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Abstract
The first real-time profile control experiments integrating magnetic and kinetic variables were performed on DIII-D
in view of regulating and extrapolating advanced tokamak scenarios to steady-state devices and burning plasma
experiments. Device-specific, control-oriented models were obtained from experimental data using a generic two-
time-scale method that was validated on JET, JT-60U and DIII-D under the framework of the International Tokamak
Physics Activity for Integrated Operation Scenarios (Moreau et al 2011 Nucl. Fusion 51 063009). On DIII-D, these
data-driven models were used to synthesize integrated magnetic and kinetic profile controllers. The neutral beam
injection (NBI), electron cyclotron current drive (ECCD) systems and ohmic coil provided the heating and current
drive (H&CD) sources. The first control actuator was the plasma surface loop voltage (i.e. the ohmic coil), and the
available beamlines and gyrotrons were grouped to form five additional H&CD actuators: co-current on-axis NBI,
co-current off-axis NBI, counter-current NBI, balanced NBI and total ECCD power from all gyrotrons (with off-axis
current deposition). Successful closed-loop experiments showing the control of (a) the poloidal flux profile, !(x),
(b) the poloidal flux profile together with the normalized pressure parameter, βN, and (c) the inverse of the safety
factor profile, ῑ(x) = 1/q(x), are described.

(Some figures may appear in colour only in the online journal)

1. Introduction

The development of hybrid and steady-state operation
scenarios with high neutron fluence on ITER implies the
control of improved confinement, high-β discharges (β is the
ratio of thermal to magnetic pressure), with a large fraction
of the plasma current being self-generated by the neoclassical
bootstrap effect. Such discharges are obtained in present-day
tokamak devices in advanced operation scenarios in which
an optimization of some plasma parameter profiles results in
a large improvement in normalized fusion performance, at
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reduced plasma current. In tokamaks, β is usually normalized
to the product Ip/aBT, where Ip is the plasma current, a
is the plasma minor radius and BT is the toroidal magnetic
field. Thus, β = βN(Ip/aBT) where βN is the normalized
pressure parameter whose value is a figure of merit for plasma
performance. At high βN, a high-gain fusion burn with
extended pulse length (possibly steady state) could be achieved
at moderate current in a burning plasma device such as ITER,
a major fraction of the toroidal current consisting of the non-
inductive bootstrap current. The ongoing research on advanced
tokamak (AT) operation scenarios is therefore important for the
development of a steady-state tokamak reactor.

Without adequate profile control, AT plasmas are currently
obtained in various devices empirically [1–4], either transiently
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or for durations that do not exceed the resistive diffusion
time. The high plasma performance phase is often limited
in duration by transport and magnetohydrodynamic (MHD)
phenomena. Extensive work has been dedicated in recent years
to the control of MHD instabilities, such as the neoclassical
tearing modes (NTMs) or resistive wall modes (RWMs), but
simultaneous control of magnetic and kinetic plasma profiles
and parameters such as the current density profile, the pressure
profile (or at least βN) and, in ITER, the alpha-particle power,
is also essential for the extrapolation of the scenarios to long-
pulse or steady-state operation in future tokamaks. In present-
day devices, the regulation of plasma parameter profiles is
also motivated by the potential gain that it could yield in
running stable and reproducible discharges, in order to study
the physics of AT plasmas for ITER.

Model-based control of the current density profile using
first-principles nonlinear models is being developed [5, 6],
with simplifying assumptions or real-time evaluation of a
limited number of essential unknown parameter profiles,
such as the electron temperature and plasma conductivity.
For integrated profile control, involving several magnetic
and kinetic parameters and profiles, the first-principles
equations governing the evolution of the plasma states
become increasingly complex and depend on many uncertain
parameters and transport coefficients. This is why an approach
based on data-driven models has been initiated on JET
[7] and later pursued on JT-60U [8] and DIII-D [8–10],
under the framework of the International Tokamak Physics
Activity for Integrated Operation Scenarios (ITPA-IOS). It
relies on linearized system identification techniques [11]
from experimental data (or, if possible, from data obtained
from comprehensive and reliable nonlinear simulations) and
on singular perturbation control methods [12]. Once an
approximate plasma response model to variations of the
actuators around a given equilibrium has been identified, an
integrated model-based controller can be designed to regulate
the plasma state through a global minimization algorithm.
Thus, for any chosen set of target profiles, the closest self-
consistent plasma state achievable with the available actuators
will be tracked. The two-time-scale system identification and
plasma control algorithms that are described in [7, 8] and are
based on applying the theory of singularly perturbed systems
to a set of simplified plasma transport equations will hereafter
be referred to by the acronym ARTAEMIS (for ‘Advanced Real-
Time Algorithms based on Empirical Modeling of Integrated
Scenarios’). The ARTAEMIS algorithm used here to determine
the device-specific, control-oriented (approximate) models
that are needed for controller design was developed and
validated using data from the three tokamaks mentioned above
( [8] for specifics of the DIII-D model), and also using data
obtained from ITER simulations [13]. It was thus shown that
a good approximation of the coupled response of the relevant
parameter profiles to variations of specific heating and current
drive (H&CD) actuators could be obtained from experimental
data where the various actuators were randomly modulated.
These data-driven control-oriented models were subsequently
used to synthesize various integrated controllers (near-optimal
controller [7], mixed sensitivity robust controllers [9, 10]) for
the simultaneous control of the current profile and of βN in the
DIII-D high-βN steady-state scenario, and for current profile

and burn control simulations in the ITER hybrid scenario
[13]. The DIII-D plasma control system (PCS) [14] has been
upgraded for these experiments and its control capability has
been expanded to include the possibility of simultaneously
controlling the evolution of one magnetic radial profile such as
the internal poloidal magnetic flux, !(x) where x is a radial
coordinate defined later, the safety factor, q(x), or its inverse,
ῑ(x), and up to two kinetic profiles (e.g. toroidal rotation
and ion temperature) and one scalar parameter such as the
normalized pressure parameter, βN. This paper focusses on
the first tests of the ARTAEMIS controller [7] in closed-loop
control experiments on DIII-D. Sections 2 and 3 describe the
choice of the relevant state and input variables, the structure of
the reduced state-space models and the main features of the
control algorithm. Section 4 provides specific information
on the plasma scenario, real-time diagnostics and control
actuators used in the experiments. Then in sections 5, 6 and
7, the experimental results for the control of !(x), for the
simultaneous control of !(x) and βN, and for the control of
ῑ(x), respectively, will be described in detail. The general
conclusions will be drawn in section 8.

2. Two-time-scale state-space structure of the
dynamic plasma models

In a tokamak, the multiple magnetic and kinetic parameter
profiles that define the plasma state (poloidal magnetic flux,
safety factor, plasma density, velocity, pressure, etc) are
known to be strongly and nonlinearly coupled. However,
because of this coupling, the parameters and profiles that
define a given target plasma state and need to be controlled
in real-time to reach the corresponding equilibrium and
regulation of the plasma around that state may be reduced
to a minimal set of essential ones such as, for example,
!(x), ῑ(x) and βN. In the model-based control approach
followed here, the coupling between magnetic and kinetic
plasma parameters and profiles is given more emphasis in
the controller synthesis than the nonlinearity of the system.
Nonlinear plasma models describing the coupled dynamics of
magnetic and kinetic profiles are extremely complex and still
too uncertain to be readily integrated in a profile controller
design. On the contrary, for a given machine configuration and
plasma operation scenario, linear models that approximately
reproduce the response of the coupled plasma profiles under
variations of given actuators can be found empirically from
experimental data, and can be valid in a sufficiently broad
vicinity of the plasma equilibrium that needs to be tracked [8].
Nonlinearities that are well identified and understood could
nevertheless be taken into account in the future, if needed.

Thus, based on the structure of flux-averaged transport
equations, a control-oriented, grey box, state-space plasma
model is postulated to consist of a set of strongly coupled
linearized plasma response equations that only depend on the
normalized radius x and time t [7, 8]:
∂!(x, t)

∂t
= L!,!{x} · !(x, t) + L!,X{x} · X(x, t)

+L!,P (x) · P(t) + Vext(t), (1)

ε
∂X(x, t)

∂t
= LX,!{x} · !(x, t) + LX,X{x} · X(x, t)

+LX,P (x) · P(t). (2)
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Here, the poloidal magnetic flux function,!(x, t), and a set
of kinetic profiles and scalar parameters (such as density,
toroidal velocity, ion and electron temperatures, or βN and, in a
burning plasma, the alpha-particle power, Pα), represented by
the vector X(x, t), appear as the most natural state variables of
the system for our purposes. The system is linearized around
an equilibrium state which is called the reference state, and
which needs not be known explicitly. The radial variable,
x, is defined as ('/'max)

1/2 where '(x) is the toroidal
magnetic flux through the poloidal cross-section of a given
flux surface, and 'max its maximum value at the last closed
flux surface. In equations (1) and (2), the plasma boundary
flux has been subtracted from the total poloidal flux so that
!(1, t) = 0 . All the unknown differential operators Lα,β(x)
and row vectors Lα,P that characterize the linear response of
the system (each of the subscripts α and β stand for ! or
X) depend on x but are independent of time t , and the input
vector P(t) contains the powers from the various available
H&CD systems. Note that there is no unknown function of
x multiplying Vext(t) in equation (1) and that Vext(t) does not
appear in equation (2). These properties stem directly from the
definition of the state variables and from the linearization of
the flux-averaged transport equations [7]. They have always
been used and imposed on the system during the identification
process. After projection onto a finite set of radial basis
functions (e.g. cubic splines), a lumped-parameter version of
the state-space model (equations (1) and (2)) is obtained, in
which all distributed variables and unknown operators reduce
to vectors and matrices. In the following, the same symbols
! and X will be used to denote the functions !(x, t) and
X(x, t), respectively, or the vectors !(t) and X(t) whose
elements are the coefficients of their respective development
on the chosen basis functions. The small constant parameter
ε(ε ! 1) represents the typical ratio between the kinetic
(energy confinement) and the resistive diffusion time scales.
As the order of magnitude of ε is about 0.05 in present-day
tokamaks and 0.001 in ITER, we use the theory of singularly
perturbed systems both for model identification and controller
design [12]. Equations (1) and (2) thus reduce to a slow
dynamic model,

!̇(t) = AS · !(t) + BS · US(t),

XS(t) = CS · !(t) + DS · PS(t).
(3)

and a fast dynamic model,

ẊF(t) = AF · XF(t) + BF · PF(t), (4)

where the input vector,

U(t) =
[
P(t)

Vext(t)

]
, (5)

and all the kinetic variables contained in X(t) have been split
into a slow and a fast component labelled by subscripts S and
F, respectively:

U(t) = US(t) + UF(t), X(t) = XS(t) + XF(t), (6)

with

US(t) =
[
PS(t)

Vext(t)

]
, UF(t) =

[
PF(t)

0

]
, (7)

The magnetic and kinetic variables are coupled because
the evolution of the kinetic functions, X(x, t), is partly
governed by the evolution of the magnetic equilibrium through
!(x, t). This coupling is represented, in a linearized form, by
the CS matrix. Details concerning this approximation and the
identification of a two-time-scale plasma response model from
experimental data (grey-box model) can be found in [7, 8].
Then, once the slow and fast models have been identified, a
near-optimal two-time-scale controller that minimizes a given
cost function to order O(ε2) can be synthesized.

3. Model-based near-optimal control design

A near-optimal controller is obtained by applying the theory of
singular perturbations to optimal state control, a technique that
properly decouples the two time scales when the parameter ε

(equation (2)) is sufficiently small [12]. The ARTAEMIS near-
optimal control algorithm uses two main feedback loops [7]:

(i) A proportional-plus-integral (PI), regulator control loop
which, on the basis of the slow model (i.e. on the resistive
time scale), drives the system towards the self-consistent
equilibrium state that minimizes a given cost function.
Thus, the system approaches at best the prescribed target
state in the least-squares sense. On the same time scale,
the kinetic variables (Xs in equation (3)) follow a quasi-
static trajectory that is governed by the evolution of the
magnetic variables, !(t), and by the slow evolution of the
actuators, PS(t), subject to this PI control law.

(ii) A fast proportional control loop which ensures the stability
of the kinetic variables on the plasma confinement time
scale, and regulates their transient behaviour when they are
subject to rapid target changes or disturbances. Otherwise,
they undergo the slow evolution that is consistent with the
slowly evolving plasma configuration towards the target
profiles.

Details of the theory can be found in [7]. Assuming that
the plasma response is given by equations (1) and (2) and
asymptotically reduces to equations (3) and (4) when ε is small,
the composite control algorithm provides U(t) = US(t) +
UF(t), the best O(ε2) solution to the minimization of the cost
functional:

J [U(t)] =
∫ ∞

0
dt

{
[(!T(t)(XT(t)] · Q ·

[
(!(t)

(X(t)

]

+α2
ζ ζ

T(t) · ζ(t) + (UT(t) · R · (U(t)

}
, (8)

where the vectors (!(t) and (X(t) contain the error signals
with respect to a target state, [!∞, X∞], which is assumed to
be achievable, here, when the actuator vector, U(t), reaches
a steady-state value, U∞, and the reduced vector, (U(t) =
U(t) − U∞, then vanishes. ζ(t) is defined as

ζ(t) =
∫ t

0
Kζ ·

[
(!(t)

(X(t)

]
dτ, (9)

and is an extra state vector introduced for integral control [15].
The T superscript is used for vector or matrix transposition.
Q and R are positive-definite matrices, Kζ is an appropriate
rectangular scaling matrix that characterizes integral control
and αζ is a scalar. The first term in the control objective

3



Nucl. Fusion 53 (2013) 063020 D. Moreau et al

functional, J [U(t)] (equation (8)), represents the time integral
of a quadratic function of the error signals and will cause the
!(x) and X(x) profiles to approach their targets in a short
time. The second term provides integral control and ensures
that the state [!∞, X∞], which will be defined later as the
self-consistent achievable state that is closest to the target, will
ultimately be reached without any offset. The final term in
the control objective describes the cost of the control action in
terms of actuator power. If the model equations (3) through
(7) provide a fair approximation of the system dynamics and
Q, R and α2

ζ are properly tuned, the controller offers a good
compromise between performance and cost.

The vectors US(t) and UF(t) that enter the composite
control law, U(t) = US(t) + UF(t), are computed in real-time
from the equations

US(t) =
[
PS(t)

Vext(t)

]
= −

[
GS Gζ

]
·
[
(!(t)

ζ(t)

]

= −GS · (!(t) − Gζ · Kζ ·
∫ t

0

[
(!(t)

(X(t)

]
dt, (10)

and

UF(t) = −GF · XF(t) = −GF · [X(t) − CS · !(t)

−DS · PS(t)]. (11)

The near-optimal gain matrices, [GS Gζ ] and GF,
are solutions of two Riccati equations associated with the
minimization of J [U(t)] to order O(ε2). In fact, the discrete
time version of the Riccati equations corresponding to the
continuous time system defined in equations (3) and (4)
are solved when computing [GS Gζ ] and GF, because the
controller was implemented in the DIII-D PCS with a discrete
sampling time of 20 ms. These calculations can be made
off-line once the controller parameters, Q, R and α2

ζ have
been chosen for a particular discharge, and the controller gain
matrices are then uploaded into the PCS together with the
reference and target profiles before each shot.

When the target state, [!target, Xtarget], is not achievable
with the given set of actuators, an important feature of the
algorithm is that, Kζ can be chosen as an appropriate pseudo-
inverse of the static gain matrix, K∞, of the system, in such a
way that integral feedback control drives the system towards
the self-consistent state that is the closest to the target state,
achievable with the given actuators. This state, [!∞, X∞], and
the corresponding steady-state input vector, U∞, are defined as

[
!∞
X∞

]
= K∞ · U∞, U∞ = Kζ ·

[
!target

Xtarget

]
, (12)

and by choosing Kζ as an appropriate pseudo-inverse of our
model estimate of K∞, the functional

I∞ =
∫ 1

0
dx{[!∞(x) − !target(x)]2 + λ2

kin[X∞(x) − Xtarget(x)]2},

(13)

where λkin is a weighting parameter for kinetic control, will be
minimized (within the accuracy of the model) when U = U∞
in steady state.

The order of the controller is the number of first order
ordinary differential equations that need be integrated to

compute the states, ζ(t), which are defined in equation (9)
and appear in equation (10). The number of these states that
are linearly independent, i.e. the controller order, is therefore
equal to the rank of Kζ and is at most equal to the number
of actuators. Generally, the condition number of the K∞
matrix is large, so some combinations of the actuators yield
very small steady-state responses compared to others, and
target profiles that differ only very slightly could lead to very
different requests for U∞. This may require combinations
of large actuator values of opposite signs that would nearly
annihilate each other but are outside their allowed range. To
possibly avoid actuator saturation and, yet, reach sufficiently
small values of I∞, the K∞ matrix can be approximated using
a truncated singular value expansion, limited to a small number
of principal components that correspond to the largest singular
values. This lowers the rank of K∞ (and therefore of its
pseudo-inverse Kζ ) and also lowers the norm of U∞. So, the
larger the order of the controller is, the smaller I∞ can be,
but also the larger the risk of saturation is. The controller is
also augmented by an anti-windup loop [7] that prevents the
winding up of the errors in the integral term of the control law
when some actuators saturate, and leaves the nominal closed-
loop system unmodified when the actuators are not saturated.

The controllability and observability of the magnetic and
kinetic profiles was discussed in [7] and can be inferred from
the controllability and observability of the identified two-time-
scale system (equations (3) and (4)). The ith eigenvalue, λS,i,
of the slow system is controllable when

Rank[(λS,i · Idnx
− AS) BS] = nx, (14)

where nx is the dimension of the magnetic state vector and
Idnx

stands for the identity matrix of order nx , and the j th
eigenvalue, λF,j , of the fast system is controllable when

Rank[(λF,j · Idnz
− AF) BF] = nz, (15)

where nz is the dimension of the kinetic state vector and
Idnz

stands for the identity matrix of order nz. These tests
are made when computing the controller matrices before
loading the profile controller data into the PCS. Due to the
variety and the rather broad power and current deposition
profiles of the chosen actuators, the system was always found
to be controllable. Observability is guaranteed by the full
knowledge of the controlled profiles provided by a real-time
magnetic flux reconstruction on a 65 × 65 spatial grid from
EFIT [16, 17], and on a full set of appropriate measurements.

4. Plasma scenario, diagnostics and specific heating
and current drive actuators used for the system
identification and profile control experiments

The chosen reference plasma state around which the
data-driven models were identified on DIII-D was that of
a βN-controlled AT scenario, at a toroidal magnetic field,
BT = 1.8 T in the standard negative direction (i.e. clockwise
when viewed from the top of the torus), central plasma density,
ne0 ≈ 5 × 1019 m−3 and plasma current, Ip = 0.9 MA
in the standard positive direction (counter-clockwise when
viewed from the top of the torus). The plasma shape was a
slightly biased up double null divertor with a safety factor at
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Figure 1. Drawing of the DIII-D tokamak and of its neutral beam
system consisting of four beamlines (three for co-current injection
and one for counter-current injection), each equipped with two ion
sources. The co-current injection beamline located at a toroidal
angle of 150◦ around the torus, shown in red, can be tilted up to 16◦

with respect to the equatorial plane for off-axis neutral beam
current drive.

the plasma edge, q95, equal to 5.8. Since q(x) is infinite at
the boundary of a diverted toroidal plasma, q95 is defined as
the safety factor on a flux surface that contains 95% of the
total poloidal flux within the plasma, and is representative of
the plasma current, shape and toroidal magnetic field. The
scenario had been developed to combine noninductive current
fractions near unity with normalized pressure 3.5 < βN < 3.9,
bootstrap current fractions larger than 50%, and a normalized
confinement factor, H98(y,2) ≈ 1.5 [1, 2].

Deuterium neutral beam injection (NBI) and electron
cyclotron current drive (ECCD) systems provided the H&CD
sources for the system identification and profile control
experiments. There are four NBI beamlines on DIII-D, located
at toroidal angles of 30◦, 150◦, 210◦ and 330◦ around the
tokamak (figure 1). Each beamline is equipped with two
ion sources that can be run at different voltages in the range
30–80 kV (some up to 93 kV), and provides two tangential
beams, left (L) and right (R), which penetrate the plasma
with two different angles of incidence, i.e. with two different
tangency radii with respect to the toroidal flux surfaces. The
eight beams are labelled 30L, 30R, 150L, 150R, 210L, 210R,
330L and 330R, after their toroidal angular location and
relative position in each beamline. In normal operation, when
the plasma current is positive, two of these beams (210L
and 210R) inject high-energy deuterons in the counter-current
direction and the six other beams inject in the co-current
direction. In addition, one beamline (beams 150L and 150R)
has the capability of being tilted between 0◦ and 16◦ with
respect to the equatorial plane (figure 1) in order to provide
for off-axis co-current injection.

Magnetic profiles were obtained in real-time from a
complete equilibrium reconstruction using the real-time EFIT
code [16, 17] which solves the Grad–Shafranov equation
constrained by edge magnetic sensors and by motional Stark
effect (MSE) data that provide information on the poloidal
field and current density profiles from a dedicated neutral
beam (30L). Kinetic data is obtained from charge exchange
recombination spectroscopy (CER) from beam 330R. These
two beams were operated in a modulated mode (10 ms on,
10 ms off) at voltages of 80 kV and 74 kV, respectively.
Together, they injected in the co-current direction an average

baseline power between 2 and 2.4 MW, depending on the shots,
and were not used for control.

In view of future applications involving the simultaneous
control of the current density profile together with the electron
or ion temperature and/or the toroidal rotation, the six other
beams were grouped to form three independent NBI actuators
with some decoupling between heating, current drive and
torque injection. The grouping can be different depending
on the configuration of the 150◦ beamline, either tilted for
off-axis current drive or untilted. At the time when the first
system identification and control experiments were performed
(sections 5 and 6), the 30R beam was not available and tilting
the 150◦ beamline for off-axis current drive was not possible
yet. The three NBI actuators were then made up of:

(i) on-axis co-current NBI power, PCO, provided by the co-
current beams with the largest tangency radius, 150L and
330L (note that in sections 5 and 6, the constant average
power from the 30L diagnostic beam will also be included
in PCO for analysis, as it comes from a beam with about
the same characteristics),

(ii) counter-current NBI power, PCNT, provided by the
counter-current beam with the largest tangency radius,
210R,

(iii) balanced NBI power, PBAL, provided by two symmetric
beams with equal power, and with the smallest tangency
radius (one co-current, 150R, the other one counter-
current, 210L).

In another experimental campaign (section 7), when both the
30R beam and the off-axis current drive capability became
available but 210L was not, another set of NBI actuators was
defined as:

(i) on-axis co-current NBI power, PCO, provided by only one
co-current beam with the largest tangency radius, 330L
(note that in section 7, the constant average power from
the 30L diagnostic beam will also be included in PCO for
analysis, as it comes from a beam with about the same
characteristics),

(ii) counter-current NBI power, PCNT, provided by the
counter-current beam with the largest tangency radius,
210R,

(iii) off-axis co-current NBI power, POA, provided by the two
beams with off-axis power deposition, 150L and 150R,
with the 150◦ beamline tilted by 16◦ with respect to the
equatorial plane.

Two additional actuators were used for profile control: the
total ECCD power from up to six 110 GHz gyrotrons in a
fixed and broad off-axis current drive configuration, PEC,
and finally the surface loop voltage, Vext. The use of the
surface loop voltage as a natural profile control actuator in
the ARTAEMIS controllers is guided by the fact that, within
our model approximation, the coefficients that determine the
response of the controlled variables to Vext(t) are known and
independent of x (section 2, equations (1) and (2)). The surface
loop voltage that is requested in real-time during profile control
experiments is obtained from the PCS through a separate
control system that uses the ohmic coil voltage actuator. The
central poloidal field coil (ohmic coil) was therefore used
for controlling Vext rather than controlling the total plasma
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current, Ip, and Ip was controlled indirectly through the
controlled magnetic profiles, e.g. !(x) or ῑ(x) = 1/q(x).
The specific control of Vext(t) was tuned prior to the profile
control experiments and, as will be seen in sections 5 to 7,
a combined feedforward and feedback control was found to
be effective in providing the requested surface loop voltage.
This loop voltage control mode of operation, where the total
plasma current is not accurately regulated with the ohmic
transformer but can be kept floating within some predefined
safety bounds, seems suitable for AT scenarios in which a
control of the current density profile throughout the plasma
cross-section can be at least as important as an accurate control
of the total plasma current. Moreover, such scenarios are
meant to be ultimately operated in steady state, i.e. at zero
loop voltage rather than at a precisely given plasma current.
When the controller has brought the plasma sufficiently close to
the required state, fully noninductive operation can be readily
obtained by letting the weight of Vext vanish with respect to the
weight of other actuators in the controller, i.e. by increasing
the relevant diagonal R-matrix element in equation (8).

5. Optimal state-feedback control of the poloidal
magnetic flux profile

The first closed-loop experiments that were performed to test
the ARTAEMIS model-based controller will be described now,
starting with magnetic profile control only. In the absence
of kinetic control, the state-space model contains only the
equation of evolution for the poloidal flux profile, !(x, t). The
weight parameter, λkin, equals zero in equation (13), and the
control algorithm reduces to conventional optimal control since
there is no need for the two-time-scale approximation. In the
first experiments, !(x), was controlled from t = 2.5 to t = 6 s
(i.e. starting after a 1 s current flat-top), with four actuators:
PCO, PBAL and PEC (with only five gyrotrons) and Vext. All
the NBI beamlines were injecting in the equatorial plane so
that there was no off-axis NBI power in these experiments,
and, in addition, the counter-current NBI actuator was not
available (POA = PCNT = 0). Including the 1.2 MW baseline
co-current NBI power that was required from beam 30L for
real-time MSE measurements into PCO, the allowed ranges for
each of the available actuators, PCO, PBAL, PEC and Vext were
about 1.2–5.3 MW, 0–4.9 MW, 0.2–2.5 MW and −0.5–0.5 V,
respectively, but these limit values were entered manually at
the user interface, prior to each shot, and could vary from
shot to shot. With powers in megawatts and loop voltage
in volts, the square roots of the diagonal R-matrix elements
corresponding to PCO, PBAL, PEC and Vext were 0.12, 0.1, 0.2
and 0.4, respectively. Their ratio was chosen on the basis
of the inverse available headroom that could be expected on
each actuator (difference between the maximum and minimum
values), except for Vext that was given a special weight (for
example here 2.5 V were given about the same weight as
10 MW of NBI). The elements of the !-vector consisted of
the values of !(x) at nine radii (x = 0.1, 0.2, . . . 0.9) and
the Q-matrix was chosen in such a way that the quadratic
(!T·Q·(! was equal to the integral of (!(x)2 from x = 0.1
to 1, assuming the chosen cubic-splines basis functions. Kζ

was a pseudo-inverse of the model steady-state gain matrix,
K∞, defined in section 3 and approximated by its first two

principal components so that the controller order was 2 (the
first two singular values of K∞ were 0.689 and 0.011). In
three different experiments, the integral weight parameter, αζ ,
was chosen as 4, 10 and 25, respectively. For these tests, the
profile control phase started at t = 2.5 s, i.e. 1 s after the end of
the initial current ramp-up, and the best controller performance
was obtained with αζ = 25. This is illustrated in figure 2(a),
which shows the time traces of !(x) at x = 0.1, . . . 0.9 in
different colours for shot #146416 (the piecewise linear target
traces are also represented with the same colours), and on
figure 2(b) which shows the !(x) profile at t = 2.5 s, 4 s
and 6 s, respectively, for the same shot. An overshoot can be
observed for all radii before the poloidal flux settles to a final
profile that is a good least-squares approximation of the target
profile. The time evolution of the actuators is displayed on
figure 2(c). It shows almost no saturation, except between
t = 3.5 and t = 4.25 s when the co-current NBI actuator
is clamped to its minimum value of 1.2 MW from the MSE
diagnostic beam (30L). The actuators nearly reach a stationary
state at t = 5.5 s. A comparison between the requested
and delivered surface loop voltages can be seen on figure 3
and demonstrates the effectiveness of the surface loop voltage
control using the ohmic coil actuator. Also shown on this figure
is the plasma current which evolves from 0.9 MA before profile
control, to 1.1 MA during the profile overshoot, before settling
down to a final value of about 1 MA that corresponds to the
best approximation of the poloidal flux target profile that can
be obtained with the model-based controller. The evolution
and successful minimization of the I∞ quadratic cost function
with time can be verified on figure 4 for the three cases when
αζ = 4 (shot #146410), αζ = 10 (shot #146407) and αζ = 25
(shot #146416), respectively.

6. Simultaneous near-optimal control of the poloidal
flux profile and of the normalized pressure
parameter, βN

Simultaneous control of the poloidal flux profile and of the
normalized pressure parameter was performed as a first test
of the near-optimal two-time-scale algorithm described in
section 3. For this particular application, the kinetic variable,
X(x, t), defined in sections 2 and 3 reduces to a single
scalar parameter, βN(t), independent of x, and therefore the
kinetic vector has only one element. The counter-current NBI
actuator, PCNT, became available for some of the experiments
described later in this section, so a total of five independent
actuators could be used ultimately, with also a little more power
in the ECCD actuator since six gyrotrons were operating.
The allowed ranges for each of the available actuators, PCO,
PCNT, PBAL, PEC and Vext were 1.2–5.3 MW (including the
30L diagnostic beam), 0–2.1 MW, 0–4.4 MW, 0.3–3 MW and
−0.5–0.5 V, respectively, and the square roots of the diagonal
R-matrix elements were 0.12, 0.2, 0.1, 0.16 and 0.4. The
! vector still consisted of the values of !(x) at nine radii
(x = 0.1, 0.2, . . . 0.9) and the Q matrix was chosen block-
diagonal, such that

[(!T (βN] ·Q ·
[

(!

(βN

]
=

∫ 1

0
dx(!(x)2 +λ2

kin(β2
N, (16)
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Figure 2. Shot #146416: control of !(x) between t = 2.5 s and t = 6 s. (a) !(x) at x = 0.1, 0.2, . . . 0.9 versus time and target traces
(piecewise linear). (b) !(x) profile at t = 2.5 s, 4 s and 6 s and target profile (diamonds). (c) Actuator values, PCO (solid, red), PBAL
(dotted–dashed, blue), PEC (dashed, magenta) and Vext (x10, dotted, black) versus time (the co-current NBI power shown here includes a
constant baseline power of 1.2 MW required for MSE).

i.e. almost as before except for an additional diagonal element
equal to λ2

kin corresponding to the weight on the control of βN

in the objective of minimizing

I∞ =
∫ 1

0
dx[!∞(x) − !target(x)]2 + λ2

kin[βN,∞ − βN,target]2.

(17)

As in section 3, [!target, βN,target] represents the target state,
and [!∞, βN,∞] represents, according to the model, the state
which is the closest to the target state that can be reached in
closed-loop, while the actuator vector, U(t), reaches its final
steady-state value, U∞. Based on the relative magnitude of
the steady-state gains of the model, the weight on βN control
was chosen as λkin = 0.3. Now, the five singular values of
the steady-state gain matrix, K∞, were 0.929, 0.085, 0.016,
0.006 and about 10−4. Only three principal components of
K∞ were retained in the calculation of its pseudo-inverse,
Kζ , for integral control, and αζ was chosen equal to 10. For
the first tests, only the same four actuators as for the control
of the poloidal flux profile (section 5) were available. With
the same poloidal flux target profile as for shot #146416 and
with βN,target = 2.07, the simultaneous control of !(x) and
βN was switched on from t = 2.5 to t = 6 s. With the
chosen parameters, this controller of order 3 showed good
performance with practically no actuator saturation. This is
illustrated in figure 5 which shows the time traces of !(x)

at x = 0.1, 0.2, . . . 0.9 in different colours (figure 5(a)) and
of βN (figure 5(b)), for shot #146422. As in section 5 (shot
#146416) when the controller parameters were tuned to reach
a steady current profile around t = 4.5 s, an overshoot can be
observed on the poloidal flux control and the plasma current
rises slightly above its final value before ramping down to
equilibrium. On the contrary, βN was nearly on its target
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Figure 3. Shot #146416: control of !(x) between t = 2.5 s and
t = 6 s. Plasma current versus time (solid, black), requested surface
loop voltage (dash, blue) and delivered surface loop voltage, filtered
(dotted–dashed, red).

trace only about 100 ms after control was switched on, and
good tracking was achieved until the end of the control phase.
The time evolution of the H&CD actuators, PCO, PBAL and
PEC is displayed on figure 5(c). One can see that they have
not reached steady state yet at the end of the control phase
(t = 6 s) although the controlled variables are almost steady
and sufficiently close to their respective targets. The evolution
of the plasma current towards its final value of about 1 MA can
be seen on figure 6, together with a comparison between the
requested and delivered surface loop voltages.

Tailoring the current density profile during the plasma
current ramp-up phase, through the choice of an optimal
ramp-up rate and the combined effects of the ohmic drive,
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Figure 4. Evolution of the cost function, I∞, during poloidal flux
profile control with various integral control parameters. (a) Shot
#146410: control between t = 3.5 s and t = 6 s with αζ = 4.
(b) Shot #146407: control between t = 3.5 s and t = 5 s with
αζ = 10. (c) Shot #146416: control between t = 2.5 s and t = 6 s
with αζ = 25.

electron heating and noninductive current generation, is an
essential ingredient of the AT operation scenarios, that leads
to improved confinement and stability. The development of
real-time profile control during the current ramp-up phase
could therefore constitute an important progress for running
stable and reproducible AT discharges despite the significant
variations of the plasma parameters that are observed after
plasma initiation, X-point formation and H-mode transition.
In discharges used for profile control testing, the X-point
configuration was formed at t ≈ 0.3 s and the plasma
transition to H-mode occurred at t = 0.5 s. Therefore, during
experiments subsequent to shot #146422, the starting time of

the !(x) profile and βN control phase was moved forward,
from 2.5 s (in shot #146422) to 1.5 s (at the end of ramp-up,
when Ip = 0.9 MA), then to 1 s (during ramp-up, when
Ip = 0.75 MA), and finally to 0.5 s (during ramp-up, when
Ip = 0.6 MA). In the last two cases, control was deliberately
switched off at t = 5.5 s because of the limited pulse length
of the gyrotrons and beams at high power. These experiments
were executed after the counter-current 210R beam became
available and they used five actuators (PCO, PCNT, PBAL, PEC

and Vext). The controller performed well, despite the fact
that the data-driven model was identified using only data after
2.5 s [8], i.e. after the plasma equilibrium had relaxed from
the initial current ramp-up phase through resistive diffusion, at
Ip = 0.9 MA. Figure 7 displays the result for shot #146463
in which the profile controller was turned on at t = 1 s
and off at t = 5.5 s. Figure 7(a) shows the time traces
of !(x) at x = 0.1, 0.2, . . . 0.9 tracking the nine piecewise
linear target traces and figure 7(b) shows the !(x) profile at
t = 0.5, 2.4 and 5 s. As in the previous shots, the !(x) profile
slightly overshoots the target profile in the interval t = 2.5–4 s.
Figure 7(c) shows several time traces: βN tracking its flat-top
target value of 2.5, the plasma current reaching a maximum
value of 1.2 MA at t = 2.3 s and floating slightly above 1 MA
between t ≈ 4 s and t = 5.5 s, and a rotating m/n = 2/1
MHD mode (NTM) as measured by the toroidal and poloidal
Mirnov probe arrays. Despite the presence of the m/n = 2/1
mode from t = 2.3 s to the end, simultaneous !(x) and βN

control was achieved and a nice regulated steady state was
obtained between t = 4 s and t = 5.5 s. It must be noted that
the balanced injection actuator, PBAL, made up of beams 150R
and 210L was saturated between t = 2.1 s and t = 4 s and
the counter-current NBI and ECCD actuators were saturated
between t = 2.2 s and t = 2.6 s (PCNT = PCNT,max = 2 MW,
PBAL = PBAL,max = 4.4 MW, PEC = PEC,min = 0.3 MW).
In the next shot, #146464, with the earliest switch-on time
(0.5 s), the plasma current was also successfully ramped up by
the profile controller (figure 8), starting from Ip = 0.6 MA
at t = 0.5 s to about 1.07 MA at t ≈ 1.3 s and !(x) also
approached the final target profile slightly after 2 s. As in the
previous experiment, the βN target was constant and equal to
1.5 until t = 1.5 s with a linear ramp to 2.5 between 1.5 s and
2 s. This target trace was successfully tracked until βN reached
2.2 at t ≈ 1.9 s (figure 8(a)). Then βN dropped to about 1.9,
in the same fashion as in figure 7(c) around t ≈ 2.5 s, and
the same three actuators reached saturation (figure 8(b)). At
t = 1.89 s, an m/n = 2/1 NTM was triggered but, in this
discharge, it locked at t = 1.95 s. The intrinsic error field had
fully penetrated by 2.05 s, with subsequent loss of H-mode,
and the locked mode then induced a disruption that terminated
the discharge prematurely at t = 2.35 s while PCNT, PBAL and
PEC were still saturated. The time evolution of the requested
and achieved loop voltages are shown on figure 8(c) together
with a comparison between the plasma current evolution in
this discharge and in the previous one where good control was
recovered after the onset of the m/n = 2/1 MHD activity.

The choice of the controlled variables that was made here,
namely the poloidal flux profile and the normalized pressure
parameter, was the simplest one for the first tests of a two-
time-scale state-feedback controller. It stems directly from the
structure and the robustness (for a particular plasma scenario)
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Figure 6. Shot #146422: simultaneous control of !(x) and βN
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black), requested surface loop voltage (dashed, blue) and delivered
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of the model identified in [8] and described in section 2.
However, as will be discussed in detail in section 7, the safety
factor profile, q(x), which is closely linked to the poloidal flux
profile, is an important physical quantity that governs MHD
stability in tokamak plasmas. At this stage, it is therefore
worth measuring the impact on the q-profile of the residual
errors between the target and actual !(x) profiles. For this
purpose, the values of the !(x) targets shown on figure 7(b)
were translated into q(x) values by using both the actual
toroidal magnetic flux measured in shot #146463 between
t = 4 s and t = 5.5 s, and the cubic-spline interpolation,
!target(x), assumed in the definition of the control objective

(equation (17)). In principle, these values of q(x) slightly
depend on time through the toroidal magnetic flux, but these
variations are in fact negligible. The comparison between
the q-profile deduced from !target(x) and the actual q-profiles
(deduced from EFIT) during the !(x) overshoot (t = 2.4 s)
and then between t = 4 s and t = 5.5 s, is shown on figure 9
(at the time when this experiment was performed, however,
the radial derivative of !target(x)—and hence of q(x)—at the
boundaries of the interpolation window, x = 0.1 and 1, were
not meaningful and are not shown). One can thus get a better
intuition about the relationship between the uncertainties on the
poloidal flux profile and the safety factor profile, and anticipate
on the added value of genuinely controlling the safety factor
in real-time, by defining control objectives that are directly
related to q(x) (section 7).

Finally, although integrated profile control will be
necessary for achieving and maintaining stable gradients
in steady-state AT plasmas, these results also point to the
importance of direct MHD stability control, and in particular
NTM control, during the transient evolution of the plasma
current and pressure profiles towards steady state. Research on
this topic has been actively pursued during recent years, and
substantial progress has been made. For example, accurate
tracking and efficient stabilization of the mode with localized
ECCD has been shown on DIII-D [18]. With an adequate
actuator sharing algorithm, the techniques that are being
developed for NTM control and profile control may have to
complement each other in the future, in order for fully non-
inductive operation at high βN and with a large bootstrap
current fraction to become routinely achieved on DIII-D. In
a burning plasma (e.g. in ITER or in a power plant), however,
the relative ‘strength’ of the H&CD actuators will be small
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Figure 7. Shot #146463: simultaneous control of !(x) and βN between t = 1 s and t = 5.5 s. (a) !(x) at x = 0.1, 0.2, . . . 0.9 versus time
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(piecewise linear, blue), plasma current (dotted, black) and m/n = 2/1 MHD mode amplitude (dotted–dashed, magenta).

compared to the heating and bootstrap current generated by
the 3.5 MeV alpha-particles. MHD instability avoidance may
then be a key to a successful strategy for steady-state operation,
as it is unlikely that the available actuators will be powerful
enough to return the plasma to the desired state after an MHD
event. Ideally, then, simultaneous magnetic (including the
safety factor) and kinetic profile control, should also provide a
tool for moving the plasma evolving towards instability away
from it. Knowing the optimal profile shapes and trajectories, in
real-time, will thus be important for updating the profile target
waveforms.

7. Optimal feedback control of the safety factor
profile

In toroidal magnetic confinement devices such as tokamaks,
the safety factor is a so-called flux function (i.e. it is constant
on a given flux surface and therefore, at a given time, it
depends only on x), that is defined as q(x) = −d'(x)/d!(x).
When the plasma current is mostly driven inductively and has
fully diffused, the safety factor is generally a monotonically
increasing function of x. It varies from q(0) ≈ 1 on the
magnetic axis to a value that ranges between about 3 and 10 in
the very edge of the plasma (inversely depending on the total
plasma current) in plasmas bounded by a limiter, and rapidly
increases to infinity at the plasma boundary in diverted plasmas
in which the last closed magnetic flux surface is a separatrix.
The particular flux surfaces where this parameter is a low-order
rational number are the loci of resonances for unstable MHD
perturbations that can lead to the formation of large magnetic
islands with degradation of plasma confinement, and even
sometimes to plasma disruptions. The magnetic shear, which
is related to the radial derivative of the safety factor, is also
an important parameter for the onset of microturbulence and

anomalous plasma transport. As a matter of fact, steady-state,
noninductively driven AT plasmas take most of their benefit
from the shaping of the safety factor profile during the current
ramp-up phase and the sustainment (at least for a few resistive
diffusion times in present tokamaks) of a magnetic equilibrium
with an elevated q(x) profile, e.g. with q(x) larger than 1.5 or 2
in the core, and a weak (or slightly negative) magnetic shear in
the inner half of the plasma. To reliably achieve such equilibria
and to extend the improved performance of AT scenarios to
steady state, it would therefore be of great value to control,
in real-time, not necessarily the poloidal flux profile as was
shown in sections 5 and 6, but rather the safety factor profile or
both. It is of course more demanding in terms of modelling and
of real-time measurements and control because it depends on
the radial derivative of the poloidal flux. Moreover, the target
q(x) profiles that are required are not consistent with those that
are naturally obtained through the resistive diffusion of any
inductively driven current source while the inductive drive is,
by far, the most efficient actuator that is available on tokamaks.

In the experiment described below, the safety factor
profile was controlled through its inverse, ῑ(x) = 1/q(x) =
ι(x)/(2π), where ι(x) refers to the rotational transform and is
defined, in toroidal plasmas, as the poloidal angle subtended
during a single toroidal transit of the field lines on a particular
flux surface, expressed in radians. Controlling ῑ(x) is a natural
choice due to the inverse dependence of q(x) with respect to
the poloidal flux and current density profiles, and therefore
with respect to the control actuators. The postulated structure
of equations (1) and (2) and the choice of the model states
[!(x, t), X(x, t)] and inputs [P(t), Vext(t)] was indeed based
upon linear relationships between beam-driven or wave-driven
currents and injected powers through current drive efficiencies,
and between the ohmic current density and the surface loop
voltage through Ohm’s law ([7], appendix A1). In order
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Figure 8. Shot #146464: simultaneous control of !(x) and βN
between t = 0.5 s and t = 2.4 s. (a) βN (solid, red), βN target
(piecewise linear, blue) and m/n = 2/1 MHD mode amplitude
(dashed, magenta). (b) H&CD actuator values in MW, PCO (solid,
red), PCNT (dotted, black), PBAL (dotted–dashed, blue) and PEC
(dashed, magenta), versus time (the co-current NBI power shown
here includes a constant baseline power of 1.2 MW required for
MSE). (c) Plasma current (MA) versus time (solid, black), requested
surface loop voltage in volts (dashed, blue) and delivered surface
loop voltage, filtered (dotted–dashed, red). For comparison, the
dotted black trace represents the plasma current in shot #146463.

to control ῑ(x), an additional equation relating the output
variable, ῑ(x), to the model states must be introduced. With
our definition of the normalized radius, x = ('/'max)

1/2, this
equation reads:

ῑ(x, t) = −
[
∂!(x, t)

∂x

]
·
[
∂'(x, t)

∂x

]−1

= − 1
2'max(t)

[
1
x

∂!(x, t)

∂x

]
, (18)

and 'max(t) is known from the real-time magnetic equilibrium
reconstruction that provides the current profile data. Therefore,
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Figure 9. Shot #146463: safety factor profile evolution during the
simultaneous control of !(x) and βN displayed on figure 7. The
figure shows q(x) at t = 1 s (dotted, black, start of control), 2.4 s
(dotted–dashed, blue, during the !(x) overshoot), and every 20 ms
between t = 4 s and t = 5.5 s (solid, red). The q(x) values at
x = 0.2, 0.3, . . . 0.9, deduced from the !(x) target profile and from
the toroidal flux profile reconstructed by EFIT are also shown for
comparison (diamonds).

the approximate finite development

!(x, t) ≈
N∑

k=1

!k(t) · ak(x), (19)

in terms of the components, !k of the !-vector and a set of
cubic splines, ak(x), that led to the discrete model equations
(3) and (4), readily provides an approximation for ῑ(x, t),

ῑ(x, t) ≈ − 1
2'max(t)

N∑

k=1

!k(t) · αk(x), (20)

in terms of a finite development on a different set of
basis functions, αk(x) = (1/x)(dak/dx), using the same
coefficients as the !(x, t) development. When the magnetic
axis (x = 0) is included in the radial interval where the
profiles are to be controlled, the basis functions, ak(x), used to
approximate !(x) must satisfy a regularity condition at x = 0,
namely that their first derivative vanishes. This ensures that the
new basis functions, αk(x), used to approximate ῑ(x), are finite
at x = 0 and that the approximate rotational transform and
safety factor are defined and finite on the magnetic axis, as their
physical counterpart is. Once a sufficiently accurate model
has been identified for the dynamics of !(x, t) through the
!-vector and the ak(x) basis functions, there is in principle no
need for identifying a specific model describing the dynamics
of the ῑ(x, t) profile. Based on the linear relationship between
!(x, t) and ῑ(x) (equation (18)), optimal control of the ῑ(x)
profile (or near-optimal simultaneous control of ῑ(x) and of
additional kinetic variables with a two-time-scale algorithm)
can also be achieved through the state control of the !-vector,
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Figure 10. Shot #150083: control of ῑ(x) and therefore q(x) in the interval 0 ! x ! 0.6 starting at t = 1 s, during current ramp-up. (a) ῑ(x)
at x = 0.05, 0.1, 0.2, . . . 0.6 versus time and target traces (piecewise linear). A vertical line at 2.7 s shows the time when the ohmic coil
current crossover failed, resulting in the loss of Vext control and, subsequently, of ῑ(x) and q(x) control. (b) q-profiles at t = 1 s (dashed,
black), 2 s (cyan) and 3 s (red) and target values at t = 2 s (blue diamonds) and 3 s (red diamonds). (c) Plasma current (solid, black),
requested surface loop voltage (dashed thin, cyan) and delivered surface loop voltage, filtered (dotted–dashed, red) versus time.

with an appropriate objective that forces the ῑ(x) profile to
reach the closest least-squares approximation of a given ῑ(x)

target profile, ῑtarget(x), within the constraints of the actuators.
Hence, introducing the appropriate scalar products of the new
basis functions, αk(x), the Q matrix will be defined here in
such a way that

[(!T (βN] · Q ·
[

(!

(βN

]
=

∫ 1

0
dx[(ῑ(x)2 + λ2

kin(X(x)2],

(21)

and, similarly, the Kζ matrix will be chosen so that the steady-
state control objective amounts to minimizing

I∞ =
∫ 1

0
dx{[ῑ∞(x) − ῑtarget(x)]2

+ λ2
kin[X∞(x) − Xtarget(x)]2}. (22)

Here, as before, [ῑtarget, Xtarget] represents the target state, and
[ῑ∞, X∞] represents, according to the model, the state which is
the closest to the target state that can be reached in closed-loop,
while the actuator vector, U(t), reaches its final steady-state
value, U∞.

These extensions were implemented in the ARTAEMIS
controller and first experiments were attempted for the control
of ῑ(x), i.e. with λkin = 0. When these experiments were
carried out, the 150◦ co-current beamline was tilted to an
angle of 16◦ upwards with respect to the previous horizontal
injection, in order to allow for off-axis NBI and to broaden
the family of current profiles accessible to the AT steady-state
scenarios. The control actuators thus included off-axis NBI
power, POA, together with PCO, PCNT, PEC and Vext, but no
balanced injection (PBAL = 0, see section 4). However, the
dynamic response of the plasma profiles to the off-axis beams

was only crudely estimated from some open-loop experimental
data obtained prior to the control experiment, with limited
dynamics. In addition, the magnetic field, 1.7 T, was lower
and its direction was reversed (to increase the current drive
efficiency of the off-axis beams) compared to what it was
(−1.8 T) when the model had been identified. The square
roots of the diagonal R-matrix elements corresponding to PCO,
POA, PCNT, PEC and Vext were chosen as 0.1, 0.05, 0.08, 0.06
and 0.05, respectively. The ῑ(x) target profile corresponded
to a broad flat q-profile between x = 0 and x ≈ 0.6,
with a minimum value, qmin = 1.7, that had been achieved
previously in this plasma configuration. The integration limits
in equations (21) and (22) were modified to limit the radial
control window for ῑ(x) to the interval 0 ! x ! 0.6, and the
control phase began at t = 1 s, during current ramp-up, and
was programmed to end at t = 6 s (figure 10). However, it
was found during these tests that starting control at t ≈ 1 s or
before requires a special adjustment of the primary circuit pre-
magnetization so that the critical crossover of the ohmic coil
current from positive to negative occurs before the switchover
from Ip control to Vext control. A second crossover, that would
be needed if the loop voltage request from the ARTAEMIS
profile controller happens to become negative just after the
first crossover, is not technically possible at present. In such
an occurrence, the ohmic coil current is clamped at zero.
In the experiment described here, the primary circuit pre-
magnetization was indeed too large for the crossover to be
fully completed before the profile control phase began. The
current in the ohmic coil changed sign only at t ≈ 2.7 s (i.e.
during the Vext control phase). At that time, the request on
Vext became negative, the ohmic coil current was clamped and
therefore, from this point on, the request on Vext could not
be met anymore (figure 10(c)). Nevertheless, the controller
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satisfactorily tracked the ῑ(x) target profile from t = 1 s until
t ≈ 3.1 s, as shown on figures 10(a) and 10(b). During that
time, the plasma current rose up to reach about 1.2 MA at
t ≈ 2 s, and remained roughly constant afterwards. The q-
profile obtained in real-time by the EFIT magnetic equilibrium
code is displayed on figure 10(b) at t = 1 s, 2 s and 3 s together
with the target profiles at t = 2 s and 3 s. Subsequently, Vext

was clamped near zero, both PCO and POA, the on-axis and
off-axis co-current NBI actuators, saturated at their maximum
values, and control of ῑ(x) was lost. Nevertheless, without any
feedforward command except the constant reference powers
and surface voltage around which the model was linearized
(PCO.ref = 3.28 MW, POA.ref = 0, PCNT.ref = 0, PEC.ref =
1.38 MW and Vext.ref = 0.14 MW), the ARTAEMIS feedback
controller was effective in achieving plasma current ramp-
up while tracking successfully the given safety factor target
profiles.

8. Conclusion

A generic method for integrated magnetic and kinetic profile
control based on semi-empirical data-driven models is being
experimentally tested on DIII-D, in order to possibly regulate
and improve the performance and reproducibility of AT
plasmas, and to extend the corresponding scenarios to long-
pulse or steady-state operation in superconducting tokamaks.

Dynamical state-space models have been identified from
experimental data obtained during dedicated modulation
experiments. In the absence of experimental data (e.g.
for future devices such as ITER), such control-oriented,
state-space models can also be identified from simulated
data obtained from semi-empirical predictive transport codes.
They could provide, for integrated control design purposes,
a suitable alternative to first-principle plasma models that
become increasingly complex and uncertain when the coupled
dynamics of several magnetic and kinetic parameter profiles is
to be predicted.

In this work, both the model identification and the control
techniques use singular perturbation methods in order to take
advantage of the small ratio, ε, between the confinement and
resistive diffusion time scales (two-time-scale approximation).
As far as system identification is concerned, these methods
were shown previously to yield reduced-order state-space
models which could fairly reproduce the slow and the fast
dynamics of the magnetic and kinetic parameter profiles, in
a broad vicinity of a reference equilibrium plasma state. A
control algorithm based on the same approximation has been
implemented on DIII-D after the PCS had been upgraded
and its control capability had been expanded to include the
possibility of simultaneously controlling the evolution of
several magnetic and kinetic plasma parameters and profiles.
For magnetic control only, it uses optimal control theory. For
integrated magnetic and kinetic control, it yields an O(ε2)

approximation of optimal control (near-optimal control) where
ε is the small ratio between the energy confinement and
the resistive diffusion time scales. Since, with a given set
of actuators, the family of achievable steady-state plasma
equilibria cannot be known with precision in advance, the
plasma target state which is aimed at in a control experiment
may not be a self-consistent equilibrium state. The ARTAEMIS

algorithm allows in principle the controller to reach the closest
self-consistent state that is achievable with the given actuators,
as defined by the least-squares minimization of a quadratic
integral error.

In these experiments, the profile control actuators were
the surface loop voltage, Vext, and a subset of five other
independent H&CD sources: on-axis co-current NBI, off-
axis co-current NBI, counter-current NBI, balanced NBI, and
ECCD in a fixed off-axis current drive configuration. The
central poloidal field coil (ohmic coil) was used for controlling
Vext, and the total plasma current, Ip, was controlled indirectly
through the controlled magnetic profile which was either
the poloidal flux, !(x), or the inverse of the safety factor,
ῑ(x) = 1/q(x). After some tuning, a combined feedforward
and feedback control of the surface loop voltage through the
ohmic coil voltage was found to be effective in providing the
Vext(t) waveforms requested by the profile controller in real-
time.

Closed-loop feedback control of the poloidal flux profile
was first demonstrated while some of the parameters that define
the control objective were varied. Then, the control phase was
extended from t = 2.5 s to t = 6 s and good tracking of the nine
!(x) time-varying target traces (x = 0.1, 0.2, . . . 0.9) was
achieved until the end of the control phase. Plasma equilibrium
was reached around t = 4.5 s consistently with the resistive
diffusion time scale.

In another set of experiments, simultaneous control of the
poloidal flux profile and the normalized pressure parameter,
βN, was experimentally demonstrated using the two-time-
scale near-optimal algorithm. Here the control phase started
earlier to include part of the current ramp-up phase. Again,
good tracking of the nine !(x) time-varying target traces
(x = 0.1, 0.2, . . . 0.9) and of βN was achieved until the end of
the control phase, with a flat-top βN target of 2.1, and also in a
discharge with a flat-top βN target of 2.5 where an m/n = 2/1
MHD mode (NTM) appeared around t = 2.3 s. Despite this
mode, simultaneous !(x) and βN control was achieved starting
at t = 1 s, and a nice regulated steady state was obtained
between t = 4 s and t = 5.5 s at which control was switched
off. However, in another discharge in which control started at
t = 0.5 s with the same final βN target of 2.5, this m/n = 2/1
NTM locked, and this led to the early termination of the
discharge. Additional real-time NTM control may therefore
be necessary for achieving high-βN steady-state plasmas in a
reliable and reproducible way, but MHD instability avoidance
should also be included, to any possible extent, among the
missions of magneto-kinetic profile control.

Finally, optimal feedback control of the safety factor
profile was attempted using an extension of the same control
algorithm, with appropriate cost objectives defined in terms
of its inverse, ῑ(x) = 1/q(x). In these experiments, the off-
axis beam actuator was used and the target was defined as
a broad flat q-profile between x = 0 and x ≈ 0.6, with a
minimum value, qmin = 1.7, typical of those that are sought
for high performance AT scenarios. Starting from t = 1 s,
during current ramp-up, the controller satisfactorily tracked
the target profile while the current was raised up to 1.2 MA
and maintained for about one second at this level, until control
was lost due to a technical fault in the control of the ohmic coil
current and plasma loop voltage.
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Altogether, these experiments have demonstrated effective
current profile control and a proof of principle of a
simultaneous magnetic and kinetic control using a two-time-
scale algorithm. They provide an important basis for further
progress, and more extensive experimental investigations and
numerical simulations will be carried out in the future. This
research should lead to the rapid development of integrated
plasma control for advanced scenarios in DIII-D and provide
valuable input for the design of advanced plasma controllers
in ITER.
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