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Abstract

The matching problem for a low energy transport system in a charged particle accelerator is approached using the extremum seeking

method for non-model based optimization and adaptive control. The beam dynamics used for numerical simulations are given by the KV

(Kapchinsky–Vladimirsky) envelope equations. Extremum seeking is employed for the lens tuning in both a matching and a periodic

channel. Numerical simulations illustrate the effectiveness of this approach.
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1. Introduction

In the design of a particle accelerator, feedback control
systems are becoming an essential part of the system. The
uses of control are numerous: from the magnet power
supplies, to RF systems, to various control loops dedicated
to certain properties of the beam (steering, phase and
position in storage rings, etc.). In this work we approach
the beam matching problem, where the beam must be
matched to the acceptance ellipse of an accelerating
structure or transport section. Specifically, we consider a
fixed-geometry matching section consisting of n quadru-
pole lenses. The objective of this system is to take any
arbitrary initial beam state (phase coordinates) and
‘‘match’’ it to the acceptance ellipse of the following
section, i.e., any given initial state xini to a prescribed target

state xtar at one or more locations along the channel,
through the control of the lens focusing strengths in the
matching channel. We also consider that the matching
section may be followed by a fixed-geometry periodic
section, where initial and final states are identical (xp).
A review of beam transport including matching was
recently presented in Ref. [1]. Envelope matching of
electron beams in a fixed lattice of short magnets was also
studied in Ref. [2].
We assume the matching channel to be composed of

discrete beamline elements, such as lenses, and drifts. These
elements are cascaded along the beam axis, labeled as the z

axis, to form the transport channel. The matching channel
configuration is depicted in Fig. 1a. The inputs to the
lenses, labeled yi, for i ¼ 1 . . . n, represent the focusing
strengths of the lenses and are the parameters of the
matching channel that may be varied. The periodic channel
configuration is depicted in Fig. 1b. The focusing function
in this channel must be symmetric, i.e., the absolute values
of the lens focusing strengths must be identical and equal to
yp. This common lens strength is the parameter of the
periodic channel that may be varied.
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The design of particle beam matching systems has been
originally accomplished by an iterative procedure, where
the beam is simulated in a given transport system, and the
knobs of the lens focusing strengths are continually
adjusted until a satisfactory solution is obtained. There
has been some effort on automating this procedure, and
several codes based on model-based optimization techni-
ques are available to find a matching solution off-line.
As a mode of example, in Ref. [3] the problem was
approached from a control theoretical point of view, using
local (nonlinear programming) and global (dynamic
programming) optimal control methods, and based on a
multistage control network model. The global method is
practical only for axisymmetric systems. It has been shown
to become too computationally intensive for particle beams
with more degrees of freedom. For these beams, the local
method is substantially faster at the expense of finding local
minima of the cost functional, which may not be the best
(global) solution.

The major shortcoming of these model-based methods is
their dependence on the model. The accuracy of the
calculation is limited by the uncertainties associated with
the initial beam conditions, magnet modeling, exact beam
current, emittances, magnet locations, etc. Therefore, the
implementation of the calculated element strengths in a real
experiment does not yield true matching conditions. Under
these circumstances, the ‘‘knobs’’ for the lens focusing
strengths must be adjusted on-line. The success of such a
procedure relies at present completely upon the experience,
judgement, and intuition of the operator.

In this paper we introduce extremum seeking as an
effective optimization technique to find an optimal match-
ing solution both on-line (real-time experiment) and
off-line (simulated environment) for a four-quadrupole or
six-quadrupole matching channel. By optimal matching
solution we understand a set of lens focusing strengths
which minimizes a cost function that measures the ‘‘error’’
between the actual beam envelope trajectory and the target
or desired beam envelope trajectory, i.e., that measures the
degree of matching. The target or desired trajectory is
provided by the designer based on requirements on beam

envelope excursions and emittance growth [4]. Due to its
non-model-based nature, extremum seeking is well suited
to overcome the limitations described above for model-
based optimization methods in terms of uncertainty
handling. Therefore, a hybrid scheme is also presented in
this paper, where the optimal lens focusing strengths
are computed off-line using either extremum seeking
(Section 4) or another model-based optimization technique,
and used as initial conditions for an on-line, extremum-
seeking controller (Section 5). Under this framework, the
extremum seeking algorithm plays the role of a non-model-
based, adaptive controller, which is one of its unique
characteristics, ensuring a well-matched beam independently
of uncertainties or changes in the system parameters.
The paper is organized as follows. In Section 2 the

control problem is defined. Section 3 introduces the
fundamentals of extremum seeking. The effectiveness of
the extremum seeking algorithm for beam matching
optimization is demonstrated in Section 4 through an
extensive numerical study. The possible use of extremum
seeking as an adaptive controller is illustrated in Section 5
and represents a major contribution of this technique to
particle accelerator operation. In this case, the initial
tuning of the lens strengths, computed off-line by a model-
based optimization technique, is ‘‘corrected’’ in real time
by the extremum seeking adaptive controller to compensate
for unmodeled effects such as fluctuations in the initial
conditions of the beam, uncertainties or changes in the
physical characteristics of the beam, and faults, drifts or
hysteresis of the actuators (electromagnetic lenses). There-
fore, the extremum seeking adaptive controller makes the
channel robust against these effects, and a well-matched
beam is achieved for any condition of the beam and the
channel. The paper is closed by a summary in Section 6.

2. Problem definition

Assuming a continuous, elliptically symmetric particle
beam, we model its dynamics using the KV (Kapchins-
ky–Vladimirsky) coupled-envelope equations [5]. Let the z

coordinate represent the position along the design trajec-
tory, and thus the x–y plane is the transverse plane for the
particle beam. At each z location, let X ðzÞ and Y ðzÞ

represent the dimension of the semi-axes of the beam
envelope in the x and y planes, respectively. We refer to
X ðzÞ and Y ðzÞ as the beam envelope trajectory. The KV
equations then appear as

X 00 � yðzÞX �
2K

X þ Y
�
�2X
X 3
¼ 0 (1)

Y 00 þ yðzÞY �
2K

X þ Y
�
�2Y
Y 3
¼ 0 (2)

where the prime indicates differentiation with respect to z,
which plays the role of ‘‘time’’ in an optimal control
framework. K is the beam perveance [6], �X and �Y are the
effective unnormalized emittances of the beam in the x and
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Fig. 1. (a) Matching and (b) periodic channels.
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y planes, respectively. The function yðzÞ, shown in Fig. 2
for a six-quadrupole matching channel followed by a
periodic channel, is the focusing (control) function; k
is a constant, Ld is the drift length, and Lq is the
quadrupole effective lens length. The physical parameters
used in the simulations presented in this paper, and
chosen arbitrarily with the only purpose of illu-
strating the effectiveness of the extremum seeking ap-
proach to beam matching, are K ¼ 2:7932� 10�6 rad2,
�X ¼ 6� 10�6 m rad, �Y ¼ 6� 10�6 m rad, k ¼ 2:6689 (see
Fig. 2), Ld ¼ 0:1488m, Lq ¼ 0:0610m. The n-lens match-
ing channel parameters (lens strengths) must satisfy the
following constraints:

jyijpȳ for i ¼ 1; . . . ; n

yjX0 for j ¼ odd

ykp0 for k ¼ even

while the periodic channel parameter must satisfy

0pyppȳ.

For simulation purposes, ȳ ¼ 50 has been considered in
this paper.

We are given initial conditions for the beam at z ¼ 0, the
transport system’s entrance location. These conditions
characterize the beam coming from the preceding section
of the transport or accelerator system. They may be
translated into initial conditions for the beam envelopes in
the x plane (X ini, X 0ini) and in the y plane (Y ini;Y

0
ini). In

matching systems we are also given desired target condi-
tions at specific locations along the axis, for instance,
at z ¼ Lm, the exit location of the matching channel (see
Fig. 1a). We denote these target conditions as (X tar;X

0
tar)

and (Y tar;Y
0
tar). They may be prescribed by the acceptance

requirements of the next section of the transport or
accelerator system.

Denoting x ¼ ½X X 0 Y Y 0�T, we define

xini ¼ xð0Þ ¼

X ini

X 0ini

Y ini

Y 0ini

2
66664

3
77775; xtar ¼

X tar

X 0tar

Y tar

Y 0tar

2
66664

3
77775. (3)

In addition, we define desired beam envelope trajectories
for X ðzÞ and Y ðzÞ denoted as XdesðzÞ and Y desðzÞ,
respectively. Some examples of how to choose such
trajectories will be given for some of our study cases later
in the paper. Given xini, xtar, X desðzÞ and Y desðzÞ, we use an
extremum seeking procedure to minimize (maximize) a cost
function J ¼ Jðx;xtar;XdesðzÞ;Y desðzÞÞ, which is a direct
measure of mismatching (matching). The problem is
formulated as finite-‘‘time’’ optimal control (0pzpL),
with bang–bang controls1 of fixed durations but varying
intensities (i.e., with a very coarse discretization in ‘‘time’’
which results in a highly constrained waveform for the
control yðzÞ as it is shown in Fig. 2), for a plant that is
nonlinear. This is far from being a standard optimization
problem. To add complexity to the problem, we are seeking
robustness against uncertainties of the system for a
successful practical implementation of the control method.

3. Extremum seeking

Extremum seeking control, a popular tool in control
applications in the 1940–1950s, has seen a resurgence in
popularity as a real time optimization tool in different
fields of engineering [7–9]. Aerospace and propulsion
problems (formation flight [10]), combustion instabilities
[11,12], flow control [13,14], compressor rotating stall [15],
automotive problems (soft landing of electromagnetic
valves [16]), heat transfer problems [17], and bioreactors
[18] are among its applications. Extremum seeking is
applicable in situations where there is a nonlinearity in the
control problem, and the nonlinearity has a local minimum
or a maximum. The parameter space can be multidimen-
sional. In this paper we use extremum seeking for iterative
optimization of the lens focusing strengths yi, for
i ¼ 1; . . . ; n, and eventually yp, to make x as close as
possible to xtar at prescribed locations along the channel.
We point out that, since xtar is given arbitrarily, x is
obtained via solving a system of nonlinear differential
equations, and the lens input applied through yðzÞ is highly
constrained in its waveform (Fig. 2), there may not exist a
set of lens focusing strengths for which perfect matching is
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Fig. 2. Focusing function yðzÞ for a six-quadrupole matching channel

followed by a periodic channel, where k is a constant, yi, for i ¼ 1; . . . ; 6; p
in this example, represents the focusing strengths of the lenses (control

inputs), Ld is the drift length, and Lq is the quadrupole effective lens

length. Li , for i ¼ 1; . . . ; 7 in this example, represents the center positions

of the quadrupole lenses in the periodic channel.

Fig. 3. Extremum seeking control scheme.

1It is sometimes the case that a control is restricted to be between a

lower and an upper bound. If the control switches from one extreme to the

other at certain times (i.e., the control is never strictly in between the

bounds) then the control is referred to as a bang–bang control.
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achieved (J ¼ 0), thus we try to obtain the best possible
approximate matching (J ¼ minimum).

We change the lens focusing strengths after each beam
‘‘run’’ (extremum seeking iteration). Thus, we employ
the discrete-time version [19] of extremum seeking. The
implementation is depicted in Fig. 3, where q denotes the
variable of the Z-transform [20]. The Z-transform plays
the same role in discrete-time systems that the Laplace
transform [21] plays in analysis of continuous-time
systems. Given a sequence u0; u1; . . . ; uk; . . . ; denoted as
fuðkÞg, and where k denotes the discrete time, its
Z-transform is defined as

ZfuðkÞg ¼ UðqÞ ¼
Xk¼1

k¼�1

ukq�k. (4)

From this definition it is possible to note that

Zfuðk þ 1Þg ¼ qUðqÞ; Zfuðk � 1Þg ¼ q�1UðqÞ (5)

for which q is also called the time shift operator. The
Z-transform permits the rapid conversion of a linear,
constant-coefficient, difference equation in the discrete-
time domain into a transfer function in the Z-domain,
which is defined as the ratio of the Z-transform of the
system output to the Z-transform of the system input.
Therefore, the dynamics of a discrete-time linear system
can be expressed either by a difference equation in the
discrete-time domain or by a transfer function in the
Z-domain.

The high-pass filter in Fig. 3 is designed as 0oho1, and
the modulation frequency o is selected such that o ¼ ap,
0ojajo1, and a is rational. The static nonlinear block JðyÞ
is defined to be a measure of the matching error. The
objective is to minimize J. We present next an elementary
intuitive explanation of how the scheme works. A rigorous
analysis can be found in Refs. [9,19].

Without loss of generality, the static nonlinear block JðyÞ is
assumed to have a minimum at y ¼ y�, and to be of the form

JðyÞ ¼ J� þ
J 00

2
ðy� y�Þ2 (6)

where J 0040. Any C2 function, JðyÞ, can be approximated
locally by Eq. (6). The purpose of the extremum seeking
algorithm is to make y� y� as small as possible, so that the
output JðyÞ is driven to its minimum J�. The probing signal
a sinðotÞ, with a40, fed into the plant helps to get a
measure of gradient information of the map JðyÞ. We note
that ŷ in Fig. 3 denotes the estimate of the unknown
optimal input y�. Let

~y ¼ y� � ŷ (7)

denote the estimation error. Thus,

yðkÞ � y� ¼ a sinðokÞ � ~yðkÞ (8)

which, when substituted into Eq. (6), gives

JðkÞ � JðyðkÞÞ ¼ J� þ
J 00

2
ð~yðkÞ � a sinðokÞÞ2. (9)

Taking into account the trigonometric identity 2 sin2ðokÞ ¼

1� cosð2okÞ, we can rewrite Eq. (9) as

JðkÞ ¼ J� þ
a2J 00

4
þ

J 00

2
~yðkÞ2 � aJ 00 ~yðkÞ sinðokÞ

�
a2J 00

4
cosð2okÞ. ð10Þ

The high-pass filter, applied to JðkÞ, will remove the
constant terms and generate the signal

Jf ðkÞ ¼
J 00

2
~yðkÞ2 � aJ 00 ~yðkÞ sinðokÞ �

a2J 00

4
cosð2okÞ

which is in turn demodulated by being multiplied by
b sinðok � fÞ, with b40, to generate

xðkÞ ¼
bJ 00

2
~yðkÞ2 sinðokÞ � abJ 00 ~yðkÞ sin2ðokÞ

�
a2bJ 00

4
cosð2okÞ sinðokÞ ð11Þ

where we have taken f ¼ 0 to simplify the analysis.
Applying again 2 sin2ðokÞ ¼ 1� cosð2okÞ, as well as the
trigonometric identity 2 cosð2okÞ sinðokÞ ¼ sinð3okÞ�

sinðokÞ, we can rewrite (11) as

xðkÞ ¼ �
abJ 00

2
~yðkÞ þ

abJ 00

2
cosð2okÞ

þ
a2bJ 00

8
ðsinðokÞ � sinð3okÞÞ

þ
bJ 00

2
~yðkÞ2 sinðokÞ. ð12Þ

The low-pass filter (g40), applied to xðkÞ, will remove the
high-frequency terms (last three terms). Therefore, we can
write

ŷðkÞ ¼
�g

q� 1
xðkÞ �

g
q� 1

abJ 00

2
~yðkÞ. (13)

Taking into account definition (5) for the shift operator q,
we can write

ŷðk þ 1Þ � ŷðkÞ ¼ g
abJ 00

2
~yðkÞ. (14)

We note that ŷðk þ 1Þ � ŷðkÞ ¼ �ð~yðk þ 1Þ � ~yðkÞÞ, and
write

~yðk þ 1Þ ¼ ~yðkÞ � g
abJ 00

2
~yðkÞ ¼ 1� g

abJ 00

2

� �
~yðkÞ. (15)

Provided that j1� gðabJ 00=2Þjo1 (a, b, and g are design
parameters), this is a stable system. Thus, ~y! 0,
i.e., ŷ! y�.
Looking back at our elementary intuitive analysis, it is

important to note that the approximations hold only when
o is large in a qualitative sense. The cut-off frequencies of
the filters need to be lower than the frequency o of the
perturbation signal. These observations impose constraints
and, at the same time, a relationship on o and h. As an
additional constraint, o should not equal any frequency
present in the measurement noise. The perturbation
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amplitude a needs to be small in order to make the steady
state output error also small. Given a and b, the adaptation
gain g needs to be small enough to satisfy the stability
condition j1� gðabJ 00=2Þjo1.

In this case, we are dealing with a multi-parameter
extremum seeking procedure (the number of parameters np

considered in the following sections will be 4, 6 or 7). Thus,
we write

yðkÞ ¼

y1ðkÞ

..

.

ynpðkÞ

2
664

3
775; ŷðkÞ ¼

ŷ1ðkÞ

..

.

ŷnpðkÞ

2
6664

3
7775; xðkÞ ¼

x1ðkÞ

..

.

xnpðkÞ

2
664

3
775. (16)

The extremum seeking constants shown in Fig. 3
are written as a ¼ b ¼ diagð½a1 � � � anp �Þ, and g ¼ diag
ð½g1 � � � gnp

�Þ. In addition, we use the special compact
notation where sinðok � fÞ is a vector which denotes

sinðok � fÞ ¼

sinðo1k � f1Þ

..

.

sinðonpk � fnp
Þ

2
664

3
775. (17)

It is convenient to use a separate frequency for each
parameter tracking loop, following the guidelines given
above. In general, using a single frequency to excite multiple
parameter tracking loops leads to a greater coupling, and
consequently to an increase of the design difficulty.

In a simulation environment (model-based extremum
seeking), we understand by ‘‘run’’ the integration of the
KV equations. In each iteration of the extremum seeking
procedure, yðkÞ contains the lens focusing strengths yi, for
i ¼ 1; . . . ; n, and eventually yp, and is used to compute the
focusing function yðzÞ, shown in Fig. 2. This function is in
turn fed into the model given by the KV equations (1) and
(2). Given xini, the KV equations are integrated to obtain
X ðzÞ, Y ðzÞ, which are necessary to evaluate the
cost function, JðkÞ ¼ JðyðkÞÞ. In a real experiment
(non-model-based extremum seeking), we understand by
‘‘run’’ one measure of the beam envelope. In this case, X

and Y at the prescribed locations are direct measures. As
the sensor technology evolves, and some concepts under
investigation such as fluorescent-gas-based sensors become
a reality, we may reach the ideal situation where one ‘‘run’’
is coincident with one pulse of the accelerator, i.e., the
passage of one beam bunch through the envelope sensors
located at prescribed locations. Present sensor technology
(e.g., wire scanners or laser scanners) may not be as fast.
However, this does not represent a limitation for an extremum
seeking implementation. It only implies longer convergence
times because the real time between extremum seeking
iterations is governed by the speed of the envelope sensors.

The output of the nonlinear static map, JðkÞ ¼ JðyðkÞÞ, is
then used to compute yðk þ 1Þ according to the extremum
seeking procedure in Fig. 3, or written equivalently as

J f ðkÞ ¼ �hJf ðk � 1Þ þ JðkÞ � Jðk � 1Þ (18)

xðkÞ ¼ J f ðkÞb sinðok � fÞ (19)

ŷðk þ 1Þ ¼ ŷðkÞ � gxðkÞ (20)

yðk þ 1Þ ¼ ŷðk þ 1Þ þ a sinðoðk þ 1ÞÞ. (21)

Note that Eqs. (18) and (21) are the difference-equation
versions of the transfer functions for the high-pass and
low-pass filters in Fig. 3.
The extremum seeking parameters used in all the

simulations presented in this paper are h ¼ 0:4, oi ¼

oi
base � p, gi ¼ 0:1ðMðo1Þ=MðoiÞÞ, and fi ¼ �fðoiÞ for

i ¼ 1; . . . ; np, where obase ¼ 0:95, and MðoÞ and fðoÞ are,
respectively, the magnitude and phase of the frequency
response of the high-pass filter in Fig. 3.

4. Optimal beam matching

Given xini, xtar, XdesðzÞ and YdesðzÞ, we use an extremum
seeking procedure to find the lens strengths
(y ¼ ½y1 y2 y3 y4�T) of a four-quadrupole matching chan-
nel which minimize the cost function J given by

J ¼ fk1J1 þ k2J2 þ k3J3g
1=2 (22)

J1 ¼ KX ðxðLmÞ � X tarÞ
2
þ KY ðY ðLmÞ � Y tarÞ

2 (23)

J2 ¼ Kder
X ðX

0ðLmÞ � X 0tarÞ
2
þ Kder

Y ðY
0ðLmÞ � Y 0tarÞ

2 (24)

J3 ¼

Z L

0

wðzÞ½K int
X ðX ðzÞ � X desðzÞÞ

2

þ K int
Y ðY ðzÞ � YdesðzÞÞ

2
�dz ð25Þ

where k1, k2, k3, KX , KY , Kder
X , Kder

Y , K int
X , and K int

Y are
weight constants, and wz is an integral weight function. The
first component of the cost function (22), J1, measures the
mismatching for the semi-axes of the beam envelope at the
exit of the matching channel. The second component J2

measures the mismatching for the derivatives of the semi-
axes of the beam envelope at the exit of the matching
channel. Finally, the third component J3 measures the
weighted mismatching for the trajectories of the semi-axes
of the beam envelope within the matching channel.
We start considering the following initial (entrance of the

channel) and target conditions:

xini ¼

0:001474

�0:006013

0:002014

0:007686

2
6664

3
7775; xtar ¼

0:001094

�0:007865

0:003290

0:011726

2
6664

3
7775, (26)

where the target condition is specified at the exit of the
matching channel, i.e., at z ¼ Lm (see Fig. 1). This pair of
initial and target conditions has been carefully chosen to
make y ¼ ½38 � 38 38 � 38�T the unique solution (global
minimum) of our matching problem. Knowing the solution
of the matching problem beforehand allows us to assess the
effectiveness of the extremum seeking algorithm. The initial
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conditions for the extremum seeking parameters are
y1ð0Þ ¼ y3ð0Þ ¼ 25, and y2ð0Þ ¼ y4ð0Þ ¼ �25.

Terminal constraints only: Figs. 4 and 5 show the
extremum seeking results when the cost function para-
meters are given by

KX ¼ 2000; KY ¼ 1000; Kder
X ¼ 0; Kder

Y ¼ 0

K int
X ¼ K int

Y ¼ 0; k1 ¼ 1; k2 ¼ 0; k3 ¼ 0. ð27Þ

The converged value of y, and its associated state at
z ¼ Lm, are

ŷconv ¼

28:0635

�33:4561

23:7620

�34:4235

2
6664

3
7775; xðLmÞ ¼

0:001091

�0:007151

0:003294

0:007128

2
6664

3
7775. (28)

Comparing xðLmÞ with xtar, we can note that we have very
good matching for X and Y , which was our goal
(k2 ¼ k3 ¼ 0). However, although the matching for X 0 is
probably acceptable, the matching for Y 0 is not. Fig. 4c
shows the beam envelope as a function of z (beam envelope
trajectory) for y ¼ ŷconv. The time evolution of y1; y2; y3; y4
in Fig. 4b shows a fast convergence. We can see that after
100 iteration we arrive at what we can consider a steady
state situation. This fast convergence can be also noted
looking at the evolution of the cost function in Fig. 4a.

In all the cases presented in this paper, convergence is
analyzed based on the number of ‘‘runs’’ or extremum
seeking ‘‘iterations.’’ Although the duration of a ‘‘run’’ in a
simulated (off-line, model-based extremum seeking) envir-
onment is very short because the integration of the KV
equations can be carried out very fast using modern
computers, the duration of a ‘‘run’’ in a real-time (on-line,
non-model-based extremum seeking) experiment can be
significant and depends on the sensor technology em-
ployed. As already discussed in Section 3, the duration of a
‘‘run’’ in a real-time experiment, or the elapsed time
between extremum seeking iterations, and therefore the
convergence time, will depend on the sensor speed, i.e., the
time required by the sensor to produce two consecutive
measurements.
The complexity of the problem is evident from Fig. 5,

where the cost function is plotted as a function of
y1; y2; y3; y4. Each combination of yi’s, for i ¼ 1; 2; 3; 4,
defines a case. In Fig. 5a, jyij, for i ¼ 1; 2; 3; 4, is varied
from 0 to 50 in steps of 5. In Fig. 5b, jyij, for i ¼ 1; 2; 3; 4, is
varied from 35 to 41 in steps of 1. The negative peak
corresponds to y ¼ ½38 � 38 38 � 38�T, which constitu-
tes the global minimum. In Fig. 5c, y1 is varied from 27:8 to
28:3, y2 is varied from �33:2 to �33:7, y3 is varied from
23:5 to 24, y4 is varied from �34:2 to �34:7 in steps of 0:1.
The converged value ŷconv in Eq. (28) is then just a local
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minimum, similar to those shown in this last figure. The
converged value cannot be marked in Fig. 5c because it is
simply not reproduced due to the constraints on the size
step in y used in this figure. However, it is possible to note
that the values of the cost function in Figs. 4a and 5c are
comparable. In all the plots presented in Fig. 5, the
different combinations of yi’s, for i ¼ 1; 2; 3; 4, (plotted in
the abscissas) are generated by nested loops, where the
inner loop corresponds to y4 and the outer loop
corresponds to y1. For instance, in Fig. 5a, case 1
corresponds to y ¼ ½0 0 0 0�T, case 2 corresponds to
y ¼ ½0 0 0 � 5�T, and so on.

In this case, the amplitude of the sinusoidal excitation is
varied according to the value of the cost function J. The
amplitude a of the probing signal a sinðokÞ (see Fig. 3) is
reduced as the value of the cost function J is minimized by
the extremum seeking procedure. Similar strategies are
followed in all the simulation cases presented in this paper.

In order to obtain a better matching for the derivatives,
we considered the case characterized by the cost function
parameters

KX ¼ 2000; KY ¼ 1000; Kder
X ¼ 1; Kder

Y ¼ 1

K int
X ¼ K int

Y ¼ 0; k1 ¼ 1; k2 ¼ 1; k3 ¼ 0. ð29Þ

Fig. 6 shows the extremum seeking results. The converged
value of y, and its state at z ¼ Lm, are

ŷconv ¼

35:978

�33:933

21:384

�32:508

2
6664

3
7775; xðLmÞ ¼

0:001070

�0:006730

0:003289

0:011034

2
6664

3
7775. (30)

Comparing xðLmÞ with xtar, we can note that we still have
very good matching for X and Y , and we improve the
matching for Y 0 keeping an acceptable matching for X 0.
The question of what is ‘‘good matching’’ arises here. The
matching quality is usually related to how the matching
error propagates downstream the particle accelerator. This
issue will be further discussed in the last simulation study
of this section, where a periodic channel is considered to
follow the matching channel. Until then, our assessment on

the quality of the matching will be kept more qualitative
than quantitative, simply because we do not have a real
quantitative measure of ‘‘good matching.’’
Fig. 6c shows the beam envelope as a function of z (beam

envelope trajectory) for y ¼ ŷconv. It is interesting to note
that the value for ŷconv is very different from the one in the
previous case. The time evolution of y1; y2; y3; y4 in Fig. 6b
shows that the convergence is not as fast as in the previous
case, where we only care about the matching of X and Y ,
but it is nevertheless very good. We can see that after 200
iteration we arrive at an acceptable solution, which
improves even more with subsequent iterations. This can
be also noted from Fig. 6a, where the cost function does
not reach a steady value after 500 iterations. This is an
indication that the result can be improved by increasing the
number of iterations or possibly by changing some of the
variables of the extremum seeking procedure.

Real trajectory as desired trajectory: We are interested in
determining whether the extremum seeking procedure
could converge to the global minimum if more information
about this minimum were given. In this case we take
XdesðzÞ and Y desðzÞ as the solution of the KV equations
when y ¼ ½38 � 38 38 � 38�T, the global minimum.
The cost function parameters are chosen as

KX ¼ 200; KY ¼ 200; Kder
X ¼ 1; Kder

Y ¼ 1

K int
X ¼ K int

Y ¼ 10000; k1 ¼ 1; k2 ¼ 1; k3 ¼ 1 ð31Þ

and the weight wðzÞ is chosen as shown in Fig. 7a. Fig. 7
and 8 show the extremum seeking results. The converged
value of y, and its associated state at z ¼ Lm, are

ŷconv ¼

38:028

�38:025

38:123

�38:011

2
6664

3
7775; xðLmÞ ¼

0:001095

�0:007871

0:003291

0:011725

2
6664

3
7775. (32)

Comparing xðLmÞ with xtar, we can note that we have
very good matching. In this case we are indeed converging
to y ¼ ½38 � 38 38 � 38�T, the global minimum. Fig. 8a
shows the beam envelope as a function of z (beam envelope
trajectory) for y ¼ ŷconv, where it is possible to note that X
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and Y perfectly match X des and Ydes, respectively. The
time evolution of y1; y2; y3; y4 in Fig. 7c shows that a steady
value is reached after less than 400 iterations. This can also
be noted from the evolution of the cost function in Fig. 7b.
This figure also shows the effect of varying a ¼

diagð½a1 a2 a3 a4�Þ as a function of the value of J. It is
possible to note the steps in the evolution of J thanks to the
change of the sinusoidal amplitude. In this particular case,
the amplitudes of the sinusoidal excitations are reduced
when the cost function J decreases, according to the
following law: ½a1 a2 a3 a4� is equal to ½2:25 2 1:75 1:5� if
�35 dBpJ, ½0:5 0:75 0:5 0:5� if �40 dBpJo� 35 dB,
½0:1 0:25 0:25 0:25� if �50 dBpJo� 40 dB, ½0:05 0:05
0:25 0:25� if �60 dBpJo� 50 dB, ½0:01 0:01 0:05 0:05�

if Jo� 60 dB. We should note that the reduction of the
amplitude of the probing signal does not make the cost
function J decrease, but allows it to stay around a lower
local minimum value once this minimum is reached. Fig. 8
also shows the cost function plotted as a function of
y1; y2; y3; y4. In Fig. 8b, yi; i ¼ 1; 2; 3; 4 is varied from 0 to
50 in steps of 5. In Fig. 8c, yi; i ¼ 1; 2; 3; 4 is varied from 35
to 41 in steps of 1. The negative peak for the case y ¼
½38 � 38 38 � 38�T is manifested in this figure. Compar-

ing this map with the ones corresponding to the cases with
only terminal constraints we can note that the map is not as
spiky, and on average (after an imaginary low-pass filter) a
better parabola is described.

Double linear interpolation as desired trajectory: The
trajectory of the beam envelope corresponding to the
global minimum is not available in real applications.
The designer is therefore required to have an intuitive
understanding as to what makes a good desired beam
envelope trajectory. The beam envelope will track the
desired trajectory as closely as possible. These conditions
lead to optimality only if the desired beam envelope
trajectory is chosen properly (in an optimal sense). The
choice of the desired trajectory is particularly important for
under-determined systems, where the degrees of freedom
(number of lenses) is strictly higher than the number of
constraints (e.g., initial conditions, target conditions,
maximum or minimum values of the lens strengths). In
these cases the solution for the matching problem
(i.e., making xðLmÞ ¼ xtar) may not be unique, and the
choice of the desired trajectory has a decisive influence on
the outcome of the optimization procedure. In this case we
take XdesðzÞ and YdesðzÞ as a combination of two linear
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functions as shown in Fig. 9 (dotted line). The slope of the
last portion of the desired beam envelope trajectory
coincides with the target conditions for the derivatives
(X 0tar,Y

0
tar) at z ¼ Lm in order to avoid any type of

incompatibility. The use of only one linear function,
connecting X ini and Y ini at z ¼ 0, with X tar and Y tar at
z ¼ Lm, respectively, would be in conflict with the terminal
conditions for the derivatives. Figs. 9 and 10 show the
extremum seeking results when the cost function para-
meters are given by

KX ¼ 2000; KY ¼ 2000; Kder
X ¼ 1; Kder

Y ¼ 1

K int
X ¼ K int

Y ¼ 50; k1 ¼ 1; k2 ¼ 1; k3 ¼ 1. ð33Þ

The integral weight wðzÞ is shown in Fig. 10a. We try not
only to match the final portion of the beam envelope
trajectory to prescribed target values, but also to reduce

excursions in the middle section. However, the former goal
is priority and this is reflected in the selection of the weight
function. Although not zero, the weight function for
0ozp0:8 is much smaller than for zX0:8. This also
responds to the degree of confidence we have in the desired
trajectory. Note that the linear function proposed in this
case intends only to reduce excursions of the beam
envelope in the middle section, but it is far from
representing a feasible beam trajectory. This case is very
different from the previous one (Fig. 7a), where we had
a high degree of confidence in the desired trajectory
(we knew that the considered desired trajectory indeed
corresponded to the matching solution (global minimum)).
The converged value of y, and its associated state at

z ¼ Lm, are

ŷconv ¼

34:855770

�30:710796

14:736266

�30:669086

2
6664

3
7775; xðLmÞ ¼

0:001093

�0:007343

0:003280

0:010630

2
6664

3
7775. (34)

Comparing xðLmÞ with xtar, we can note that we do
have very good matching for the final conditions. It is
interesting to note how different the value of ŷconv is
from the global minimum and at the same time how
good the matching is. The time evolution of y1; y2; y3; y4 in
Fig. 10c shows that a steady value is reached after 150
iterations. This can be also noted from Fig. 10b, where
the cost function reaches a steady value after 150
iterations, showing a very fast convergence. Fig. 9
shows the beam envelope trajectory for y ¼ ŷconv. Not
only the matching of the target conditions is very
good, but also the matching of the desired beam envelope
trajectory. This is explained by how the cost function
was defined. The figure also compares the beam envelope
trajectory for y ¼ ŷconv with the beam envelope trajec-
tory associated with the global minimum y ¼ ½38 �
38 38 � 38�T. From the comparison we can conclude that
we achieve very similar final conditions reducing at the
same time the excursion of X ðzÞ and Y ðzÞ around the
desired trajectory.
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Target conditions at multiple locations: We consider now
the following initial (entrance of the channel) and target
conditions:

xini ¼

0:001157

�0:01104

0:003239

0:000075

2
6664

3
7775; xtar ¼

0:001092

0

0:002055

0

2
6664

3
7775 (35)

where the target condition is specified at the center of the
first quadrupole of the periodic channel, i.e., at z ¼ L1

(see Fig. 2). These specified target conditions, if achieved,
ensure a periodic evolution of the beam after z ¼ L1. The
initial conditions for the extremum seeking parameters are
y1ð0Þ ¼ y3ð0Þ ¼ 25, and y2ð0Þ ¼ y4ð0Þ ¼ �25.

Fig. 11 shows the extremum seeking results when the
cost function parameters are given by

KX ¼ 1000; KY ¼ 1000; Kder
X ¼ 10; Kder

Y ¼ 10

K int
X ¼ K int

Y ¼ 0; k1 ¼ 1; k2 ¼ 1; k3 ¼ 0. ð36Þ

In this case, J1 and J2 are slightly modified as follows:

J1 ¼ KX ðxðL1Þ � X tarÞ
2
þ KY ðY ðL1Þ � Y tarÞ

2

J2 ¼ Kder
X ðX

0ðL1Þ � X 0tarÞ
2
þ Kder

Y ðY
0ðL1Þ � Y 0tarÞ

2.

The converged value of y, and its associated state at
z ¼ L1, are

ŷconv ¼

19:8043

�39:4358

27:5275

�19:1684

2
6664

3
7775; xðL1Þ ¼

0:001089

�0:000077

0:002056

�0:000430

2
6664

3
7775. (37)

Comparing xðL1Þ with xtar, we can note that we do have
very good matching. Fig. 11a and b shows that after 500
iterations we arrive at an acceptable solution which
improves even more with subsequent iterations (note that
we have six lenses now). It can be also noted from Fig. 11a
that the cost function does not reach a steady value after
800 iterations. This is an indication that the result can be
improved by increasing the number of iterations or
possibly by changing some of the variables of the

extremum seeking procedure. Fig. 11c shows the beam
envelope as a function of z (beam envelope trajectory) for
y ¼ ŷconv. Although we have good matching at z ¼ L1, we
can see from this figure that the evolution of the beam
within the periodic channel is probably below expectations,
since an obvious mismatch develops downstream. If the
beam is not matched at the transition region between
accelerator sections, then the beam begins with envelope
oscillations (the KV equations describe the beam envelope)
representing excess energy caused by the initial mismatch.
When the envelope oscillates like that we sometimes refer
to it as a ‘‘mismatched beam’’. That is, the mismatch is
indicated by the envelope oscillations downstream. This
case study points out that an acceptable mismatching at
one location of the channel can propagate to become an
unacceptable mismatching at some other locations. It
would be preferable thus to include into the cost function
J the matching requirements at these other locations.
Specifying target conditions for multiple locations can

help to overcome some practical limitations arising in the
computation of the cost function (22). Although totally
feasible in a simulated (off-line, model-based extremum
seeking) environment, the computation of the components
J2 and J3 can become cumbersome, or even impossible, in
a real-time (on-line, non-model-based extremum seeking)
experiment because of two practical constraints: (a) the
measurement of the derivatives of the semi-axis of
the envelope may not be possible, (b) measurements of
the semi-axis of the beam envelope may be available only at
a reduced number of locations along the channel. How-
ever, asking the semi-axis of the envelope to match specific
target values at two consecutive locations may be
equivalent to asking both the envelope semi-axis and their
derivatives to match specific target values at one single
location. In addition, the integral component of the cost
function can be approximated by a sum of weighted,
squared differences between the measured and desired
envelope semi-axis at a finite number of locations. There-
fore, components J2 and J3 in Eqs. (24) and (25) can be
rewritten as J1-like components (23) if target values for the
envelope semi-axis are specified at multiple locations. In
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Fig. 11. (a) Cost function, (b) y evolution, and (c) beam envelope trajectory for y ¼ ŷconv.
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this case, the cost function (22) can be computed in a real-
time experiment directly from measurements of only X and
Y at prescribed locations.

Fig. 12 shows the extremum seeking results when the
cost function is given by

J ¼
X

i

ðX ðLiÞ � X tarÞ
2
þ ðY ðLiÞ � Y tarÞ

2 (38)

where Li, for i ¼ 1; 3; 5; 7, are specific locations along
the periodic channel as it is shown in Fig. 2. In this case we
are replacing the derivative requirements at z ¼ L1 by
multiple requirements for the beam semi-axis at different
locations. We are also incorporating into the cost function
discrete points of the desired trajectory within the periodic
channel.

The converged value of y, and its associated state at
z ¼ L1, are

ŷconv ¼

19:9951

�39:9986

29:9887

�20:0502

2
6664

3
7775; xðL1Þ ¼

0:001088

�0:00000765

0:002055

�0:00000156

2
6664

3
7775. (39)

Although the quality of the matching for X at z ¼ L1

decreases, the quality of the matching for both derivatives
improves, and the overall matching quality within the
periodic channel, which is our ultimate goal, also improves
as shown in Fig. 12c.
As another example, we consider now the following

initial (entrance of the channel) conditions:

xini ¼

0:0015

0

0:0015

0

2
6664

3
7775 (40)

and the same target conditions at z ¼ L1, which, if
achieved, ensure a periodic evolution of the beam after
z ¼ L1. We also consider now a six-quadrupole matching
channel (y ¼ ½y1 y2 y3 y4 y5 y6�T). The initial conditions
for the extremum seeking parameters are y1ð0Þ ¼ y3ð0Þ ¼
y5ð0Þ ¼ 25, and y2ð0Þ ¼ y4ð0Þ ¼ y6ð0Þ ¼ �25. Fig. 13 shows
the extremum seeking results when the cost function is
given by Eq. (38). The extremum seeking algorithm
successfully provides a set of lens strengths in the matching
channel that takes a round beam from an electron or ion
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Fig. 12. (a) Cost function, (b) y evolution, and (c) beam envelope trajectory for y ¼ ŷconv.
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source, for instance, and matches it into a periodic lattice,
where an elliptical beam is required.

5. Adaptive control

As suggested in Section 4, the extremum seeking scheme
can be used for real-time optimization, taking advantage of
its non-model-based nature, which represents an advantage
in terms of robustness with respect to other model-based
optimization techniques such as nonlinear and dynamic
programming. To accelerate convergence, a hybrid scheme
is envisioned, where the optimal lens strengths are
computed off-line using extremum seeking, as explained
in Section 4, or another optimization technique, and used
as initial conditions (yð0Þ) for an on-line extremum seeking
controller. Under this framework, the extremum seeking
algorithm will be playing the role of a non-model-based
adaptive controller, which is one of its unique character-
istics, that ensures a well-matched beam at specified
locations of the matching channel independently of the
uncertainties in the system parameters.

Given yp ¼ ym
p (see Fig. 1), the acceptance requirement

for the periodic channel, denoted xm
p , is easily computed

using numerical search algorithms. Defining xtarjz¼Lm
¼

xm
p , the matching solution ym

i , for i ¼ 1; . . . ; 6, that makes
xðLmÞ ¼ xtarjz¼Lm

¼ xm
p , can be computed off-line using

extremum seeking in a simulated environment, as shown in
the previous section, or another model-based optimization
technique. Defining y ¼ ½y1 y2 y3 y4 y5 y6 yp�T, Fig. 14a
shows the envelope semi-axes X and Y for the matched
beam as functions of z for

ym
¼ ½40 � 40 30 � 30 25 � 25 38�T (41)

xini ¼

0:002887

�0:01239

0:001053

0:01292

2
6664

3
7775; xm

p ¼

0:001157

�0:004266

0:001962

0:006098

2
6664

3
7775. (42)

If y is kept constant and equal to ym, Fig. 14b–d shows how
the matching properties are lost when: (1) there is an
actuator fault (20% increase in the strength of the third
quadrupole (y3)), (2) there is a 50% increase for both the
horizontal and vertical emittances, and (3) there is a 10%
change in the initial conditions X ini and Y ini.

We are interested in developing a controller that can
successfully cope with these changes in operation condi-
tions, preserving the matching properties of the system, by
adaptively tuning the strengths of the lenses in the
matching section (and eventually in the periodic section),
and minimizing a functional that is a function of the
matching error.

In this section we illustrate how to use extremum seeking
for adaptive tuning of y to preserve good matching, i.e., to
minimize in real time the following functional:

J ¼ fk1J1 þ k2J2 þ k3J3g
1=2 (43)

where k1, k2, k3 are weight constants,

J1 ¼
X7
i¼1

Mi (44)

Mi ¼ ðX ðLiÞ � X tarÞ
2
þ ðY ðLiÞ � Y tarÞ

2 for i odd

Mi ¼ ðY ðLiÞ � X tarÞ
2
þ ðX ðLiÞ � Y tarÞ

2 for i even

J2 ¼
X7
i¼2

Ni (45)

Ni ¼ ðX ðLiÞ � X ðL1ÞÞ
2
þ ðY ðLiÞ � Y ðL1ÞÞ

2 for i odd

Ni ¼ ðY ðLiÞ � X ðL1ÞÞ
2
þ ðX ðLiÞ � Y ðL1ÞÞ

2 for i even

J3 ¼ ðX ðL1Þ � X tarÞ
2
þ ðY ðL1Þ � Y tarÞ

2
ð46Þ

and Li, for i ¼ 1; . . . ; 7, are specific locations along the
periodic channel as it is shown in Fig. 2.
Defining J1 as in Eq. (44) we are asking the controller to

make the maxima and minima of the periodic oscillation in
the periodic channel equal to prespecified values X tar and
Y tar. Defining J2 as in Eq. (45) we are asking the controller
to make all the envelope maxima equal, and all the
envelope minima equal, but without specifying values. In
this way, when prespecified values X tar and Y tar are not
achievable, at least we obtain symmetric periodic oscilla-
tions of period 2Ld þ 2Lq in the periodic channel. The cost
function component J3 in (46) is typically used in
combination with J2 with appropriate weights to ask the
controller to make the maxima and minima of the periodic
oscillation achieved by J2 be as close as possible to
prespecified values X tar and Y tar.
For all the simulations presented in this section, the

nominal initial condition, xn
ini, of the beam at the entrance

of the channel is that given in Eq. (42). In addition, the
nominal values of the quadrupole strengths, yn, are equal
to those given in Eq. (41). The initial conditions for the
extremum seeking parameters in all the simulations are
equal to the nominal values, i.e., yð0Þ ¼ yn

¼ ym. The target
values involved in the computation of the cost function J in
(43) are X tar ¼ 0:001092 and Y tar ¼ 0:002055. Below we
study the performance of the extremum-seeking adaptive
controller in regulating the system around the nominal
beam envelope trajectory shown in Fig. 14a in the presence
of faults or changes.

Actuator fault: In this case we study the response of our
controller to a drift in one of the quadrupoles of the
matching channel. We rewrite Eq. (20) as

yðk þ 1Þ ¼
k

D
d þ ŷðk þ 1Þ þ a cosðoðk þ 1ÞÞ (47)

where D is the drift rate and the column vector d is used to
correlate such drift with a specific quadrupole. In this
simulation study, presented in Fig. 15, D ¼ 10�2 and
d ¼ ½0 0 1 0 0 0 0�T, indicating that the drift is present in
the third quadrupole. In addition, we assume yp ¼ 38 ¼ cte
(cte stands for constant), i.e., we use the extremum-seeking
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Fig. 14. Beam envelopes evolution: (a) nominal, (b) actuator fault, (c) emittance change, and (d) initial conditions change.
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controller to tune only the strengths of the six quadrupoles
in the matching channel. The controller successfully
sustains the nominal beam envelope trajectory shown in
Fig. 14a in spite of the actuator drift. Fig. 15a shows that
the cost function (43), which was defined taking k1 ¼ 1,
k2 ¼ 0 and k3 ¼ 0 in Eq. (43), is kept at its minimum run
after run. This is possible due to the adaptive tuning of the
quadrupole strengths yi, for i ¼ 1; . . . ; 6. Fig. 15b shows
how the outputs of the extremum seeking controller,
especially the output associated with the third quadrupole
(ŷ3), are varied to compensate the drift, and therefore to
keep y in Fig. 15c close to its nominal value.

Initial conditions change: In this case we study the
response of our controller to a change in the geometrical
characteristics of the beam at the entrance of the matching
section produced at the 100th run (X ini ¼ 1:1X n

ini and
Y ini ¼ 0:9Y n

ini). This change in initial conditions may be
produced by a fault in the preceding section of the
accelerator. In this simulation study, presented in Fig. 16,
we again assume yp ¼ 38 ¼ cte, i.e., we use the extremum-
seeking controller to tune only the strengths of the six
quadrupoles in the matching channel. The cost function
(43), whose evolution is shown in Fig. 16a, is also defined
here taking k1 ¼ 1, k2 ¼ 0 and k3 ¼ 0 in (43). Fig. 16a
shows through the sudden increase in the value of the cost
function at the 100th run how the matching properties of
the system are transitorily lost. This can be also noted by

comparing Fig. 16b and c, showing the beam envelope
trajectory before and after the change in initial conditions.
The controller successfully recovers the matching proper-
ties after the transient, as it is shown in Fig. 16e, by
adaptively tuning the strengths of the quadrupoles in the
matching channel (Fig. 16d). Fig. 16f shows the matched
beam envelope trajectory before and after the change in
initial conditions. It is possible to note how the beam
envelope trajectory within the matching section is changed
by the controller in order to preserve the characteristics of
the beam envelope trajectory in the periodic section.

Emittance change: In this case we study the response of
our controller to a positive change of 50% in the emittance
of the beam produced at the 100th run (�X ¼ 9� 10�6,
�Y ¼ 9� 10�6). In this simulation study, presented in
Fig. 17, we again assume yp ¼ 38 ¼ cte, i.e., we use the
extremum-seeking controller to tune only the strengths of
the six quadrupoles in the matching channel. The cost
function (43), whose evolution is shown in Fig. 17a, is now
defined taking k1 ¼ 0, k2 ¼ 1 and k3 ¼ 0 in Eq. (43). This is
motivated by the fact that given the properties of the beam
(emittance and perveance) and fixed strength yp of the
quadrupoles in the periodic channel, it is not always
possible to achieve arbitrary values of X tar and Y tar

(desired minimum and maximum of the symmetric beam
envelope trajectory in the periodic channel). Under these
circumstances, the symmetry of the beam is prioritized over

ARTICLE IN PRESS

100 200 300 400 500 600

J
 [

d
B

]

Iteration

Cost Function

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10 Iteration # = 99

z

X
Y
X

tar
Y

tar

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10 Iteration # = 101

z

X
Y
X

tar
Y

tar

100 200 300 400 500 600

0

10

20

30

40

50

Iteration

F
ilt

e
re

d
 θ

Parameter Evolution

θ
1

θ
2

θ
3

θ
4

θ
5

θ
6

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10 Iteration # = 400

z

X
Y
X

tar
Y

tar

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10 Beam profile for estimated θ

z

X(1)
Y(1)
X(600)
Y(600)

-60

-65

-70

-75

-80

-85

-90

-95

-10

-20

-30

-40

-50

-100

-105

-110

-3

-3 -3

-3

Fig. 16. Change of geometrical characteristics of the beam at the entrance of the matching channel at the 100th iteration.
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its geometrical dimensions as it is reflected by the definition
of the cost function J. Basically, we give to the system one
more degree of freedom to accommodate the change in the
properties of the beam (emittance). Fig. 17a shows through
the sudden increase in the value of the cost function at the
100th run how the matching properties of the system
are lost transitorily. This can be also noted by comparing
Fig. 17b and c, showing the beam envelope trajectory
before and after the change in emittance. By adaptively
tuning the strengths of the quadrupoles in the matching
channel, as shown in Fig. 17d, the controller success-
fully recovers the matching properties after the transient
(Fig. 17e). However, in this case only the ‘‘shape’’, and not
the ‘‘value’’, of the beam envelope trajectory can be
preserved within the matching section. Fig. 17f shows the
regulated beam envelope trajectory before and after the
change in emittance. In this case, not only the beam
envelope trajectory within the matching section must be
changed by the controller, but also the size of the beam
within the periodic section, in order to guarantee symmetry
of the beam (maxima of X and Y are identical, minima of
X and Y are identical).

Multiple faults or changes: In this case we consider
simultaneous fault or change occurrences. At the 100th
run, a 10% change in the third quadrupole of the matching
section, a 10% change in the geometrical characteristics of
the beam at the entrance of the matching section

(X ini ¼ 1:1X n
ini and Y ini ¼ 0:9Y n

ini), and a 50% change in
the emittance of the beam produced (�X ¼ 9� 10�6,
�Y ¼ 9� 10�6) are simulated. The cost function (43),
whose evolution is shown in Fig. 18a, is now defined
taking k1 ¼ 0, k2 ¼ 1 and k3 ¼ 0:1 in Eq. (43). This
selection (k1 ¼ 0, k2a0) is motivated by the fact that
given the properties of the beam (emittance and per-
veance), and fixed the initial conditions of the beam xini, it
is not always possible to achieve arbitrary values of X tar

and Y tar (desired minimum and maximum of the sym-
metric beam envelope trajectory in the periodic channel).
Under these circumstances, as it was done in the previous
case, the symmetry of the beam is prioritized over its
geometrical measures, as it is manifested in the definition of
the cost function J. In this simulation study, presented in
Fig. 18, we do not assume yp ¼ cte, i.e., we use the
extremum-seeking controller to tune not only the strengths
of the six quadrupoles in the matching channel but also the
common strength of the quadrupoles in the matching
section. The goal is to use the extra parameter y7 ¼ yp in
the extremum seeking controller to make the size of the
beam as close as possible to that defined by X tar and Y tar

(k3a0). Fig. 18a shows through the sudden increase in the
value of the cost function at the 100th run how the
matching properties of the system are lost transitorily. This
can be also noted by comparing Fig. 18b and c, showing
the beam envelope trajectory before and after the multiple
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Fig. 17. Change of emittance of the beam at the 100th iteration.

E. Schuster et al. / Nuclear Instruments and Methods in Physics Research A 581 (2007) 799–815 813



Author's personal copy

changes. In addition, Fig. 18a shows how the system is
driven from a minimum before the changes at the 100th
run to another different minimum after a transient that
follows the changes. By adaptively tuning the strengths of
the quadrupoles in both the matching and the periodic
channels, as shown in Fig. 18d, the controller successfully
recovers the matching properties after the transient
(Fig. 18e). However, in this case only the ‘‘shape’’, and
not the ‘‘value’’, of the beam envelope trajectory can be
preserved within the periodic section. We must emphasize
that this is not a constraint of the controller but of the
system itself. Fig. 18f shows the matched beam envelope
trajectory before and after the multiple changes. In this
case, not only the beam envelope trajectory within the
matching section must be changed by the controller, but
also the size of the beam within the periodic section, in
order to guarantee symmetry of the beam (maxima of X

and Y are identical, minima of X and Y are identical).

6. Conclusions

Extremum-seeking has been proved to be an effective
optimization technique to find an optimally matched
solution. Although no limitation in terms of convergence
to a (at least local) minimum is envisioned, no benefit over
other optimization techniques can be claimed when the
extremum-seeking algorithm is implemented off-line. In-

deed, in some cases the convergence time can be larger than
those associated with model-based techniques, where more
information of the system, i.e., the model, is exploited.
However, the unique characteristic of the extremum
seeking algorithm is the possibility of being implemented
on-line, which transforms this optimization technique into
an adaptive control algorithm.
A multi-parameter, extremum-seeking, non-model-

based, adaptive controller has been designed, and success-
fully tested in simulations, for the tuning of the lens
strengths in four-lens and six-lens matching channels
combined with a periodic channel. Based on the promising
results obtained in the simulation study, it is anticipated
that the scheme can play an important role in real-time
adaptive control of beam envelopes in particle accelerators.
Due to its non-model-based nature, which represents an
advantage with respect to other model-based optimization
techniques, the extremum-seeking controller can cope with
model uncertainties and system errors, faults, or changes.
Another unique property of this type of controller is the

flexibility that the designer has to define control goals by
the appropriate definition of the cost function J. Due to
this flexibility, constraints of the system as well as
competing objectives can be introduced into the controller.
Future work by the authors will include the development of
analytical expressions for sensitivity of the matched beam
(against ‘‘errors’’ in the actuators (quadrupoles)) that can
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Fig. 18. Multiple faults or changes at the 100th iteration: actuator step in the third quadrupole, change in the initial conditions and emittance of the beam.
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be incorporated into the extremum-seeking adaptive
controller functional in order not only to converge to a
matching solution but also to converge to the least sensitive
one (if the degrees of freedom allow it). The incorporation
of sensitivity information into the cost function may
represent a tradeoff between performance and robustness
because it may require the use of the model, which has not
been used for the cost functions considered in this work.
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