing the evolution of the poloidal flux, and therefore the q profile,
during the inductive phase of the discharge.

The model makes the simplifying assumption that the magnetic geometry is fixed in time.
This excludes two potential sources of flux—a change in ρb (either by a change in the shape
of the last closed flux surface or in Bφ,o) and a change in location of the geometric center of
the interior flux surfaces relative to that of the last closed flux surface. Changes in ρb are small
by design in the experiments of interest, but it is straightforward to include this effect in the
model for situations where it would be important. Changes in the relative positions of the
flux surfaces do occur, but for cases of interest, these happen slowly enough and they can be
neglected.

The current density j , which flows toroidally around the tokamak and whose profile must
be controlled, is related to derivatives of the poloidal magnetic flux ψ with respect to the
toroidal magnetic flux �. We let ρ be an arbitrary coordinate indexing the magnetic surface.
Any quantity constant on each magnetic surface could be chosen as the variable ρ. We choose
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Table 1. Description of the parameters.

Parameters Description

ψ Poloidal flux
η Plasma resistivity
Te Electron temperature
n Plasma density

µo = 4π × 10−7 H

m
Vacuum permeability

ρb = 0.79 m Radius of last closed flux surface
�b Toroidal flux in the last closed flux surface
Bφ,o = 1.85 T Reference magnetic field at Ro

Ro = 1.67 m Reference point for Bφ,o

(e.g. geometric center of plasma Rgeo)

ρ̂ Normalized radius
ρ

ρb

F̂ , Ĝ, Ĥ Geometric factors (functions of ρ̂ (figure 3))
j̄NI Any non-inductive source of current density

(neutral beam, electron cyclotron, etc)
〈〉 Flux-surface average
j Toroidal current density
E Toroidal electric field
σ = 1/η Plasma conductivity
I Total plasma current
Ptot Total power of non-inductive current drives
n̄ Spatially average density

the mean geometric radius of the magnetic surface as the variable ρ, i.e. πBφ,oρ
2 = �.

The variable ρ̂ denotes the normalized radius ρ/ρb, and ρb is the radius of last closed flux
surface. The evolution of the poloidal flux in normalized cylindrical coordinates is given by
the magnetic diffusion equation,

∂ψ

∂t
= η(Te)

µoρ
2
b F̂ 2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
− RoĤη(Te)

〈j̄NI · B̄〉
Bφ,o

, (1)

where all the parameters are defined in table 1. The boundary conditions of (1) are given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= µo

2π

Ro

Ĝ
∣∣
ρ̂=1Ĥ

∣∣
ρ̂=1

I (t),
(2)

where I (t) denotes the total plasma current.
During ‘phase I’ (see figure 2), mainly governed by the ramp-up phase, the plasma current

is mostly driven by induction. In this case, it is possible to decouple the equation for the
evolution of the poloidal flux from the evolution equations for the temperature Te(ρ̂, t). Highly
simplified models for the temperature and non-inductive toroidal current density are chosen
for this phase. Based on experimental observations at DIII-D, the shapes of the profiles are
assumed to remain fixed and equal to the so-called reference profiles, which are identified from
DIII-D discharges associated with the experiment of interest. The responses to the actuators
are simply scalar multiples of the reference profiles. We consider the line average density n̄(t),
the plasma current I (t) and the total power of the non-inductive current sources (ECH, NBH,
etc.) Ptot(t) as the physical actuators of the system.
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Figure 3. Geometric factors F̂ , Ĝ and Ĥ .

The temperature Te is assumed proportional to I (t)
√

Ptot/n̄(t), and can be written as

Te(ρ̂, t) = kTeT
profile

e (ρ̂)
I (t)

√
Ptot

n̄(t)
, (3)

where the reference profile T
profile

e identified from DIII-D through Thomson scattering is given
in figure 4, and kTe = 1.7295 × 1010 m−3 A−1 W−1/2. The average density n̄ is defined as

n̄(t) =
∫ 1

0
n(ρ̂, t) dρ̂, (4)

where n denotes the plasma density.
The non-inductive toroidal current density 〈j̄NI · B̄〉/Bφ,o is assumed to follow

〈j̄NI · B̄〉
Bφ,o

= kNI parj
profile
NI par (ρ̂)

I (t)1/2Ptot(t)
5/4

n̄(t)3/2
, (5)

where the reference profile j
profile
NI par identified from DIII-D through a combination of MSE

diagnostics and the EFIT equilibrium reconstruction code [13, 14] is given in figure 4, and
kNI par = 1.2139 × 1018 m−9/2 A−1/2 W−5/4.

The model for Te and 〈j̄NI · B̄〉/Bφ,o presented above considers neutral beams as the
only source of current and heating. In the case where more heating and current sources are
considered, equations (3) and (5) should include the weighted contributions of the different
sources, and reference profiles need to be identified for each heating and current source.

The resistivity η scales with the temperature Te as

η(ρ̂, t) = keffZeff

T
3/2

e (ρ̂, t)
, (6)

where Zeff = 1.5 and keff = 4.2702×10−8 
 m(keV)3/2. The total current density is given by

j = 1

µ0ρ
2
b F̂ 2Ĥ ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

1

R0

∂ψ

∂ρ̂

)
. (7)
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Figure 4. Temperature (T profile
e (keV)), and non-inductive toroidal current density (jprofile

NI par

(105 A m−2)) reference profiles identified from experimental shot 119566.
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Figure 5. (a) Current I (t) evolution, (b) Total power Ptot(t) evolution, (c) Initial ψ profile extracted
from experimental shot 119566.

2.2. Dynamic response of inductive-phase model

The system of equations describing the poloidal flux evolution has been successfully
implemented in a numerical solver. In this simulation example we consider the time interval
[0.5 s, 3.8 s]. The plasma current I (t) is shown in figure 5(a), the total power Ptot(t) is
depicted in figure 5(b) and the average density is scaled with the current, i.e. n̄(t)(1019 m−3) =
3I (t) (MA). The initial poloidal flux profile ψ extracted from shot 119566 is shown in
figure 5(c). Figure 6 shows the profile evolutions for the poloidal flux ψ , the total current
density j , the electron temperature Te, the parallel non-inductive current 〈j̄NI · B̄〉/Bφ,o, the
conductivity σ and the driving term I (t)1/2Ptot(t)

5/4n̄(t)−3/2, based on the dynamic model (1)–
(7). As expected, the area under the current density curve increases with time, consistent with
the boundary condition related to the total current at ρ̂ = 1 and the current I (t) evolution shown
in figure 5(a). The maximum of the current density moves slowly toward a smaller radius, as
expected from a diffusive process. Given the three order of magnitude variation in the plasma
conductivity (∼T

3/2
e , large in the hot center and small at the cold edge), the current density

rapidly equilibrates at the edge, but evolves much more slowly in the center. The Te profile
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Figure 6. Profile evolutions in a simulated ‘discharge’: (a) ψ (Wb), (b) j (A m−2), (c) Te (keV),
(d) 〈j̄NI · B̄〉/Bφ,o (A m−2), (e) σ (
 m−1), (f ) I (t)1/2Ptot(t)

5/4n̄(t)−3/2 (A1/2 W5/4 m9/2).

grows monotonically since I (t)
√

Ptotn̄(t)−1 ∼ √
Ptot in this simulation case (see figure 5(b)).

The 〈j̄NI · B̄〉/Bφ,o profile evolution follows the driving term I (t)1/2Ptot(t)
5/4n̄(t)−3/2. The

simulated profile evolutions show qualitative agreement with tokamak experiments.

2.3. Comparisons with experimental results

Experimental validation of the simplified, control-oriented model has already started. We
now present initial comparison results. This comparison does not intend to be exhaustive but
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focuses on one specific case of interest. The proposed dynamic model is compared with DIII-D
shot 129412, which was run by reproducing 129400 until 500 ms, then turning off the electron
cyclotron current drive (ECCD), and from that point on controlling the plasma current, line
average density and beam power as shown in figure 7.

Figure 8 illustrates the poloidal flux ψ at 500 ms for shot 129412, which is considered the
initial poloidal flux profile for the simulation study. Figures 9 and 10 show, respectively, the
simulated and experimental poloidal flux ψ evolving from 0.5 s to 1.7 s. Figures 11 and 12
compare simulated and experimental poloidal fluxes ψ and safety factors q at 1.7 s.

Figures 13 and 14 show, respectively, the experimental and simulated electron temperature
profiles at different times in the interval 0.5 s–1.7 s. Although the differences are significant in
the electron temperature profiles because the profiles extracted from shot 119566 do not seem
appropriate to model shot 129412, the trend of the proposed scaling with the actuators has
been successfully validated. To illustrate this point the term I (t)

√
Ptot(t)/n̄(t) in (3) is plotted

in figure 15. It is possible to note that the temperature profile in figure 13, and in figure 14 as
well, indeed follows the signal in figure 15 as predicted by the model. It is interesting to note
that in spite of the poor matching between experiment and model for the electron temperature,
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Figure 9. ψ (Wb) evolution predicted by simplified model.

Figure 10. ψ (Wb) evolution in experimental shot 129412.

the simplified model seems to predict the evolution of the poloidal flux ψ , and therefore the q

profile, accurately enough for control purposes as shown in figures 9–12.
A substantial experimental physics effort has been going on for several years to develop

predictive models for evolution of poloidal flux, or equivalently, current profiles in toroidal
plasmas. Our work draws on the result of those efforts but does not supersede it, since
our purpose is simply the conversion of this accepted physics model to a form useful for
control design. It is important to note that we are modeling for control and not for physical
understanding and, consequently, the model needs only to capture the dominant effects of the
system dynamics because one of the main characteristics of feedback is the ability to deal with
model uncertainties. It is also important to emphasize that for the open-loop control design
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proposed in this paper full predictive codes (CORSICA, CRONOS, PTRANSP, etc) could
be used with the potential of a more accurate prediction than that provided by the simplified
control-oriented model described in section 2.1.

3. Control problem description

The control objective, as well as the dynamic models for current profile evolution, depend on the
phases of the discharge (figure 2). During ‘phase I’ the control goal is to drive the current profile
from any arbitrary initial condition to a prescribed target profile at some time T ∈ [T1, T2] in the
flattop phase of the total current I (t) evolution. However, since the available actuators during
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Figure 14. Temperature profiles predicted by the simplified model.

‘phase I’ differ from those used during ‘phase II’ and are constrained by physical limitations,
the prescribed target profile is not an equilibrium profile during ‘phase I’. During ‘phase II’ the
control goal is to regulate the current profile using as little control effort as possible because
the actuators are not only limited in power but also in energy. For this reason, the goal during
‘phase I’ is to set up an initial profile for ‘phase II’ as close as possible to its desirable profile.

In this paper, we focus on ‘phase I’. It is important to note that although T1 and T2 can
be adjusted as functions of the properties of the system, such as time scale and efficiency of
the actuators, due to the nonlinearities of the system and the constraint of the actuators there
is no guarantee that the target profile can indeed be reached within the time window [T1, T2].
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Therefore, an optimal control problem must be solved, where control laws I (t), Ptot(t) and
n̄(t) are sought to minimize the cost functional

J =
√

min
tj

(J ∗(tj )), (8)

where tj are discrete points in time equally spaced within the interval [T1, T2], e.g. t (j) =
T1 = 1.2 s, 1.3 s, 1.4 s, . . . , T2 = 2.4 s for j = 1, 2, 3, . . . , 13 and J ∗(tj ) is given by

J ∗(tj ) = 1

N

N∑
i=1

(ι(ρ̂i , tj ) − ιdes(ρ̂i))
2, (9)

where N is the number of discrete points in space within the interval [0, 1] for the normalized
radius.

Since the rotational transform ι is proportional to the total current inside the flux surface
represented by the poloidal flux value ψ , i.e. proportional to the spatial integral of the current
density (7), the cost functional (8) has been defined in terms of this variable. The safety factor q

and the rotational transform ι are related and defined as

ι(ρ, t) = 1

q(ρ, t)
= ∂ψ(ρ, t)

∂�
. (10)

The constant relationship between � and ρ, ρ = √
�/πBφ,o, and the definition of the

normalized radius (in table 1) allow us to rewrite (10) as

ι(ρ̂, t) = ∂ψ

∂ρ̂

1

Bφ,oρ
2
b ρ̂

, (11)

where Bφ,o and ρb are defined in table 1.
‘Phase I’ can be roughly divided into two phases, the ramp-up phase and the flattop phase.

During the ramp-up phase, the three actuators I (t), n̄(t) and Ptot(t) are assumed available for
current profile control, whereas during part of the flattop phase (t > T1) we choose to keep
I (t), n̄(t) and Ptot(t) fixed although modulation of these variables is possible. In addition

13
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to these specific constraints during the flattop phase, the absolute values, and sometimes the
derivatives in time, of the control variables must be within some specific limits during the
whole ‘phase I’. The physical ranges for I (t), n̄(t) and Ptot(t) are given by

0 � I (t) � Imax,∣∣∣∣dI (t)

dt

∣∣∣∣ � dImax,
(12)

I (MA) � n̄(t)

1019
� 5I (MA),

dnmin � dn̄(t)

dt
� dnmax,

(13)

Pmin � Ptot(t) � Pmax. (14)

The lower and upper limits for the line average density in (13) is set to prevent density
instabilities and disruptions. The upper limit is approximately half of the Greenwald limit
at DIII-D. To accurately reproduce experimental discharges, we must add constraints for I (t)

and n̄(t) at the initial time of ‘phase I’, i.e.

I (t = 0 s) = I0,

n̄(t = 0 s) = n̄0.
(15)

In addition, a value of the total current I (t) is prescribed for the flattop phase, i.e.

I (t � T1) = Itarget. (16)

In summary, the optimal control problem (8) must be solved taking into account that:
(i) during the ramp-up phase and eventually early flattop phase (0 � t � T1) we can manipulate
the three actuators while obeying the physical constraints (12)–(15) (ii) during the flattop phase
I (t) is constrained by (16), and n̄(t) andPtot(t)must be equal to n̄(T1) andPtot(T1), respectively.
We seek I (t), n̄(t) and Ptot(t) for t ∈ [0, T ] that makes ι(ρ̂, T ) as close as possible to the
prescribed target profile ιdes(ρ̂) at some time T ∈ [T1, T2]. It is important to emphasize at
this point that the waveforms for I (t), n̄(t) and Ptot(t) for t ∈ [0, T ] obtained by solving the
optimal control problem (8) represent the desired values for these controlled variables. The
waveforms generated by the optimization algorithm (see section 4) are indeed the references
for the controllers associated with the plasma current I (t), line averaged density n̄(t) and
beam power Ptot(t). For instance, in the case of the plasma current, a PID loop regulates the
ohmic coil voltage at DIII-D to make the plasma current measured by a Rogowski loop (which
includes both inductive and non-inductive current components) follow the desired waveform
generated by the optimization algorithm. Similarly to the case of the plasma current, a PID
loop regulates gas puffing and pumping to make the line averaged density measured by a
CO2 interferometer follow the optimal waveform. The power of the current drives is directly
controlled by the power supplies associated with the drives. Recent experiments in DIII-D
have shown the possibility of controlling both plasma current and beam power very accurately.
However, the control of the evolution of the line average density appears as more challenging.
In order to ensure that the desired waveforms for the controlled variables can indeed be achieved
by the associated control loops, the physical constraints in (12)–(15) must be carefully chosen,
particulary for the line average density.

It is worth noting that we can rewrite the equation for the evolution of the poloidal
flux (1) as

∂ψ

∂t
=f1(ρ̂)u1(t)

1

ρ̂

∂

∂ρ̂

(
ρ̂f4(ρ̂)

∂ψ

∂ρ̂

)
− f2(ρ̂)u2(t) (17)
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with boundary conditions

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= k3u3(t), (18)

and where

f1(ρ̂) = keffZeff

k
3/2
Te

µoρ
2
b

1

F̂ 2(ρ̂)(T
profile

e (ρ̂))3/2
, u1(t) =

(
n̄(t)

I (t)
√

Ptot

)3/2

, (19)

f2(ρ̂) = RoĤµoρ
2
b F̂ 2(ρ̂)kNI parj

profile
NI par (ρ̂)f1(ρ̂), u2(t) =

√
Ptot(t)

I (t)
, (20)

k3 = µo

2π

Ro

Ĝ
∣∣
ρ̂=1Ĥ

∣∣
ρ̂=1

, u3(t) = I (t), (21)

f4(ρ̂) = F̂ ĜĤ . (22)

The control of the magnetic diffusion PDE (17) is unique in the sense that it admits control
not only through u2(t) (interior control) and u3(t) (boundary control) but also through u1(t),
which we name diffusivity control in this paper. As the experiment and the equilibrium change,
and therefore the profiles in figures 3 and 4, the dependence of f1, f2 and f4 on ρ̂ will also
change, but the structure of (17) and (18) will remain. Thus, it is important to understand the
control challenges associated with this system.

4. Extremum seeking optimal control

Extremum seeking control, a popular tool in control applications in the 1940–50s, has seen a
resurgence in popularity as a real-time optimization tool in different fields of engineering
[11, 15, 16]. Aerospace and propulsion problems (formation flight [17]), combustion
instabilities [18,19], flow control [20,21], compressor rotating stall [22], automotive problems
(soft landing of electromagnetic valves [23]), heat transfer problems [24] and bioreactors [25]
are among its applications. Extremum seeking is applicable in situations where there is a
nonlinearity in the control problem, and the nonlinearity has a local minimum or a maximum.
One possible source of this nonlinearity is the control objective itself, which is added to the
system through a cost functional of an optimization problem. Extremum seeking can be used
for tuning some parameters of the system in order to achieve an optimal value of the cost
functional. The parameter space can be multidimensional.

By parametrizing the control laws for I (t), Ptot(t) and n̄(t) in terms of a set of parameters
denoted by θ , we use extremum seeking in this work for iterative tuning of θ to make the
quadratic error between ι(ρ̂, T ) and the prescribed target profile ιdes(ρ̂) as small as possible at
some time T ∈ [T1, T2], i.e. to solve the optimization problem defined by

min
θ

J (θ), (23)

with J defined in (8). The number of parameters used to represent the control laws is
indeed a choice of the designer, and at the same time a tradeoff between the accuracy of
the parametrization and the convergence speed of the extremum-seeking optimizer. In this
work, the vector parameter θ has been chosen to have 10 components given by

θ = [I (0.4 s), I (0.8 s), Ptot(0 s), Ptot(0.4 s), Ptot(0.8 s),

Ptot(1.2 s), n̄(0.3 s), n̄(0.6 s), n̄(0.9 s), n̄(1.2 s)]. (24)
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Figure 16. Extremum seeking control scheme.

We change or tune θ after each simulated plasma ‘discharge’. Thus, we employ the
discrete-time version [26] of extremum seeking. The implementation is depicted in figure 16,
where z denotes the variable of the Z-transform [27]. The Z-transform plays the same role
in discrete-time systems that the Laplace transform [28] plays in analysis of continuous-time
systems. Given a sequence u0, u1, . . . , ul, . . ., denoted as {u(l)}, and where l denotes the
discrete time, its Z-transform is defined as

Z{u(l)} = U(z) =
l=∞∑

l=−∞
ulz

−l . (25)

From this definition it is possible to note that

Z{u(l + 1)} = zU(z), Z{u(l − 1)} = z−1U(z), (26)

for which z is also called the time shift operator. The Z-transform permits the rapid conversion
of a linear, constant-coefficient, difference equation in the discrete-time domain into a transfer
function in the Z-domain, which is defined as the ratio of the Z-transform of the system output
to the Z-transform of the system input. Therefore, the dynamics of a discrete-time linear
system can be expressed either by a difference equation in the discrete-time domain or by a
transfer function in the Z-domain.

The static nonlinear block J (θ) in figure 16 is assumed to have a minimum J ∗ at θ = θ∗.
The purpose of the extremum seeking optimization algorithm is to use the gradient information
of the static map J (θ) to drive θ to θ∗ so that the cost functional J (θ) is driven to its minimum
J ∗. The variable θ̂ in figure 16 denotes the estimate of the unknown optimal parameter θ∗

provided by the extremum seeking algorithm. The probing signal a sin(ωt), with a > 0, added
to the estimate θ̂ and fed into the plant helps to get a measure of the gradient information of the
map J (θ). The high-pass filter preserves only the perturbation in the cost functional J caused
by the perturbation in the θ parameter introduced by the probing signal. The demodulator
picks the component of the filtered perturbed cost functional Jf with the same frequency ω as
the probing signal. The resulting signal ξ , which can be seen as proportional to the gradient of
the map J (θ), is used by the pure-integrator low-pass filter to update the θ parameter in order
to drive the cost functional J closer to its minimum.

Once θ(k) is defined at each iteration k of the extremum seeking optimization algorithm,
the output of the static map J (k) = J (θ(k)) can be computed after the simulated ‘discharge’
associated with each extremum seeking iteration takes place. In a simulation environment, we
understand by ‘discharge’ the integration of the PDE equation (1)–(2). With this purpose, the
control laws for I (t), Ptot(t) and n̄(t) must be reconstructed from θ(k). The reconstruction
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of each one of the control laws is carried out through an optimal polynomial interpolation
that takes into account the constraints in value and rate defined for the control laws. As an
example, we state below the optimal polynomial interpolation problem defined for the plasma
current I (t). Similar optimization problems are defined for the other control laws. We write
the plasma current as a polynomial in time t , i.e.

I (t) =
nI

fit∑
i=0

xit
nI

fit−i , (27)

where nI
fit denotes the order of the fitting polynomial and xi , for i = 0, . . . , nI

fit, are its
coefficients. Recalling that θ1 and θ2 represent the value of plasma current determined by the
extremum seeking algorithm at t = 0.4 s and t = 0.8 s, respectively, we denote x = [x0 · · · xnI

fit
]

as the coefficient vector and define the cost functional

J I
fit(x) = (I (t = 0.4 s) − θ1)

2 + (I (t = 0.8 s) − θ2)
2. (28)

The optimal polynomial interpolation problem can then be written as

min
x

J I
fit(x) (29)

subject to the following constraints:

I (t = 0 s) = I0,

I (t = T1) = Itarget,

|dI (ti)/dt | � dImax,

0 < I (ti) < Imax,

(30)

where ti = 0, 0.1, 0.2, ..., 1.1, 1.2.
After reconstructing the control laws for I (t), Ptot(t) and n̄(t), the PDE equation (1)–(2) is

integrated and the simulated profile ι(ρ̂, t) is obtained3. The output of the nonlinear static map,
J (k) = J (θ(k)), is then calculated by evaluating (8) and used to compute θ(k + 1) according
to the extremum seeking procedure in figure 16 or written equivalently as

Jf(k) = −hJf(k − 1) + J (k) − J (k − 1), (31)

ξ(k) = Jf(k) sin(ωk), (32)

θ̂ (k + 1) = θ̂ (k) − γ ξ(k), (33)

θ(k + 1) = θ̂ (k + 1) + a sin(ω(k + 1)), (34)

where a > 0 and ω > 0 denote the amplitude and frequency of the probing signal, 0 < h < 1
denotes the cutoff frequency of the high-pass filter and γ > 0 denotes the gain of the pure-
integrator low-pass filter. Note that equations (31) and (33) are the difference-equation versions
of the transfer functions for the high-pass and low-pass filters in figure 16.

We present in the appendix an elementary intuitive explanation of how the extremum
seeking optimization algorithm works, including a discussion on the constraints on the design
parameters a, ω, h and γ . A rigorous analysis can be found in [11, 26].

5. Simulation results

The extremum seeking optimization algorithm has been tested for numerous combinations of
different initial ψ profiles and ι target profiles. In this section, we present some simulation

3 Note that is perfectly possible to use a different, probably more accurate, model for the evolution of the poloidal
flux profile instead of model (1)–(2). For instance, full predictive codes (CORSICA, CRONOS, PTRANSP, etc) can
be used to predict the evolution of the poloidal flux profile.
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Figure 17. Initial ψ profile extracted from experimental shot 119557 (a), initial ψ profile extracted
from experimental shot 119566 (b).

results showing the effectiveness of the extremum seeking controller designed to solve the
optimal control problem (8) with T1 = 1.2 s and T2 = 2.4 s. The simulations are carried out
using 100 uniformly distributed spatial points and a sampling time of 10 ms over a time interval
[0, 2.4 s].

The optimal polynomial interpolation procedure described in section 4 is implemented
in this section to reconstruct the control laws I (t), Ptot(t) and n̄(t) from the optimized
parameter vector θ(k) at each iteration k of the extremun seeking optimization algorithm.
The current I (t) is reconstructed in [0, T1] using constraint polynomial interpolation to fit
the discrete points I (t = 0) = I0 ≡ 0.709 MA, I (t = 0.4 s) = θ1, I (t = 0.8 s) = θ2,
I (t = T1 = 1.2 s) = Itarget ≡ 1.188 MA. In addition, I (t) = Itarget ≡ 1.188 MA in
(T1, T2]. The parameters Imax = 1.191 MA and dImax = 2 MA s−1 are used in (12) to
evaluate the constraints for I (t). The total power Ptot(t) is reconstructed using constrained
polynomial interpolation to fit the discrete points Ptot(t = 0) = θ3, Ptot(t = 0.4 s) = θ4,
Ptot(t = 0.8 s) = θ5, Ptot(t = T1 = 1.2 s) = θ6. In addition, we make Ptot(t) =
Ptot(t = T1 = 1.2 s) for t ∈ (T1, T2]. The constraint for Ptot(t) is evaluated from (14)
using Pmin = 1 MW and Pmax = 10 MW. The line average density n̄(t) is obtained by
constrained polynomial interpolation to fit the discrete points n̄(t = 0) = n0 ≡ 2 × 1019 m−3,
n̄(t = 0.3 s) = θ7, n̄(t = 0.6 s) = θ8, n̄(t = 0.9 s) = θ9, n̄(t = T1 = 1.2 s) = θ10. For
t > T1 = 1.2 s, n̄(t) = n̄(t = T1 = 1.2 s). The constraints for n̄(t) are given by (13) with
dnmin = −1.7 × 1019 m−3 s−1 and dnmax = 3 × 1019 m−3 s−1.

The initial values for θ for all the simulation cases are arbitrarily chosen as follows:

θint = [0.94 MA, 1.16 MA,

1.16 MW, 0.86 MW, 1.09 MW, 2.18 MW,

1 × 1019 m−3, 2 × 1019 m−3, 3 × 1019 m−3, 4 × 1019 m−3].

The first simulation case considers the initial poloidal flux ψ shown in figure 17(a) and the
monotonic target ι profile with positive shear near the axis shown in figure 18(a). Figure 18(a)
compares the ι profile obtained by applying the extremum-seeking-based, optimal, open-loop
control with the target ι profile. The small spatial scale structure in ι at a small radius is an
artifact of the numerical scheme used to derive these variables from the calculated poloidal
flux. Figure 18(a) also shows the evolution over time of the ι profile when the time evolutions
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Figure 18. Simulation of extremum seeking optimal control: (a) Desired target ι profile and
computed best matching, (b) I (t), (c) Ptot , (d) n̄(t).

for the three actuators are those shown in figures 18(b)–(d). The extremum seeking algorithm
converges to a minimum in less than 20 iterations.

The second simulation case considers the initial poloidal flux ψ shown in figure 17(b)
and the monotonic target ι profile with near zero shear near the axis shown in figure 19(a).
Figure 19(a) compares the ι profile obtained by applying the extremum-seeking-based, optimal,
open-loop control, with the target ιprofile. The time evolutions for the three actuators are shown
in figure 19(b)–(d). Figure 19(a) also shows the time evolution of the ι profile driven by these
actuator waveforms. The extremum seeking algorithm converges to a minimum in less than
50 iterations.

The third simulation case considers the initial poloidal flux ψ shown in figure 17(b), and
the reversed shear target ι profile shown in figure 20(a). Figure 20(a) shows the ι profile
obtained by applying the extremum-seeking-based, optimal, open-loop control, and compares
it with the target ι profile. The corresponding time evolutions for the three actuators are shown
in figure 20(b)–(d). The time evolution of the ι profile driven by these actuator waveforms is
also shown in figure 20(a). The extremum seeking algorithm converges to a minimum in less
than 100 iterations.

All the figures depicting the actuator waveforms include the values of the associated
components of θ obtained by the extremum seeking optimization algorithm. This allows for
the distinction between the outcomes of the extremum seeking optimization and the optimal
polynomical interpolation procedure. It is possible to note from some of these figures that
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Figure 19. Simulation of extremum seeking optimal control: (a) Desired target ι profile and
computed best matching, (b) I (t), (c) Ptot , (d) n̄(t).

the optimal polynomical interpolation procedure avoids fitting some of the components of θ

generated by the extremum seeking optimization algorithm in order to satisfy the value and
rate constraints specified for the actuators.

6. Conclusions and future works

A multi-parameter, extremum-seeking, open-loop, optimal controller has been designed, and
successfully tested in simulations, to match a desired ι profile within a predefined time window
during the flattop phase of the tokamak discharge.

Three simulation cases based on target profiles of increasing complexity have been
presented. The extremum-seeking procedure has shown to be effective to deal with an
optimal control problem defined for a nonlinear PDE system subject to many constraints in
its actuators. Based on the promising results obtained in the simulation study, it is anticipated
that the scheme can play an important role in fusion plasma physics experiments at the
DIII-D tokamak.

A simplified dynamic model describing the evolution of the poloidal flux, and therefore
the ι profile, during the inductive phase of the discharge has been used. Alternatively, more
accurate dynamic models for the prediction of the evolution of the poloidal flux profile can be
implemented and used within the proposed Extremum Seeking optimal control scheme. Future
work includes the use of predictive codes (CORSICA, CRONOS, PTRANSP, etc) for the design
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Figure 20. Simulation of extremum seeking optimal control: (a) Desired target ι profile and
computed best matching, (b) I (t), (c) Ptot , (d) n̄(t).

of open-loop, extremum-seeking-based, optimal controllers for current profile regulation, as
well as the experimental testing of these controllers in the DIII-D tokamak.
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Appendix

Without loss of generality, the static nonlinear block J (θ) in figure 16 is assumed to have a
minimum at θ = θ∗, and to be of the form

J (θ) = J ∗ +
J ′′

2
(θ − θ∗)2, (35)

where J ′′ > 0. Any C2 function, J (θ), can be approximated locally by (35). The purpose
of the extremum seeking algorithm is to make θ − θ∗ as small as possible, so that the output
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J (θ) is driven to its minimum J ∗. We note that θ̂ denotes the estimate of the unknown optimal
input θ∗. In order to obtain a measure of the gradient information of the map J (θ), a probing
signal a sin(ωk), with a > 0, is fed into the plant (see (34)), i.e.

θ = θ̂ + a sin(ωk). (36)

Let

θ̃ = θ∗ − θ̂ (37)

denote the estimation error. Thus,

θ(k) − θ∗ = a sin(ωk) − θ̃ (k), (38)

which, when substituted into (35), gives

J (k) ≡ J (θ(k)) = J ∗ +
J ′′

2
(θ̃(k) − a sin(ωk))2. (39)

Taking into account the trigonometric identity 2 sin2(ωk) = 1 − cos(2ωk), we can
rewrite (39) as

J (k) = J ∗ +
a2J ′′

4
+

J ′′

2
θ̃ (k)2 − aJ ′′θ̃ (k) sin(ωk) − a2J ′′

4
cos(2ωk). (40)

The high-pass filter, applied to J (k), removes the constant terms and generates a filtered version
of the cost functional (see (31)),

Jf(k) = J ′′

2
θ̃ (k)2 − aJ ′′θ̃ (k) sin(ωk) − a2J ′′

4
cos(2ωk), (41)

where the information of the gradient of the map J (θ) is preserved. In particular, the second
term plays a crucial role since it represents the gradient of the map multiplied by the perturbation
introduced by the probing signal. The filtered cost functional is in turn demodulated by being
multiplied by sin(ωk) to generate (see (32))

ξ(k) = J ′′

2
θ̃ (k)2 sin(ωk) − aJ ′′θ̃ (k) sin2(ωk) − a2J ′′

4
cos(2ωk) sin(ωk). (42)

Applying again 2 sin2(ωk) = 1 − cos(2ωk), as well as the trigonometric identity
2 cos(2ωk) sin(ωk) = sin(3ωk) − sin(ωk), we can rewrite (42) as

ξ(k) = − aJ ′′

2
θ̃ (k) +

aJ ′′

2
cos(2ωk) +

a2J ′′

8
(sin(ωk) − sin(3ωk))

+
J ′′

2
θ̃ (k)2 sin(ωk). (43)

The low-pass filter, applied to ξ(k), will remove the high-frequency terms (last three terms)
and preserve the crucial term −(aJ ′′/2)θ̃(k) containing information on the gradient of the map
J (θ). Therefore, we can write

θ̂ (k) = −γ

z − 1
ξ(k) ≈ γ

z − 1

aJ ′′

2
θ̃ (k). (44)

Taking into account definition (26) for the shift operator z, we can write (see (33))

θ̂ (k + 1) − θ̂ (k) = γ
aJ ′′

2
θ̃ (k). (45)

We note that θ̂ (k + 1) − θ̂ (k) = −(θ̃(k + 1) − θ̃ (k)), and write

θ̃ (k + 1) = θ̃ (k) − γ
aJ ′′

2
θ̃ (k) =

(
1 − γ

aJ ′′

2

)
θ̃ (k). (46)
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Provided that |1 − γ (aJ ′′/2)| < 1 (a and γ are design parameters), this is a stable system.
Thus, θ̃ → 0, i.e. θ̂ → θ∗.

For stability reasons the high-pass filter in figure 16 is designed as 0 < h < 1. Since
this is a discrete-time system, the modulation frequency ω is selected such that ω = απ ,
0 < |α| < 1, and α is rational. Looking back at our elementary intuitive analysis, it is
important to note that the approximations hold only when ω is large in a qualitative sense.
The cutoff frequencies of the filters need to be lower than the frequency ω of the perturbation
signal. These observations impose constraints and, at the same time, a relationship on ω and
h. As an additional constraint, ω should not equal any frequency present in the measurement
noise. The perturbation amplitude a needs to be small in order to make the steady-state output
error also small. Given a, the adaptation gain γ needs to be small enough to satisfy the stability
condition |1 − γ (aJ ′′/2)| < 1.

In this case, we are dealing with a multi-parameter extremum seeking procedure (the
number of parameters np considered in this work is 10). Thus, we write

θ(k) =




θ1(k)

...

θnp(k)


 , θ̂ (k) =




θ̂1(k)

...

θ̂np(k)


 , ξ(k) =




ξ1(k)

...

ξnp(k)


 . (47)

The extremum seeking constants shown in figure 16 are written as a = diag([a1 · · · anp ]), and
γ = diag([γ1 · · · γnp ]). In addition, we use the special compact notation where sin(ωk) is a
vector which denotes

sin(ωk) =




sin(ω1k)

...

sin(ωnpk)


 . (48)

It is convenient to use a separate frequency for each parameter tracking loop, following
the guidelines given above. In general, using a single frequency to excite multiple parameter
tracking loops leads to a greater coupling, and consequently to an increase in the design
difficulty.
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