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Abstract
Suppression of magnetic islands driven by the neoclassical tearing mode (NTM) is necessary for efficient and
sustained operation of tokamak fusion reactors. Compensating for the lack of bootstrap current, due to the pressure
profile flattening in the magnetic island, by a localized electron cyclotron current drive (ECCD) has been proved
experimentally as an effective method to stabilize NTMs. The effectiveness of this method is limited in practice by
the uncertainties in the width of the island, the relative position between the island and the beam, and the ECCD power
threshold for NTM stabilization. Heuristic search and suppress algorithms have been proposed and shown effective
in improving the alignment of the ECCD beam with the island, using only an estimate of the island width. Making use
of this estimate, real-time, non-model-based, extremum-seeking optimization algorithms have also been proposed
not only for beam steering but also for power modulation in order to minimize the island-beam misalignment and
the time required for NTM stabilization. A control-oriented dynamic model for the effect of ECCD on the magnetic
island is proposed in this work to enable both control design and performance analysis of these minimum-seeking
type of controllers. The model expands previous work by including the impact of beam modulation parameters such
as the island-beam phase mismatch and the beam duty-cycle on the island width dynamics.

(Some figures may appear in colour only in the online journal)

1. Introduction

The onset of neoclassical tearing modes (NTMs) has
been shown to limit the achievable plasma performance
in tokamaks by enhancing heat transport, reducing energy
confinement time and reducing the achievable β (plasma
kinetic pressure/magnetic pressure) [1]. If the magnetic islands
driven by NTMs were allowed to grow to their maximum
saturated widths in ITER, recent simulations [2] indicate that
they would cover about a third of the plasma and would reduce
the potential fusion power production by about a factor of four.
Therefore, stabilization of NTMs, which are expected to occur
in reactor-grade tokamaks such as ITER, is one of the most
critical issues in tokamak reactors since these modes seriously
limit the high-pressure operation in long-pulse discharges.

The magnetic island is characterized by a locally flattened
pressure profile, in which the pressure gradient is nearly absent.
The consequent lack of bootstrap current drives the NTM
instability and makes the island grow. Stabilization of the
NTM can be achieved by localized deposition of an additional
current that compensates for the locally declining bootstrap

current when an island grows [3, 4]. Electron cyclotron current
drive (ECCD) has been proved experimentally in several
tokamaks (ASDEX-U [5–7], DIII-D [8, 9], JT-60U [10]) as
an effective method to stabilize NTMs. It has also been
shown experimentally that broad-deposition modulated ECCD
in phase with the island O-point and with a 50% (half on
half off) duty-cycle is more efficient for mode stabilization
than unmodulated (continuous) ECCD [11]. The ECCD effect
on the island width dynamics has previously been studied
numerically for the cases of continuous current drive and
modulated current drive in phase with the island O-point using
both static [12] and dynamic [13–15] models with different
levels of sophistication. In this work these previous modelling
results are expanded by including the effect of the island-
beam phase mismatch. A control-oriented model based on the
modified Rutherford equation [8], widely used to compute the
time evolution of an island width, is proposed as both a control
design and a simulation testing tool. The effects of ECCD
beam position and power modulation on the NTM stabilization
efficiency are incorporated into the model. All necessary
parameters to fully describe the attributes of ECCD power
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modulation are included in the model, i.e. the modulation
duty-cycle (fractional on-time), phase mismatch between the
ECCD ‘on-period’ and island O-point, and the difference
between modulation frequency and island rotation frequency.
The q = m/n = 3/2 NTM is considered in this paper,
since, it is most often the first mode to significantly reduce
confinement [16].

However, before current drive suppression can be
used effectively in a reactor-grade plasma, several control
challenges must be overcome. In particular, it may not be
possible to accurately estimate the absolute position of the
island or the relative position between the island and EC
beam although some significant progress has been achieved
recently. Often only a noisy estimate of the island width may
be available in real time. Exploiting the availability of this
real-time measurement, minimum-seeking control methods,
such as search and suppress and extremum seeking, have
been proposed to minimize the island width (and eventually
suppress the island) by aligning the ECCD with the island
and optimizing its modulation properties. The search and
suppress method has been experimentally proved effective
for real-time and sustained stabilization of both the 3/2 and
2/1 NTM (not simultaneously) in DIII-D [8, 17]. When
the estimated island width exceeds a specified threshold, the
search and suppress control algorithm enters into sweeping
mode. During this mode, the plasma control system steers
the ECCD launching mirror angle, produces small rigid
radial position shifts of the entire plasma (and thus the
island) or makes small changes in the toroidal field (and
thus the ECCD location) to find and lock onto the optimum
deposition location for complete island suppression by ECCD.
The plasma control system thus executes a ‘blind search’
by changing the relative position between the island and
the ECCD deposition location. A typical dwell time of
100 ms allows for checking if the mode amplitude decreases
or not. If the mode does decrease, but at a rate slower
than a specified threshold rate, a further step and dwell is
made. Upon encountering a specified limit in the search
parameter without satisfactory mode suppression, the search
reverses direction. Once the mode is suppressed, the search
and suppress control algorithm enters into freezing mode,
where the plasma control system freezes the search parameter
until such time as the mode reappears. The extremum-
seeking method has recently been proposed for both beam
steering and power modulation in order to minimize the island-
beam misalignment and the time (control energy) required for
NTM stabilization [18]. As a real-time, non-model-based,
adaptive controller, the extremum-seeking algorithm provides
a systematic way to optimize multiple parameters related
to beam steering (misalignment), modulation (frequency,
phase, duty-cycle) and quality (deposition width, power)
simultaneously. Through well-engineered probing signals,
the plasma control system perturbs these beam parameters
to estimate in real time the gradient of the mapping defined
between the ECCD parameters and the island width. By
modifying the parameters in the direction opposite to the
gradient the island is eventually suppressed.

Through a simulation study we illustrate in this work
how the proposed control-oriented NTM response model
can play an important role in testing the performance of

minimum-seeking ECCD control algorithms and in enhancing
their effectiveness through proper tuning before experimental
implementation. Both the search and suppress and extremum-
seeking algorithms are implemented, analysed and compared
in simulations. In addition, we also illustrate in this work how
the proposed control-oriented model can be used to reduce the
time (control energy) required for NTM stabilization even in
the presence of model uncertainties. A nonlinear inversion of
the control-oriented response model is complemented by an
extremum-seeking loop, which is capable of overcoming the
model uncertainties due to its non-model-based nature by fine-
tuning the ECCD steering, modulation and quality parameters.

The paper is organized as follows. Section 2 describes
the model proposed to compute the effect of ECCD on the
island growth rate, which is analysed through an in-depth
numerical study. Section 3 states the NTM control problem
and describes both the search and suppress and extremum-
seeking algorithms. Closed-loop simulation results based on
minimum-seeking NTM stabilization methods are presented
in section 4. Conclusions are summarized in section 5.

2. Island-beam interaction model

The growth dynamics of NTM islands in response to applied
ECCD can be described by a form of the modified Rutherford
equation [8, 9],
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where w is the full island width, i.e. the radial scale length over
which the pressure profile is assumed to be flattened, τR is the
current diffusion time and r is the minor radius at which the
NTM is resonant (the particular rational surface q = m/n). All
the terms in equation (2.1) are dimensionless and the effects
of magnetic field curvature (the Glaser–Green–Johnson effect)
have been neglected.

On the right-hand side of equation (2.1) the classical
tearing stability index #′ is a property of the global plasma
equilibrium; it represents the free energy available in the
plasma current density to drive the tearing mode. If #′ > 0,
there is free energy available for reconnection [19]. The
equation

τR

r2

dw

dt
= #′ (2.2)

defines the growth behaviour of the classical tearing mode
which is linearly unstable (#′ > 0) when ideal MHD behaviour
breaks down for a resistive plasma. However, #′ becomes
negative, the island becomes linearly stable, when the island
width exceeds the resistive layer width which is far too small in
present day tokamaks to be measured. In this work, we assume
#′ < 0, so the island will be driven unstable by plasma pressure
effects, i.e. it is a NTM we are considering. Additionally, in
the limit of small islands (w << r), #′ is not influenced by
the presence of the island itself [20].

An initial seed island flattens the pressure gradient causing
a helically perturbed bootstrap current which reinforces the
island. This effect is described by the second term on the right-
hand side of equation (2.1). Here, βp = 2µ0p/B2

p (poloidal
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Figure 1. Contours of non-dimensional flux surface label ψ plotted
in (x, ζ ) space, where x is the radial distance from the rational
surface and ζ is the helical angle.

β) is the ratio of plasma pressure p to the poloidal magnetic
field pressure, where Bp is the poloidal magnetic field. The
parameters Lp ≡ −p/(dp/dr) > 0, Lq ≡ q/(dq/dr) > 0
and ε = r/R0 are the pressure gradient length the magnetic
shear length and the inverse aspect ratio, respectively. The
characteristic transport effect island width wd is associated
with the parallel and perpendicular heat transport in the island.
It relates to the fact that islands do not occur simultaneously
on multiple rational q surfaces. It can also be described as the
characteristic island width below which the pressure profile in
the magnetic island is no longer fully flattened [8, 20]. The
third term on the right-hand side of equation (2.1) represents
the stabilizing effect of the ion polarization current, where wpol

is the characteristic island width associated with the helical
polarization current arising from inertial effects [8]. The
last term in equation (2.1) represents the stabilizing effect of
the ECCD. The ratio jcd0/jbs is the peak EC current density
normalized to the local equilibrium bootstrap current density.
The function K1 determines the effectiveness of the ECCD in
stabilizing the NTM; it measures the overall efficiency of the
ECCD with respect to the misalignment between beam and
island and the ECCD power modulation.

Figure 1 shows contours of the non-dimensional helical
flux function ψ plotted in (x, ζ ) space, where x is the radial
distance from the rational surface and ζ = mθ − nφ is the
helical angle of the mode, with θ , φ, m, n denoting the poloidal
and toroidal angles and mode numbers, respectively. An island
of radial width w occurring on a rational surface with m

poloidal windings is apparent. The island O-point, defined
as the centre of the island at the helical angle corresponding
to the maximum width of the island, is located at coordinates
(x = 0, ζ = 0) and the island X-point is at (x = 0, ζ = ±π).
The flux function ψ = 0 represents the separatrix and ψ = −1
is at the island O-point. The shaded blue box represents the
portion of the island over which ECCD power is deposited;
throughout this paper it is referred to as the ‘on-period’.
The box is darker in the middle to represent the Gaussian

distribution of radio frequency waves emitted by the gyrotrons,
the source of the ECCD. The offset #R is the misalignment
between the centre of the beam and the midpoint of island width
(x = 0). The parameters τ and ξ correspond to the extension
of the ECCD power deposition along the helical angle and the
phase mismatch between the centre of the power deposition
and the island O-point, respectively. The width wcd is the
full exp−1 current density width of the driven current; it is
related to the full width at half maximum (FWHM) δec by
δec/wcd =

√
ln(2).

Following the work in [13, 21], we propose K1 to be
defined as
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The non-dimensional helical flux function ψ , shown in
figure 1, can be described as [13]
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where w is the full island width. The flux surface average
quantities of (2.3) are
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where M(ζ, τ, ξ) is the modulation function, j̃cd(ζ, ψ, w/wcd,
#R/wcd) is the normalized driven current profile, i.e. jcd =
jcd0j̃cd(ζ, ψ, w/wcd, #R/wcd) and jcd0 is the peak value. The
contour integral

∮
denotes the region −π < ζ < π for ψ > 0

and the interval where ψ + cos2(ζ/2) ! 0 for −1 < ψ < 0.
The constant C is

C =
∫ 0

−1
W dψ = 2.67. (2.8)

We assume a Gaussian driven current density distribution in
terms of x of the form

j̃cd = exp
[
−
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2
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]
, (2.9)

where xdep is the deposition location and, again, wcd is the full
exp−1 driven current density width. Since, from equation (2.4),
x = ±(w/2)

√
ψ + cos2(ζ/2), the driven current density

profile can be re-expressed as a function of (ψ, ζ ), i.e.
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Figure 2. Case (i.): the ‘on-period’ modulation is driven entirely on
a single island.

The modulation function M is defined as 1 over the helical
angle during which the ECCD is turned on, i.e. the ‘on-
period’, and 0 otherwise. In this work, M is expressed in
terms of the phase mismatch between the ‘on-period’ and
the O-point, ξ , and the EC power modulation factor, τ . As
can be seen in figure 1, ξ is the phase mismatch and τ ,
which represents the percentage of the island covered by
the ECCD, is related to the modulation duty-cycle. The
parameters τ and ξ are defined on the ranges 0 " τ " 1,
1 corresponding to a continuous drive and 0 to an impulse, and
0 " ξ " 1, 0 corresponding to the island O-point and 1 to the
X-point.

To parametrize the modulation function in terms of τ and
ξ , there are two cases to be considered: (i.) ξπ + τπ " π , in
which case the ‘on-period’ is located entirely on one island, as
depicted in figure 2, and (ii.) ξπ + τπ > π , in which case the
‘on-period’ overlaps from one island into the next, as depicted
in figure 3. For case (i.) we define

M(ζ, τ, ξ) =






1 ξπ − τπ " ζ " ξπ + τπ,

0 ξπ + τπ < ζ " π,

0 −π " ζ < ξπ − τπ,
(2.11)

while for case (ii.) we define

M(ζ, τ, ξ) =






1 ξπ − τπ " ζ " π,

1 −π " ζ " (ξπ + τπ) − 2π,

0 (ξπ + τπ) − 2π < ζ < ξπ − τπ.
(2.12)

Now equation (2.3) is fully defined. However, there is
no analytical solution for it and it is time-consuming to solve
it numerically for a continuous range of its parameters. It is
possible, nevertheless, to evaluate K1 at certain intervals over
a range of physically plausible values for #R/wcd, w/wcd, τ ,
and ξ and to use linear interpolation of these evaluations for
fast control-oriented simulations. Equation (2.1) is plotted in
figure 4 for parameters typical of DIII-D discharges associated
with the m/n = 3/2 NTM [8, 9]. From figure 4 we can
appreciate that the NTM is linearly stable and nonlinearly

Figure 3. Case (ii.): the ‘on-period’ modulation is driven on two
islands, overlapping from one island into the next.

unstable for no applied ECCD. To destabilize the NTM some
mechanism is required to initiate a seed island and grow it
beyond the critical island width (where the curve crosses zero
from below) at which point the island continues to grow until
reaching the saturated width wsat. We can see that the island
has a saturation size of wsat = 7.5 cm when there is no applied
ECCD.

If βp is reduced, the entire growth rate curve will be
lowered, and for sufficiently low βp, the curve will be lowered
completely below zero ensuring stability of the NTM [19].
Therefore the NTM can be stabilized by simply ramping down
βp. Unfortunately, this is an undesirable action in commercial-
grade tokamaks. Instead, we can see from figure 4, that
increasing the applied ECCD power can stabilize the NTM by
essentially lowering the overall growth curve. For stabilization
by ECCD, the beam must be sufficiently well aligned with the
centre of the island. For instance, from figure 4 we can note that
for jcd0/jbs = 1 the applied ECCD will fully stabilize the island
as long as the misalignment is smaller than #R = 1.3 cm. In
the case of #R = 1.5 cm, the applied ECCD can only shrink
the island to 4.7 cm for this value of jcd0/jbs. With increasing
displacement from the island centre more current is injected
outside of the island, resulting in a destabilizing effect on the
island.

The ECCD effectiveness K1 is plotted as a function of
w/wcd in figure 5 (left) for unmodulated current drive (τ = 1)
and various ratios of misalignment to current drive width
#R/wcd. The curves show a strong sensitivity to the #R/wcd

ratio. For instance, as the #R/wcd ratio increases for w/wcd =
1, the ECCD becomes destabilizing (K1 < 0), reaches a point
of maximum destabilization (minimum K1) and eventually
becomes neutral (K1 = 0). This is clearly illustrated in
figure 5 (right), where the ECCD effectiveness K1 is replotted
as a function of #R/wcd for different values of w/wcd.
Thus, there will be a local minimum in the effectiveness K1

as a function of #R/wcd, which can create difficulties for
minimum-seeking control algorithms if not properly tuned.
For example, assuming a fixed current drive width wcd, if
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Figure 4. Normalized growth rate (τR/r)(dw/dt) as a function of full island width w and various values of driven current density jcd0 and
misalignment #R. No ECCD modulation. The parameters of equation (2.1) are typical of DIII-D discharges associated with the m/n = 3/2
island: #′r = −3, wd = 1.01 cm, wpol = 1.8 cm, wcd = 3.46 cm (δec = 2.88 cm), r = 36 cm, ε1/2 = 0.5, βp = 0.9, Lq/Lp = 1.5.
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Figure 5. ECCD effectiveness K1 for unmodulated current drive (τ = 1) plotted as a function of w/wcd for different values of #R/wcd
(left) and as a function of #R/wcd for different values of w/wcd (right). The left figure is similar to figure 2 in [9] with δec replaced by wcd.

the misalignment is beyond (to the right of) the point of
minimum effectiveness, then moving the ECCD towards the
island will actually cause the island to grow. After detecting
the island growth the algorithm (extremum seeking or search
and suppress) may move the ECCD away from the island.
However, as the island width grows and w/wcd increases, the
local minimum shifts to the right. If the controller is tuned to
make the alignment correction slower than the growth of the
island, the misalignment will eventually find itself below (to
the left of) the point of minimum effectiveness, allowing the
control algorithm to drive the ECCD towards the centre of the
island.

Figure 6 plots K1 as a function of τ for various ratios
of the current drive width wcd to island width w. Note that
for relatively wide ECCD current deposition (wcd/w > 2),
there is a well-defined maximum in the effectiveness at around
τ ≈ 0.5. For a current drive deposition with the same width
of the island (wcd/w = 1), the maximum effectiveness is
achieved at around τ ≈ 0.6. For relatively narrow ECCD
current deposition (wcd/w < 1) the maximum effectiveness
seems to be achieved for higher τ values. Note, however, that
as wcd/w decreases, the sensitivity of the maximum value of
the effectiveness with respect to τ also decreases. Therefore,
it seems reasonable to adopt τ = 0.5 as the approximate
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Figure 6. ECCD effectiveness K1 plotted as a function of τ for
various current drive width to island width ratios wcd/w and O-point
modulation (ξ = 0). There is no misalignment between the island
and the current drive (#R = 0).
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Figure 7. ECCD effectiveness K1 as a function of τ and ξ for
w/wcd = 1 and #R = 0.

optimizing value of the effectiveness for all wcd/w ratios when
we choose not to optimize τ in real time. As shown in figure 6,
if perfect alignment and O-point modulation is guaranteed,
the real-time optimization of τ will produce a relatively small
increase in the effectiveness achieved for τ = 0.5 regardless
of the value of the wcd/w ratio.

Figure 7 shows the combined effect of τ and ξ on K1

for wcd/w = 1.0 and zero misalignment (#R = 0). The
figures show the importance of setting the correct phase value
when attempting to modulate the current drive. Tuning the
modulation phase in real time will allow not only for the
minimization of the suppression time but also for the avoidance
of any potential destabilizing effect by the current drive. We
note from figure 7 that modulated current drive applied in
phase with the O-point (ξ = 0) is always stabilizing whereas
current drive in phase with the island X-point (ξ = 1) may be
destabilizing for some values of τ .

In figure 8, K1 is plotted as a function of τ at various
values of the phase mismatch ξ for the case characterized by
w/wcd = 1 (current drive width equal to island width) and

0 0.2 0.4 0.6 0.8 1
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0
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1
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K
1

O point

ξ = 0.7

ξ = 0.3

X point

Figure 8. ECCD effectiveness K1 plotted against τ for various
values of ξ at w/wcd = 1 and #R = 0.
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Figure 9. ECCD effectiveness K1 plotted against w/wcd for various
values of ξ at τ = 0.5 and #R = 0.

#R = 0 (zero misalignment). The effect of the current drive
is maximized for w/wcd = 1 as shown in figure 6. The O-
point modulation is always stabilizing and has the greatest
stabilizing effect, which is maximized at τ ≈ 0.6. The X-
point modulation is destabilizing for 0 < τ # 0.75 and
has the greatest destabilizing effect, which is maximized at
τ ≈ 0.4. By examining figures 8 and 9 we can note that
for w/wcd = 1 the current drive effectiveness for a τ = 0.5
modulation with phase mismatch of ξ = 0.3 is approximately
that of a continuous drive (τ = 1). Clearly, phase alignment
is crucial when using modulated current drive.

In figure 9, K1 is plotted as a function of the island width
to current drive width ratio w/wcd at various values of the
phase mismatch ξ for the case of a τ = 0.5 modulation and
zero misalignment (#R = 0). We can note that the effect
of the current drive is maximized around w/wcd = 1 when
the modulation is approximately around the O-point (small
ξ ). For w/wcd > 1, the effect of the current drive on the
island diminishes with increasing w/wcd ratio, i.e. for O-point
modulation the current drive has less stabilizing effect and
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Figure 10. Several cases of 50/50 duty-cycle modulation (d = 0.5). We assume the islands are moving down the page. The boxes represent
the portion of the island over which ECCD power is injected. The first ‘on-period’ is marked by p = 1, the second by p = 2, etc. The first
case (left) shows ECCD power modulation in sync with the island rotation frequency (fr = 1, τ = d), where ξ remains constant
(ξ1 = ξ2 = ξ3). The second case (middle) shows a power modulation frequency slower than the island rotation frequency, fr = 0.8 < 1. In
this case τ is larger than d and the phase mismatch ξ changes with time. The third case (right) shows a power modulation frequency faster
than the island rotation frequency, fr = 1.2 > 1. In this case, τ is smaller than d and the phase mismatch ξ changes with time. In each case
the length of the ‘on-period’ box in terms of ζ is equal to the length of spacing (‘off-period’) between boxes since we are considering 50/50
duty-cycle modulation.

for X-point modulation the current drive has less destabilizing
effect for increasing w/wcd ratio. Once again, phase alignment
is shown to be crucial when using modulated current drive.

It is important to recognize that the parameters τ and ξ
are dependent on the ECCD power modulation frequency. If
the power modulation frequency is in sync with the island
rotation frequency, τ and ξ remain constant. Otherwise, τ
and ξ become functions of time and the ratio between the
two frequencies, i.e. τ = τ (fr) and ξ = ξ(t, fr), where fr

denotes the ratio of ECCD power modulation frequency f to
island rotation frequency ,, i.e. fr = f/,. When the two
frequencies are in sync (fr = 1), τ is equivalent to the ECCD
power modulation duty-cycle d. This fact is quite clear from
figure 10 (left), where the boxes representing the ‘on-period’
cover a proportion of the island exactly equal to d. For the
case of 50/50 duty-cycle modulation shown in the figure, the
length of the boxes along ζ is equal to the length of spacing
between the boxes since τ = d = 0.5. For a greater fractional
‘on-period’ with d > 0.5, the length of the boxes expands
and the spacing between boxes shrinks proportionately; the
converse occurs for d < 0.5. If there is a discrepancy between

the two frequencies (fr '= 1), τ becomes linearly related to the
frequency ratio by τ = d/fr . This is somewhat apparent from
figure 10 (middle and right), where both cases consider 50/50
duty-cycle modulation, implying equal length of the boxes
and the spacing between the boxes. When the modulation
frequency is slower than the island rotation rate (fr < 1) the
boxes along ζ appear expanded in comparison with the fr = 1
case. Conversely, the boxes along ζ appear shortened in the
fr > 1 case.

Since each ‘on-period’ occurs every 1/f seconds, the time
t associated with the ‘on-period’ p can be denoted by tp = p/f
and the phase ξ after p on-periods can be written as

ξp = ξ1 + 2,tp = ξ1 + 2p,/f = ξ1 + 2p/fr, (2.13)

where ξ1 is the initial phase mismatch between the island and
beam corresponding to the first ‘on-period’. Since ζ is periodic
with period 2π , ξ is periodic with period of 2. Therefore,
when fr = 1, ξ remains constant and equal to its initial value
ξ1, which is evident from figure 10 (left). When fr '= 1, ξ
changes over time by shifts of 2/fr for each consecutive ‘on-
period’ p as can be noted from figure 10 (middle and right).
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If the EC beam modulation frequency is not matched to
the island rotation frequency, the current drive will repeatedly
shift from O-point to X-point phase alignment resulting in a
weaker effect of the ECCD power modulation on the island
width. Precise tuning of the modulation frequency is therefore
crucial for optimum current drive effectiveness. In this work,
we simply assume that a method is available to determine
the island rotation rate and that a dedicated controller is used
to ensure that the beam modulation frequency matches this
rate. Otherwise, the effect of the beam modulation (τ and ξ )
on its effectiveness will be very weak on average. Electron
cyclotron emission (ECE) has recently been proved effective
in measuring the plasma temperature fluctuations around the
island and using them to determine island rotation rate [22].
Once the island rotation rate is known, its synchronization
with the beam modulation frequency becomes relatively
straightforward. Thus, in this work we are only concerned with
the control of the spatial mismatch #R, the phase mismatch ξ

and the ECCD power modulation duty-cycle τ (fr = 1).

3. Minimum-seeking control of NTMs

As discussed above, the NTMs can be stabilized by replacing
the missing bootstrap current by ECCD. Alignment of the
ECCD with the island must be achieved with great accuracy
for the NTM suppression to be successful. However, real-
time reconstruction of the plasma geometry can only locate
the island with an accuracy of 1.5–2.0 cm [17]. Therefore,
the position of the island is usually not available for NTM
control. Neither is a precise estimation of the current
deposition location. However, a relative measurement of
alignment between island and current drive can be determined
by modifying the ECCD deposition location and measuring
the resulting change in island amplitude. Sweeping the
ECCD along the plasma will cause the island to shrink as the
deposition location nears the island centre and to grow back to
its saturated size as the deposition location moves away.

3.1. Search and suppress control algorithm

The most common and successful sweeping approach to NTM
stabilization is the search and suppress method [17]. The
search and suppress algorithm, summarized in figure 11, steers
the beam in a stepwise search to find the optimum ECCD
deposition location. Once the control is enabled, the algorithm
fixes the beam deposition location for a specified dwell time
to assess the effect on the magnetic island. If the width of the
island decreases by a pre-specified threshold, the algorithm
continues to hold the beam deposition location fixed for an
additional dwell time. Otherwise, the beam is steered in a step
fashion and then held for a subsequent dwell period. If the
beam position reaches a specified maximum, the step steering
direction is reversed (a possible modification of this algorithm
consists in reversing the step steering direction if the width
of the island does not decrease by the pre-specified threshold
for three consecutive step changes). The search-dwell-search
procedure continues until the NTM is suppressed. Note that an
accurate absolute estimate of the island width is not necessary
since it is indeed the island reduction rate that is used as an
indication of the quality of the beam-island alignment.

yes 

Adjust actuator 
by step size 

Dwell for specified time 

Island shrinks 
below specified 

limit? 

Island shrinks by 
specified threshold? 

end 

yes 

no 

Actuator reaches 
specified maximum? 

Reverse step 
direction

no 

yes 

Figure 11. Search and suppress algorithm.

3.2. Extremum-seeking control algorithm

The extremum-seeking control method [23] is applicable
to situations where there is a nonlinearity in the control
problem, and the nonlinearity has a local minimum or
maximum. Typical methods of adaptive control are useful
only for regulation to a well-known set point. In many
applications, however, the set point is unknown and should
be selected to achieve either a minimum or a maximum of
an uncertain parameter-to-output equilibrium map. If this
map is uncertain, some adaptation is necessary to find the
values of the parameters that minimize or maximize the
output. This control problem is called ‘extremum control’
or ‘self-optimizing control.’ It is applicable to problems
requiring the optimization of a multidimensional parameter
space. Furthermore it is a non-model-based approach, i.e. it
requires no explicit information of the system to determine the
optimal parameter set points.

The modified Rutherford equation (2.1) can be rewritten
as a general nonlinear model

ẇ = f (w, θ), (3.1)

y = h(w) = w, (3.2)

where w ∈ ) is the state, y ∈ ) is the output, θ ∈ )n is a vector
parameter and f : )×)n → ) and h : ) → ) are nonlinear
smooth functions. In our case, n = 3 and θ = [#R ξ τ ]T.
Note that in this work both the peak intensity jcd0 and width wcd

of the ECCD beam are assumed constant, but they can be easily
incorporated into the vector θ as to be optimized parameters.

Assumption 3.1. There exists a smooth function g : )n → )
such that

f (w, θ) = 0 ⇐⇒ w = g(θ) (3.3)

8



Nucl. Fusion 52 (2012) 074003 W. Wehner and E. Schuster

Moreover, for each θ ∈ )n, one of the equilibria w = g(θ)

of system (3.1) is locally exponentially stable. The stable
equilibrium is denoted as ws.

As shown in figure 4, the modified Rutherford equation
predicts two equilibria when the island is formed. The
lower equilibrium width, wm, is unstable, while the higher
equilibrium width, ws, is stable. The stable equilibrium width,
ws, corresponds to the saturated island width. The objective
is to tune the parameter vector θ to drive ws towards wm,
minimizing in this way the saturated island width and pushing
the island into its stable regime where the width shrinks to zero.

Assumption 3.2. There exists θ∗ ∈ )n such that

(h ◦ g)′(θ∗) = 0, (3.4)

(h ◦ g)′′(θ∗) > 0. (3.5)

Therefore, we assume that the output equilibrium map y =
h(g(θ)) = g(θ) has a minimum at θ = θ∗ in which wm = ws.

Our objective is to develop a feedback mechanism that
drives the saturated island width ws below its critical value wm

without requiring the knowledge of either θ∗ or the functions
f , g and h. Such mechanism is depicted in figure 12,
where a continuous-time variant of extremum seeking [24]
is adopted. The extremum-seeking controller uses a slow
periodic perturbation a sin(ωt) added to the signal θ̂ , which
represents the estimate of θ∗. If the perturbation is slow
enough, then the plant (3.1)–(3.2) can be seen as a static map
J (θ) $ h ◦ g(θ) = g(θ) representing the saturated island
width as a function of the parameter vector θ . The minimum
of J is denoted by J ∗ and its argument by θ∗. The objective
is to minimize J . The perturbation signal a sin(ωt) forces
a periodic response in J (θ) which will be either in phase or
out of phase with the perturbation signal. The high-pass filter
s/(s + ωh) (s denotes the Laplace transform variable) removes
the dc component of J (θ), thus Jf will be approximately
sinusoidal and υ will be the product of two sinusoids that are
either in phase (θ̂ < θ∗) or out of phase (θ̂ > θ∗). The low-pass
filter ωl/(s + ωl) then extracts the dc component of υ, which
will be positive if the two sinusoids are in phase and negative
if they are out of phase. The sign of χ provides the direction
to the integrator which tunes θ̂ to the optimal operating point
θ∗. The closed-loop system of figure 12, for the case of φ = 0,
can be summarized as

J̇f = −ωhJf + J̇ , υ = Jfb sin(ωt), χ̇ = −ωlχ + ωlυ,

˙̂
θ = −γχ , θ = θ̂ + a sin(ωt). (3.6)

The cutoff frequencies of the filters need to be lower than the
frequency ω of the perturbation signal. Therefore, the overall
feedback system has three time scales: (i) fast (plant), (ii)
medium (periodic perturbation), (iii) slow (filters in extremum-
seeking scheme). In addition, to guarantee local stability, the
perturbation amplitudes a and b and the adaptation gain γ need
to be small.

In our simulation studies we use (2.1) to predict the
evolution of the island width for a given parameter vector
θ . The saturated magnetic island width is considered as the
cost functional (J in figure 12) and the extremum-seeking
adaptive controller is used to optimally tune those parameters

Figure 12. Extremum-seeking control scheme.

(θ in figure 12) affecting the stabilization of the NTM such
as #R, τ , and ξ in order to suppress the island. Note that
the dynamic model (2.1) is only necessary to carry out the
simulation study presented in this paper, and no model of
the plant is required when the extremum-seeking adaptive
controller is implemented in a real tokamak.

The time to converge to the island centre may be further
reduced using the modified Rutherford model (2.1) to estimate
an approximate absolute value of the misalignment based on
measurements of the island width and instantaneous growth
rate, and using this estimate to correct the current drive
deposition location. The implementation of extremum seeking
with the accelerator [25] is shown in figure 13. The additional
term µ is generated to decrease the difference between θ∗ and
θ̂ , where an estimate of θ∗ is determined by the optimal input
identification block. The block is built around a nonlinear
inversion of the modified Rutherford model (2.1), which uses
noisy measurements of the island width and instantaneous
growth rate to infer the beam-island misalignment #R and
to estimate the optimal steering parameter θ∗ that would be
associated with perfect alignment (#R = 0). Basically, coarse
adjustments are made by the accelerator and finer adjustments
are made by the extremum-seeking loop. By exploiting its
non-model-based character and therefore natural robustness
against model uncertainties, extremum seeking corrects any
error in the estimate produced by the model inversion due to
the uncertainty in the model. Since the difference µ̂ = θ∗ − θ̂

carries the measurement noise, the adjustment in θ due to µ̂

may be somewhat violent. Therefore, a Butterworth filter is
used to smooth down the violent movements in µ̂ for improved
control.

4. Closed-loop simulation study

The ability of the control-oriented model proposed in section 2
to predict the island width evolution in response to the ECCD
actuation is illustrated in a closed-loop simulation study. Both
the search and suppress and the extremum-seeking algorithms
discussed in section 3 are implemented and analysed. The
simulation study is based on the model parameters given in
figure 4 and the assumption that jcd0/jbs = 1. A 10%
proportional noise is assumed to affect the island width
measurement. A filtered version of the noisy measurement
obtained by averaging the last seven samples is used for both
algorithms. The sampling time is 1/40 of the dwell time for
search and suppress and 0.001 s for extremum seeking.

9
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Figure 13. Extremum-seeking control scheme with accelerator.
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Figure 14. Search and suppress simulation with unmodulated current drive (#R0 = 3.0 cm): (left) misalignment #R; (right) island width
w: actual (black) and measured (red) width.

Figure 14 shows the performance of the search and
suppress algorithm detailed in section 3.1 with unmodulated
(continuous) current drive. The actuator step size is 0.75 cm,
the dwell time is 100 ms, the initial saturated island width is
7.5 cm, and the initial misalignment is #R0 = 3.0 cm. The
algorithm does not apply a hold until the third step when the
rate of shrinking is rather substantial; it successfully stabilizes
the island in just five dwell times. The suppression time could
be reduced by increasing the actuator step size, but that would
pose the risk of skipping over the island centre.

The search and suppress algorithm, whose performance
is shown in figure 14 just for one simulation case, stabilizes
the NTM with an average suppression time of m = 0.48 s and
standard deviation of σ = 0.06 s when the initial misalignment
is #R0 = 3.0 cm and there is no modulation of the current
drive. With 50/50 duty-cycle O-point modulation the average
suppression time would be reduced to m = 0.36 s with
standard deviation σ = 0.05 s. However, it is important to
emphasize at this stage that the search and suppress algorithm
does not have the capability of controlling the modulation duty-
cycle and phase (τ and ξ ). A separate dedicated controller for
modulation regulation would be necessary in this case.

The results above assume that the initial relative position
between island and current drive is known, i.e. we know in
what direction the beam must be moved to converge toward
the island. If this information is not available, the initial step
direction for the beam must be chosen randomly. In this case
the suppression time increases to m = 0.62 s with σ = 0.14 s
for no modulation and m = 0.50 s with σ = 0.18 s for 50/50
duty-cycle O-point modulation when the initial misalignment
is #R0 = 3.0 cm. If the initial misalignment is chosen ran-
domly in the range 0 < #R < 3.0 cm, then the average sup-
pression time is m = 0.46 s with σ = 0.35 s for no modulation
and m = 0.39 s with σ = 0.35 s for 50/50 duty-cycle O-point
modulation. In all these simulation cases the standard search
and suppress algorithm described in section 3.1 has been mod-
ified in order to reverse the steering direction if the island width
increases by a specified rate after a single dwell time.

Figure 15 shows the performance of the extremum-
seeking algorithm detailed in section 3.2, and illustrated in
figure 12, for an unmodulated (continuous) current drive. We
consider first the case where only one parameter is optimized;
the misalignment θ = #R (in practice the optimized parameter

10
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Figure 15. Extremum-seeking simulation with gain scheduling using unmodulated current drive (#R0 = 3 cm): (left) actual misalignment
θ = #R (solid), estimate θ̂ of optimal misalignment #R∗ (dashed); (right) island width: actual (black) and measured (red) width.

Figure 16. Extremum-seeking simulation with accelerator using unmodulated current drive (#R0 = 3 cm): (left) actual misalignment
θ = #R (solid), estimate θ̂ of optimal misalignment #R∗ (dashed); (right) island width: actual (black) and measured (red) width.

is the beam deposition location, i.e. the beam steering). This
case study allows for direct comparison with the search and
suppress algorithm. The extremum-seeking parameters are
selected for optimal suppression time. The modulation and
demodulation amplitudes area = b = 0.4 cm, the perturbation
frequency is ω = 28 rad s−1, and the demodulation phase
φ = 0.29 rad to account for the phase shift due to the plant
and the high-pass filter. Third order Butterworth filters are
used in place of the typical first order linear filters to speed up
the dynamics. The adaptation gain is chosen to be adjusted
according to a linear interpolation from γ = 150/b dB at
w = ws = 7.5 cm to γ = 20/b dB at w = wm = 2.5 cm,
where wm is the seed island width without current drive.
The average suppression time when the initial misalignment
#R0 = 3.0 cm is reduced to m = 0.40 s with standard
deviation σ = 0.07 s for unmodulated current drive and to
m = 0.36 s with standard deviation σ = 0.08 s for 50/50
duty-cycle O-point modulated current drive.

Figure 16 shows the performance of the extremum-
seeking algorithm with modified Rutherford model-based

accelerator also discussed in section 3.2, and illustrated in
figure 13, for an unmodulated (continuous) current drive. The
perturbation frequency, probing signal magnitude, adaptation
gain, and demodulation phase are ω = 40 rad s−1, a = b =
0.4 cm, γ = 40/b dB, φ = 0.47 rad, respectively. The
accelerator samples at a rate of 0.005 s and the optimal input
θ∗ is updated at the same rate. The third order Butterworth
cutoff frequency is ωc = 15 rad s−1. The average suppression
time when #R0 = 3.0 cm is reduced to m = 0.25 s with
standard deviation σ < 0.01 s. With 50/50 duty-cycle O-point
modulation the suppression time is reduced to m = 0.21 s
with standard deviation σ < 0.01 s. When a random error of
10% is added to the parameters τR, #′, βp, ωd, ωpol in (2.1),
the suppression time increases to m = 0.275 s with standard
deviation σ < 0.025 s for an unmodulated current drive,
which is still significantly faster than conventional search and
suppress and extremum-seeking algorithms. This illustrates
how even an imperfect model can be exploited to improve the
control efficiency. In general, embedding in the control design
process the available information of the system dynamics given
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Figure 17. Two-parameter extremum-seeking (basic method) simulation with modulated current drive (#R0 = 3 cm, ξ0 = 0.3): (left) actual
misalignment θ1 = #R (solid), estimate θ̂1 of optimal misalignment #R∗ (dashed); (middle) actual modulation phase mismatch θ2 = ξ

(solid), estimate θ̂2 of optimal phase mismatch ξ ∗ (dashed); (right) island width: actual (black) and measured (red) width.

by the model, regardless of how accurate or approximate it is,
results in improved closed-loop performance.

Proper application of modulated current drive for stabi-
lization of NTMs requires that we chose the correct modula-
tion phase/duty-cycle for the optimal O-point modulation or
else the efficiency improvement over continuous current drive
will not be fully realized. The simulation cases illustrated in
figure 15 (extremum seeking with gain scheduling) and fig-
ure 16 (extremum seeking with modified Rutherford model-
based accelerator) assumed that optimal modulation was al-
ready achieved in order to focus only on misalignment cor-
rection for direct comparison with the search and suppress
algorithm. Assuming no knowledge of the actual modulation
phase/duty-cycle, we illustrate through the following simu-
lation case how the extremum-seeking algorithm, unlike the
search and suppress algorithm, can also be used to optimally
control both the phase and the duty-cycle of the ECCD power
modulation.

For instance, we consider now the case where two
parameters are optimized by extremum seeking; the
misalignment θ1 = #R and the phase mismatch θ2 = ξ
(the actual phase mismatch is ξπ as depicted in figure 1).

The extremum-seeking parameters for the misalignment are
identical to those used in figure 15 except the perturbation
frequency is reduced to ω1 = 22 rad s−1; the parameters for
the phase mismatch are a2 = b2 = 0.1, γ2 = −2500/b dB,
and ω2 = 50 rad s−1. All the simulations assume a duty-
cycle of 50/50 (τ = 0.5), which represents the approximated
optimum for all w/wcd ratios (see figure 6). Figure 17
shows the performance of the basic extremum-seeking method
(no gain scheduling or accelerator) for a modulated current
drive. As can be noted from figure 17 (middle) the phase
mismatch can be well adjusted to the optimal O-point location
while simultaneously adjusting the misalignment. The average
suppression time is m = 0.62 s with standard deviation σ =
0.1 s for #R0 = 3 cm and ξ0 = 0.3. Had the phase not been
adjusted from the initial value of ξ0 = 0.3, the current drive
would still have stabilized the NTM, but correcting the phase
allows for a faster suppression time.

The results of the various simulations for the one-
parameter (#R) optimization case are summarized in table 1
for continuous drive and 50/50 duty-cycle O-point modulated
drive. The columns are from left to right the search and
suppress algorithm, the extremum-seeking algorithm and the
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Table 1. Comparison of various suppression methods for
one-parameter (#R) optimization.

SS ES ES(accel)

No mod 0.62 (0.14) 0.40 (0.07) 0.25 (<0.01)
O-point 0.50 (0.18) 0.36 (0.08) 0.21 (<0.01)

extremum seeking with accelerator algorithm. We consider
the fastest version of search and suppress algorithm (the step
steering direction is reversed if the width of the island increases
by the pre-specified threshold for a single dwell time). The first
number in each entry represents the average suppression time
and the second number between parentheses represents the
standard deviation for 100 simulations. The extremum seeking
with accelerator algorithm provides the fastest suppression
time, followed by the extremum-seeking algorithm and finally
the search and suppress algorithm.

5. Conclusions

Previous work on modelling of the effectiveness of ECCD
in suppressing NTM islands has been extended to include
the effects of modulation. Both the effect of the ECCD
power modulation duty-cycle and the island-beam phase
mismatch have been incorporated into the dynamic model
of the island width. It has been illustrated through an in-
depth simulation study how the proposed control-oriented
NTM response model can play an important role in testing the
performance of minimum-seeking ECCD control algorithms
and in enhancing their effectiveness through proper tuning
before experimental implementation. In addition to the well-
established search and suppress control method, extremum
seeking, a non-model-based adaptive control scheme, has been
proposed as an effective method to suppress NTM islands
by ECCD in tokamak plasmas. Without any knowledge
of the system dynamics, both alignment and modulation
parameters can be optimized in real time by extremum
seeking to improve the efficiency of NTM stabilization by
ECCD. The effectiveness of the extremum-seeking method
in aligning the ECCD with the NTM-driven magnetic island
and stabilizing the mode has been compared with that of the
search and suppress method. It has been shown that the
extremum-seeking method has the potential to reduce NTM
suppression times. Moreover, it has also been illustrated
that the availability of an even imperfect dynamic model
for the ECCD-controlled island width (modified Rutherford
equation + ECCD beam effectiveness) can be exploited
to further reduce the suppression time by providing an
estimate of the to-be-corrected misalignment based on noise
measurements of the island width and growth rate. In
addition, it has been shown that, unlike the search and
suppress method, the extremum-seeking method has the ability
of simultaneously optimizing additional parameters beyond
island-beam alignment which also affect the efficiency of
the current drive in stabilizing NTMs, such as the ECCD
power modulation duty-cycle and the phase mismatch between
the beam ‘on-period’ and the island O-point. The potential
advantages of the extremum-seeking method arising from the
simulation study have yet to be confirmed experimentally. The

study carried out within this work, which assumes fixed values
for the ECCD peak current density and deposition width, can
be easily extended to the case where the total driven current
is kept at the maximum value allowed by the ECCD system
while the deposition width is optimized in real time by the
extremum-seeking controller and the peak current density is
changed accordingly.
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