
IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION

Nucl. Fusion 52 (2012) 123018 (24pp) doi:10.1088/0029-5515/52/12/123018

Toroidal current profile control during
low confinement mode plasma discharges
in DIII-D via first-principles-driven
model-based robust control synthesis
Justin E. Barton1, Mark D. Boyer1, Wenyu Shi1,
Eugenio Schuster1, Tim C. Luce2, John R. Ferron2,
Michael L. Walker2, David A. Humphreys2, Ben G. Penaflor2 and
Robert D. Johnson2

1 Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial
Drive West, Bethlehem, PA 18015, USA
2 General Atomics, 3550 General Atomics Court, San Diego, CA 92121, USA

E-mail: justin.barton@lehigh.edu

Received 9 April 2012, accepted for publication 20 September 2012
Published 26 November 2012
Online at stacks.iop.org/NF/52/123018

Abstract
In order for ITER to be capable of operating in advanced tokamak operating regimes, characterized by a high fusion
gain, good plasma confinement, magnetohydrodynamic stability and a non-inductively driven plasma current, for
extended periods of time, several challenging plasma control problems still need to be solved. Setting up a suitable
toroidal current density profile in the tokamak is key for one possible advanced operating scenario characterized by
non-inductive sustainment of the plasma current. At the DIII-D tokamak, the goal is to create the desired current
profile during the ramp-up and early flat-top phases of the plasma discharge and then actively maintain this target
profile for the remainder of the discharge. The evolution in time of the toroidal current profile in tokamaks is related
to the evolution of the poloidal magnetic flux profile, which is modelled in normalized cylindrical coordinates using a
first-principles, nonlinear, dynamic partial differential equation (PDE) referred to as the magnetic diffusion equation.
The magnetic diffusion equation is combined with empirical correlations developed from physical observations and
experimental data from DIII-D for the electron temperature, the plasma resistivity and the non-inductive current
drive to develop a simplified, control-oriented, nonlinear, dynamic PDE model of the poloidal flux profile evolution
valid for low confinement mode discharges. In this work, we synthesize a robust feedback controller to reject
disturbances and track a desired reference trajectory of the poloidal magnetic flux gradient profile by employing the
control-oriented model of the system. A singular value decomposition of the static gain matrix of the plant model is
utilized to identify the most relevant control channels and is combined with the dynamic response of system around
a given operating trajectory to design the feedback controller. A general framework for real-time feedforward +
feedback control of magnetic and kinetic plasma profiles was implemented in the DIII-D Plasma Control System and
was used to demonstrate the ability of the feedback controller to control the toroidal current profile evolution in the
DIII-D tokamak. These experiments constitute the first time ever a first-principles-driven, model-based, closed-loop
magnetic profile controller was successfully implemented and tested in a tokamak device.

(Some figures may appear in colour only in the online journal)

1. Introduction

The ITER project is attempting to prove the scientific
feasibility of a commercial nuclear fusion tokamak power
plant. However, in order for ITER to be successful, there are
several challenging plasma control problems that still need to
be solved. One of these challenges is the ability to operate the

tokamak machine for sufficiently long plasma discharges. In
response to this need, extensive research has been conducted to
find so-called advanced tokamak (AT) operating scenarios [1]
that are characterized by a high fusion gain, good plasma
confinement, magnetohydrodynamic stability, and a non-
inductively driven plasma current with a dominant fraction
coming from the self-generated bootstrap current. If these
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performance objectives are achieved, the cost and size of fusion
reactors could be greatly reduced, and the machine could
potentially be operated in a steady-state manner.

One possible advanced operating scenario is related to
setting up a suitable toroidal current density profile in the
machine that is characterized by a safety factor, or q, profile
with a weakly reversed magnetic shear. Advances in current
profile control at the JET and DIII-D tokamaks can be found
in [2–5]. Also, profile control at the Tore Supra and JT-60U
tokamaks is discussed in [6–8]. Experiments at the DIII-D
tokamak focus on creating the desired current profile during
the ramp-up and early flat-top phases of the plasma current
evolution with the goal of actively maintaining this target
profile throughout the remainder of the discharge. During the
initial phase of the discharge, feedback control of q(0, t) and
qmin(t) has been demonstrated at DIII-D [5] by changing the
plasma conductivity through electron heating. The employed
controller requests a power level to the actuator, either electron
cyclotron heating (ECH) or neutral beam injection (NBI),
that is equal to a preprogrammed feedforward value plus
the error in q times a proportional gain. The q profile is
obtained in real-time from the motional Stark effect (MSE)
diagnostic measurement. If the sampling rate of the q

profile is reduced, because the MSE beam is modulated
rather than run continuously, the closed-loop system has
been observed to become unstable causing the q profile to
oscillate. This behaviour, along with the strong coupling
between the magnetic and kinetic plasma profiles and the
high dimensionality of the problem when the objective is
the control of the entire q profile and not only q(0, t) and
qmin(t), motivates the design of a model-based controller.
By embedding the physics of the system, which can be
captured by a control-oriented dynamic model, as well as the
information on the diagnostic sampling rate into the control
design process, a model-based controller can take into account
the dynamics of the entire q profile in response to the available
actuators, thus eliminating the need for trial-and-error tuning
as a natural consequence and increasing the potential for
improved performance. Progress towards control-oriented
modelling of the current density profile, following both data-
driven [4, 9] and first-principles-driven [10, 11] approaches,
has been recently reported.

By following a data-driven modelling approach, linear,
dynamic, plasma profile response models were recently
obtained from experimental data by performing system
identification experiments in JET [4], JT-60U and DIII-D
[9]. The identified models were used to design controllers to
simultaneously control magnetic and kinetic plasma profiles
by exploiting the different time scales of the magnetic and
kinetic variables. The proposed control architecture is two
separate feedback loops that operate on the magnetic and
kinetic time scales, respectively. The designed controllers
use the heating and current drive systems to regulate the
various plasma profiles around desired target profiles during
the flat-top phase of the plasma discharge [4, 12, 13]. However,
as the identified models are linear, they are only valid
around the reference plasma state adopted during the system
identification experiment. Therefore, the effectiveness of the
controllers designed based on these models may be limited
when the plasma state moves away from the reference state.

Moreover, as these models are device-specific, dedicated
system identification experiments are needed in each device,
and potentially for each control scenario, to develop model-
based controllers.

As an alternative to data-driven modelling, first-
principles-driven modelling, and subsequent controller design,
has the potential of overcoming these limitations. The
first-principles-driven model has the advantages of being (i)
extendable to various equilibrium configurations and operating
scenarios, (ii) able to incorporate the nonlinear coupling
between the various magnetic and kinetic plasma parameters
and (iii) able to explicitly describe the temporal and spatial
evolution of the current profile in response to nonlinear control
actuation. The evolution of the toroidal current profile in
tokamaks is related to the evolution of the poloidal magnetic
flux profile, and in this work our focus is on the design of
control schemes based on a first-principles-driven, control-
oriented model of the poloidal flux profile evolution. The
poloidal magnetic flux diffusion equation is derived from
Gauss’s law, Ampere’s law, Faraday’s law, Ohm’s law and an
equilibrium momentum balance. This model is combined with
empirical correlations obtained from physical observations and
experimental data for the electron temperature, the plasma
resistivity, and the non-inductive current drive to obtain
a simplified nonlinear, dynamic, control-oriented, partial
differential equation (PDE) model describing the evolution of
the poloidal magnetic flux profile in response to the electric
field due to induction, the auxiliary heating and current drive
systems and the line average plasma density in low confinement
discharges [10]. The empirical laws employed for closure of
the magnetic diffusion equation are based on general physical
observations of the plasma response to the control actuators,
which are not unique to any one machine. Since the laws
have been observed in many machines, the first-principles-
driven model can be adapted to any given tokamak by
adjusting the constants and reference profiles in the empirical
laws based on already existing experimental data from the
tokamak of interest. Therefore, control strategies for various
tokamaks operating in different equilibrium configurations can
be synthesized from one model structure. In addition, first-
principles-driven modelling provides the freedom of arbitrarily
handling the trade-off between the simplicity of the model
and both its physics accuracy and its range of validity, which
will of course be reflected in the model-based controller’s
performance and capability.

The control strategy we employ to control the current
profile evolution is a feedforward + feedback control scheme,
where the feedforward controller is computed off-line and
the feedback controller is computed on-line. Experiments
have shown that some of the desired current profiles may
not be achievable for all arbitrary initial conditions because
the actuators used to manipulate the current profile evolution
are physically constrained. The objective of the feedforward
controller is to achieve the best possible q profile/target
matching during the ramp-up and early flat-top phases of the
plasma current evolution and to maintain it during the rest
of the discharge. To add robustness to the control strategy,
a feedback control input is added to the feedforward control
input. In this work, we consider the problem of designing a
feedback controller to track a desired reference trajectory of
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the poloidal flux gradient profile, which is inversely related to
the q profile. A general framework for real-time feedforward
+ feedback control of magnetic and kinetic plasma profiles was
implemented in the DIII-D Plasma Control System (PCS) and
was used to demonstrate the ability of the feedback controller
to control the toroidal current profile evolution in the DIII-
D tokamak. These experiments mark the first time ever
a first-principles-driven, model-based, closed-loop magnetic
profile controller was successfully implemented and tested in
a tokamak device.

This paper is organized as follows. The current profile
control problem during the various phases of the tokamak
discharge is briefly described in section 2. In section 3, a
simplified nonlinear, dynamic, control-oriented, PDE model
for the evolution of the poloidal flux gradient profile valid
for low confinement discharges is introduced. In the
development of the control-oriented model, the non-inductive
bootstrap current is neglected due to its effects being small
in low confinement discharges, and the magnetic diffusion
equation is combined with empirical correlations for the
electron temperature, the plasma resistivity, and the non-
inductive current drive developed from physical observations
and experimental data from low confinement mode discharges
in DIII-D. The governing infinite dimensional PDE is
approximated by a finite dimensional system of ordinary
differential equations to facilitate the synthesis of a feedback
controller by employing a truncated Taylor series expansion
in space. While the state of the reduced-order model is
linearized around a given feedforward operating trajectory, the
control input nonlinearities are preserved through a nonlinear
transformation, and a time-varying state-space representation
of the deviation dynamics is derived in section 4. In section 5,
the time-varying state-space system is represented as an
uncertain state-space model, i.e. a nominal time-invariant
model plus a bounded uncertain component, which is then
formulated into a robust control framework. The part of
the plant output we can effectively control is determined by
employing a singular value decomposition of the static gain
matrix of the nominal plant model, which is combined with the
dynamic response of the system around the given feedforward
trajectory to synthesize a robust feedback controller. The
feedback controller is synthesized by first considering the
nominal model and then analyzing the stability of the closed-
loop system in the presence of the model uncertainty. A general
framework for real-time feedforward + feedback control of
the magnetic and kinetic plasma profiles is implemented in
the DIII-D PCS, and a simulation simserver (Simserver) that
can interface with the DIII-D PCS is developed in section 6.
In section 7 we test the feedback controller in Simserver
simulations with the real-time code utilized in the DIII-D PCS,
and in section 8 the feedback controller is tested in reference
tracking and disturbance rejection experiments in the DIII-D
tokamak. Finally, conclusions and future work are discussed
in section 9.

2. Control problem description

The control objectives, as well as the dynamic models
describing the time evolution of the toroidal current density
profile, depend on the phase of the discharge. During the

ramp-up phase and the first part of the flat-top phase, the
plasma current is mainly driven by induction in both low
confinement (L-mode) and high confinement (H-mode) plasma
discharges. Therefore, the effect of the self-generated, non-
inductive bootstrap current may be neglected in the formulation
of the simplified PDE model of the system. The control goal
for the initial phase of the discharge is to drive the poloidal flux
gradient profile, which we denote as the variable θ , from an
arbitrary initial condition to a predefined target profile. For the
remainder of the flat-top phase of the discharge, the effect of
the bootstrap current must be included in the dynamic model
of the system for H-mode discharges but can still be neglected
for L-mode discharges due to the bootstrap effects being small
because of the lower temperature and density gradients in the
plasma in this operating mode [14]. The control objective
for this phase is to regulate the poloidal flux gradient profile
around the achieved target profile with as little control effort
as possible.

In this work, the focus is on the control objectives
of the ramp-up and flat-top phases of the discharge in L-
mode operating scenarios. The choice of L-mode operating
scenarios rather than high performance H-mode operating
scenarios is based on the fact that the coupling between the
magnetic and kinetic plasma parameters is not as strong in
this operating mode. As a result, the dynamics of the current
profile evolution in L-mode are simplified, which reduces
the complexity of the model-based control design process.
Therefore, L-mode operating scenarios are more attractive for
initial demonstration of the technical feasibility of controlling
the current profile evolution in closed-loop experiments with
controllers synthesized from first-principles-driven models.
Once this methodology is validated, the focus will be on
extending the approach to high performance H-mode scenarios
by incorporating the effects of the bootstrap current in the first-
principles-driven model of the system and synthesizing closed-
loop controllers for this more complex operating mode.

The actuators we employ during the ramp-up and flat-
top phases of the discharge to drive the poloidal flux gradient
profile evolution θ(ρ̂, t) to a desired target profile are the
total plasma current, the total average NBI power and the line
average plasma density. However, there is no guarantee that
the desired target profile can be achieved for all arbitrary initial
conditions due to (i) the nonlinear dynamics governing the
evolution of the θ profile and (ii) the limitations of the control
actuators to modify the evolution of the θ profile based on the
physical design of the tokamak and the physical constraints
in magnitude and rate of change of the actuators themselves.
Therefore, an optimal control problem to determine control
laws for the actuators that minimize the cost function

J =
∫ tf

t0

1
N

N∑

i=1

(θ(ρ̂i , t) − θtar(ρ̂i , t))
2dt (1)

must be solved, where t0 and tf are the beginning and ending
times of the discharge, ρ̂ denotes the normalized effective
minor radius of the magnetic surface within the plasma, N

is the number of discrete points used to specify the θ profile at
the spatial locations ρ̂i , and θtar(ρ̂i ) denotes the target profile.
The control strategy we employ is a feedforward + feedback
control scheme with the goal being to design the feedforward
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controller based on the poloidal flux gradient profile evolution
predicted by the PDE model such that (1) is minimized in
the absence of external disturbances to the system for a given
nominal initial condition. A control-oriented model of the
poloidal flux profile evolution for L-mode plasma discharges
was developed in [10]. During the ramp-up and early flat-top
phases of L-mode operating scenarios, nonlinear programming
[15] and extremum seeking [16] have been employed to solve
the finite-time optimal control problem for the nonlinear PDE
system to determine optimal feedforward control laws for
the manipulated inputs. During normal tokamak operation,
it is difficult to achieve a perfect matching of the nominal
initial θ profile. In addition, the control-oriented model does
not capture all of the physical phenomena that affect the θ
profile evolution, therefore, the actual profile evolution in the
tokamak will be different from the evolution predicted by the
model. Therefore, the feedback controller is mounted on top
of the feedforward controller to add robustness to the control
scheme. The feedback controller is implemented with the
goal of being able to track a desired reference trajectory of
the poloidal flux gradient profile, account for the mismatch
between the assumed and the actual initial condition, reject the
effects of external disturbances to the system, and overcome the
uncertainties in the model used for the control design. We now
focus on the synthesis of a feedback controller to accomplish
the aforementioned feedback control objectives.

3. First-principles-driven current profile evolution
model

Any arbitrary quantity that is constant on each magnetic flux
surface within the tokamak plasma can be used to index the
magnetic flux surfaces. We choose the mean effective minor
radius, ρ, of the magnetic flux surface, i.e. πBφ,0ρ

2 = %,
as the indexing variable, where % is the toroidal magnetic
flux and Bφ,0 is the reference magnetic field at the geometric
major radius R0 of the tokamak. The normalized effective
minor radius is defined as ρ̂ = ρ/ρb, where ρb is the mean
effective minor radius of the last closed magnetic flux surface.
The evolution of the poloidal magnetic flux in normalized
cylindrical coordinates is given by the magnetic diffusion
equation [10, 17, 18]

∂ψ

∂t
= η(Te)

µ0ρ
2
b F̂

2

1
ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)

+ R0Ĥη(Te)
〈j̄NI · B̄〉

Bφ,0
, (2)

where ψ is the poloidal stream function which is closely related
to the poloidal flux ), i.e. ) = 2πψ , t is the time, η is
the plasma resistivity, Te is the electron temperature, µ0 is
the vacuum permeability, j̄NI are the external sources of non-
inductive current density (NBI, ECH, etc), B̄ is the magnetic
field and 〈〉 denotes a flux-surface average. The parameters
F̂ , Ĝ and Ĥ are geometric factors of the DIII-D tokamak,
which are functions of ρ̂, and are given in [10] for a particular
magnetic configuration. The boundary conditions are given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= − µ0

2π

R0

Ĝ
∣∣∣
ρ̂=1

Ĥ
∣∣∣
ρ̂=1

I (t), (3)

where I (t) denotes the total plasma current.

In order to develop a control-oriented model of
(2), simplified scenario-oriented models for the electron
temperature, the plasma resistivity, and the non-inductive
current density were determined from empirical correlations
obtained from physical observations and experimental data
from DIII-D for L-mode discharges [10]. The electron
temperature is modelled as

Te(ρ̂, t) = kTeT
profile

e (ρ̂)
I (t)

√
Ptot(t)

n̄(t)
, (4)

where kTe is a constant, T
profile

e (ρ̂) is a reference electron
temperature profile, Ptot(t) is the total average neutral beam
power and n̄(t) is the line average plasma density. The
plasma current is mainly driven by induction during L-mode
discharges, therefore, the effects of the bootstrap current on
the evolution of the poloidal magnetic flux are neglected in the
formulation of the model of the non-inductive current density,
which is modelled as

〈j̄NI · B̄〉
Bφ,0

= kNIpar j
profile
NIpar

(ρ̂)
I (t)1/2Ptot(t)

5/4

n̄(t)3/2
, (5)

where kNIpar is a constant and j
profile
NIpar

(ρ̂) is a reference non-
inductive current deposition profile. The plasma resistivity
η(Te) scales with the electron temperature as

η(ρ̂, t) = keffZeff

T
3/2

e (ρ̂, t)
, (6)

where keff is a constant and Zeff is the effective average charge
of the ions in the plasma, which is assumed constant in space
and time. The reference profiles as well as the values of the
constants are given in [10]. By using these simplified models,
the evolution of the poloidal magnetic flux in normalized
cylindrical coordinates is given by the magnetic diffusion
equation

∂ψ

∂t
= f1(ρ̂)u1(t)

1
ρ̂

∂

∂ρ̂

(
ρ̂f4(ρ̂)

∂ψ

∂ρ̂

)
+ f2(ρ̂)u2(t) (7)

with boundary conditions

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −k3u3(t), (8)

where

f1(ρ̂) = keffZeff

k
3/2
Te

µ0ρ
2
b F̂

2(ρ̂)(T
profile

e (ρ̂))3/2
,

f2(ρ̂) =
keffZeffR0kNIpar Ĥ (ρ̂)j

profile
NIpar

(ρ̂)

k
3/2
Te

(T
profile

e (ρ̂))3/2
,

f4(ρ̂) = F̂ (ρ̂)Ĝ(ρ̂)Ĥ (ρ̂) k3 = µ0

2π

R0

Ĝ
∣∣∣
ρ̂=1

Ĥ
∣∣∣
ρ̂=1

,

u1(t) =
(

n̄(t)

I (t)
√

Ptot(t)

)3/2

,

u2(t) =
√

Ptot(t)

I (t)
u3(t) = I (t). (9)
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The magnetic diffusion equation (7) admits control through
interior actuation via u2(t), through boundary actuation via
u3(t), and through what we name diffusivity actuation in this
work via u1(t). As the experiment and the equilibrium change,
the constants kTe and kNIpar , the reference profiles T

profile
e (ρ̂)

and j
profile
NIpar

(ρ̂) and the geometric factor profiles F̂ (ρ̂), Ĝ(ρ̂)

and Ĥ (ρ̂) will also change. Therefore, the dependence of the
parameters f1, f2 and f4 on ρ̂ will change, but the structure of
(7) and (8) will remain the same.

The control inputs u1(t), u2(t) and u3(t) of the magnetic
diffusion equation have large order of magnitude differences
which is not conducive to developing a feedback control
algorithm that uses all of the available actuators to their
fullest extent. Therefore, we normalize (7) by determining
the maximum feedforward values of the three control inputs,
which are denoted as u1norm , u2norm and u3norm , respectively. The
control inputs are scaled as us

1(t) = u1(t)/u1norm , us
2(t) =

u2(t)/u2norm and us
3(t) = u3(t)/u3norm , and the parameters in

the governing PDE (7) are scaled as f s
1 (ρ̂) = u1normf1(ρ̂),

f s
2 (ρ̂) = u2normf2(ρ̂) and ks

3 = u3normk3 where (·)s denotes a
scaled quantity. Now each control input can vary between
the same magnitude range, i.e. zero to one, and a feedback
controller can be designed to use the full range of each actuator.
The superscript s used to denote the scaled control inputs and
equation parameters is dropped for the remainder of this paper
in order to simplify notation.

The q profile, defined as q(ρ̂, t) = −d%/d), is related
to the toroidal current profile in the machine [16]. By using
the constant relationship between ρ and %, πBφ,0ρ

2 = %, and
the definition of ρ̂, the safety factor is written as

q(ρ̂, t) = −d%

d)
= − d%

2πdψ
= −

∂%
∂ρ

∂ρ
∂ρ̂

2π ∂ψ
∂ρ̂

= −Bφ,0ρ
2
b ρ̂

∂ψ/∂ρ̂
. (10)

Because the q profile is inversely dependent on the gradient
of the poloidal stream function ∂ψ/∂ρ̂, it is chosen to be the
controlled variable and is denoted by

θ(ρ̂, t) = ∂ψ/∂ρ̂(ρ̂, t). (11)

In order to obtain a PDE for θ(ρ̂, t), (7) is expanded using the
chain rule as

∂ψ

∂t
= f1u1(t)

1
ρ̂

[
ρ̂

∂ψ

∂ρ̂

df4

dρ̂
+ f4

∂ψ

∂ρ̂
+ ρ̂f4

∂2ψ

∂ρ̂2

]
+ f2u2(t).

(12)

Inserting (11) into (12) results in the following PDE:

∂ψ

∂t
= f1(ρ̂)u1(t)

1
ρ̂

[
ρ̂θf ′

4(ρ̂) + f4(ρ̂)θ + ρ̂f4(ρ̂)
∂θ

∂ρ̂

]

+ f2(ρ̂)u2(t), (13)

where (·)′ = d/dρ̂. By differentiating (13) with respect to ρ̂,
the PDE governing the evolution of θ(ρ̂, t) is found to be

∂θ

∂t
=

[
h0(ρ̂)

∂2θ

∂ρ̂2
+ h1(ρ̂)

∂θ

∂ρ̂
+ h2(ρ̂)θ

]
u1(t) + h3(ρ̂)u2(t)

(14)

with boundary conditions

θ(0, t) = 0 θ(1, t) = −k3u3(t), (15)

where

h0(ρ̂) = f1(ρ̂)f4(ρ̂),

h1(ρ̂) = f ′
1(ρ̂)f4(ρ̂) + f1(ρ̂)f4(ρ̂)/ρ̂ + 2f1(ρ̂)f ′

4(ρ̂),

h2(ρ̂) = f ′
1(ρ̂)f ′

4(ρ̂) + f ′
1(ρ̂)f4(ρ̂)/ρ̂ + f1(ρ̂)f ′

4(ρ̂)/ρ̂

− f1(ρ̂)f4(ρ̂)/ρ̂2 + f1(ρ̂)f ′′
4 (ρ̂),

h3(ρ̂) = f ′
2(ρ̂). (16)

The model (14)–(16) is the starting point for the development
of the feedback controller design. This first-principles-driven,
control-oriented, PDE model contains the physics information
of how the dynamics of the poloidal flux gradient profile are
influenced by the control actuators. The goal is to now convert
the physics information contained in the model into a form
suitable to synthesize a feedback controller, thus allowing
the physics contained in the model to be embedded into the
feedback controller.

4. Model reduction via truncated taylor series
expansion

In order to facilitate the design of a feedback controller, the
governing infinite dimensional PDE (14) is approximated by
a finite dimensional system of ordinary differential equations
(ODEs). This is accomplished by discretizing (14) in space by
using a truncated Taylor series expansion to approximate the
spatial derivatives while leaving the time domain continuous
[19]. The non-dimensional spatial domain of interest, [0,1],
is represented as l nodes, and the spacing between the nodes,
*ρ̂, is defined as *ρ̂ = 1/(l − 1). Central finite difference
spatial derivative approximations of order *ρ̂2 are used in the
interior node region, 2 ! i ! (l−1). After applying the spatial
derivative approximations to (14) and taking into account the
boundary conditions (15), we obtain a matrix representation
for the reduced-order model

α̇(t) = ,α(t)v1(t) + -v2(t) + .v3(t), (17)

where the vector α = [θ2, . . . , θl−1]T ∈ R(l−2)×1 is the state of
the system at the interior discrete nodes, the vector

[v1(t), v2(t), v3(t)]T = [u1(t), u2(t), u1(t)u3(t)]T ∈ R3×1

(18)

is the control input, and , ∈ R(l−2)×(l−2), - ∈ R(l−2)×1 and
. ∈ R(l−2)×1 are the system matrices. The system matrices
for the interior node i = 2 are defined as

,1,1 = h2(*ρ̂) − 2h0(*ρ̂)

(*ρ̂)2
,1,2 = h0(*ρ̂)

(*ρ̂)2
+

h1(*ρ̂)

2*ρ̂
,

-1 = h3(*ρ̂) .1 = 0. (19)

The system matrices for the interior node region, 3 ! i !
(l − 2), are defined as

,i−1,i−2 = h0(*x)

(*ρ̂)2
− h1(*x)

2*ρ̂
,

,i−1,i−1 = h2(*x) − 2h0(*x)

(*ρ̂)2
,

,i−1,i = h0(*x)

(*ρ̂)2
+

h1(*x)

2*ρ̂
,

-i−1 = h3(*x) .i−1 = 0, (20)

5
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where *x = (i − 1)*ρ̂. The system matrices for the interior
node i = l − 1 are defined as

,l−2,l−2 = h2(*x∗) − 2h0(*x∗)

(*ρ̂)2
,

,l−2,l−3 = h0(*x∗)

(*ρ̂)2
− h1(*x∗)

2*ρ̂
,

-l−2 = h3(*x∗),

.l−2 = −k3

(
h0(*x∗)

(*ρ̂)2
+

h1(*x∗)

2*ρ̂

)
, (21)

where *x∗ = (l − 2)*ρ̂. All other entries in the , system
matrix are zero. The values of θ at the boundary nodes i = 1
and i = l are known from (15) and are therefore not included
in the reduced-order model (17).

Let αFF(t) and vFF(t) be the feedforward trajectories of
the states and control inputs, respectively with initial condition
αFF(0). These feedforward trajectories satisfy

α̇FF(t) = ,αFF(t)v1FF(t) + -v2FF(t) + .v3FF(t). (22)

By defining the perturbation variables x(t) = α(t)−αFF(t) and
vFB(t) = v(t) − vFF(t), where x(t) is the deviation away from
the feedforward state trajectories and vFB(t) is the output of
the to-be-designed feedback controller, we can obtain a model
suitable for tracking control design. Inserting the perturbation
variables into (17) results in

α̇FF + ẋ = ,
(
αFF + x

)(
v1FF + v1FB

)
+ -

(
v2FF + v2FB

)

+ .
(
v3FF + v3FB

)
. (23)

By using (22), we can express (23) as

ẋ = ,v1FFx + ,
(
αFF + x

)
v1FB + -v2FB + .v3FB . (24)

Due to the term ,xv1FB , equation (24), which describes the
behaviour of the deviation dynamics, is bilinear (nonlinearity
resulting from the product between the control input and the
state). In addition, the control inputs v1FB , v2FB and v3FB are
nonlinear functions of the real actuators as shown by the
nonlinear transformations (9) and (18). While we neglect in
this work the bilinear state behaviour by assuming that the
feedback control input vFB is able to keep the deviation of
the system state away from the feedforward state trajectory
small, i.e. αFF ) x, we preserve the dominant control input
nonlinearities through the nonlinear transformations (9) and
(18). An approximate linearization of the state dynamics can
therefore be obtained by neglecting the nonlinear term, i.e.

(
αFF + x

)
≈ αFF, (25)

and rewriting (24) as

ẋ = ,v1FFx + ,αFFv1FB + -v2FB + .v3FB . (26)

Simulations and experiments show the closed-loop system to
be robust to this approximation and indicate no need for the
extra burden of taking into account the bilinear state behaviour
during the control synthesis, which is indeed possible. The
deviation dynamics (26) can be written as a linear, time-variant,
dynamic, state-space model, i.e.

ẋ = A(t)x + B(t)vFB,

y = Cx + DvFB, (27)

where A(t) = ,v1FF(t) ∈ Rn×n, B(t) = [,αFF(t), -, .] ∈
Rn×3, C = In ∈ Rn×n where In is an n×n identity matrix, D =
0 ∈ Rn×3, x ∈ Rn×1, y ∈ Rn×1, vFB = [v1FB , v2FB , v3FB ]T ∈
R3×1 and n = l − 2. Here α, and therefore x, is assumed
measurable. A linear control law for the inputs v1FB(t), v2FB(t)

and v3FB(t) can now be determined and combined with the
nonlinear inverse transformations resulting from (9) and (18)
to produce an overall nonlinear control law for I (t), Ptot(t)

and n̄(t).
The first-principles-driven linear model for the deviation

dynamics (27) is similar in structure to the linear plasma
response models obtained by performing system identification
experiments. However, there are some subtle differences
between the two types of models. Firstly, the first-
principles-driven deviation model can be obtained around
any feedforward reference trajectory of the system while the
data-driven deviation model can only be obtained around
the reference plasma state adopted during the identification
process. Secondly, the first-principles-driven deviation model
is time varying, therefore, it provides information on how the
deviation dynamics evolve throughout the discharge while the
data-driven deviation model is time invariant. Finally, the
first-principles-driven deviation model is able to capture the
nonlinear effect the control actuators have on the current profile
evolution through the transformations (9) and (18), while the
data-driven deviation model can only capture the linear effect
the control actuators have on the current profile evolution.

5. System manipulation into a control framework
and feedback controller design

We now have a time-varying linear model describing the
dynamic behaviour of the system around any given feedfoward
operating trajectory that we can use to synthesize a feedback
controller. However, most linear control design techniques are
suited for time-invariant model dynamics, i.e. the state-space
matrices A, B, C and D of the model are not a function of time.
Therefore, we choose to model the time-varying system (27)
as a nominal time-invariant model plus a bounded uncertain
component. We then seek to design a feedback controller to
stabilize the closed-loop system for all allowable uncertain
perturbations, i.e. we follow what is called robust control
design.

5.1. System model in robust control framework

The control inputs vFF(t) are chosen to produce a desired
trajectory of the system αFF(t) [15, 16], therefore, both time-
varying quantities are bounded. We choose to model the time-
varying parameters v1FF(t) and αFF(t) in the definition of the
system matrices of (27) as a nominal value plus a bounded
uncertain component, i.e.,

v1FF(t) ∈ γv

(
1 + βvδv

)
αiFF(t) ∈ γ i

α

(
1 + β i

αδi
α

)
, (28)

where γv = (v1FFmax
+ v1FFmin

)/2, γ i
α = (αiFFmax

+ αiFFmin
)/2,

βv = (v1FFmax
−v1FFmin

)/(2γv) and β i
α = (αiFFmax

−αiFFmin
)/(2γ i

α)

with |δv| ! 1 and |δi
α| ! 1 where i = 1, 2, . . . , n. Since

the vector αFF contains the value of θ at the n nodes and

6
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Figure 1. General control configuration with model uncertainty.

the parameter v1FF is a scalar, this method of modelling the
time-varying parameters produces n + 1 uncertain parameters.
By inserting the models (28) into (27) and defining the total
uncertainty vector δ as δ = [δ1

α, . . . , δn
α, δv] ∈ R(n+1)×1,

the state-space matrices A(t), B(t), C and D in (27) are
expressed as

A(t) = A0 +
n+1∑

m=1

δmA∗
m B(t) = B0 +

n+1∑

m=1

δmB∗
m,

C = C0 +
n+1∑

m=1

δmC∗
m D = D0 +

n+1∑

m=1

δmD∗
m, (29)

where

A0 = γv, B0k
=

[
n∑

i=1

γ i
α,k,i , -k, .k

]

,

C0 = In D0 = 0 (30)

and

A∗
1,2,...,n = 0 A∗

n+1 = γvβv,,

B∗
mk

=
[(

γ m
α βm

α

)
,k,m, 0, 0

]
for m = 1, 2, . . . , n

B∗
n+1 = 0,

C∗
1,2,...,n+1 = 0 D∗

1,2,...,n+1 = 0, (31)

where k = 1, 2, . . . , n, ,k,i denotes the kth row ith column
component of ,, B0k

and B∗
mk

denote the kth component of
B0 and B∗

m, respectively, and In denotes the n × n identity
matrix. The state-space matrices A0, B0, C0 and D0 represent
the nominal system, δm denotes the mth component of δ, and
the state-space matrices A∗

m, B∗
m, C∗

m and D∗
m represent the

influence that each uncertain parameter δm has on the system.
See appendix A for a derivation of this model representation.

A linear system with state-space matrices A, B, C and
D has a transfer function representation G(s) = C(sIn −
A)−1B+D that describes the relationship between the system’s
inputs and outputs, i.e. y = G(s)vFB, where s denotes the
Laplace variable and n is the number of states of the system. If
we insert the representation of the state-space matrices (29)
into the transfer function representation of the system, the
nominal model will be coupled with the uncertain parameters
δm for m = 1, . . . , n + 1. Therefore, we seek to separate the
uncertain parameters from the nominal parameters by grouping
the uncertain parameters into a structured uncertainty matrix
* = diag{δ} and expressing the system in the P − * control
framework shown in figure 1 where P(s) is the generalized

transfer function of the system. If the transfer function P ∈
R(qT+n)×(qT+3), where qT is the rank of the uncertainty matrix
*, is partitioned as

P =
[
P11 P12

P21 P22

]
(32)

the input–output equations of the generalized transfer
function are

y* = P11u* + P12vFB,

y = P21u* + P22vFB, (33)

where P11 ∈ RqT×qT , P12 ∈ RqT×3, P21 ∈ Rn×qT , P22 ∈ Rn×3,
y* ∈ RqT×1, u* ∈ RqT×1, y ∈ Rn×1 and vFB ∈ R3×1. The
relationship between the system transfer function G(s) and the
generalized transfer function P(s) and the uncertainty matrix
* is expressed as

G(s) = P22(s) + P21(s)*
[
IqT − P11(s)*

]−1
P12(s), (34)

where IqT is a qT × qT identity matrix. See appendix A for a
detailed derivation of this model manipulation.

By examining (33), it can be seen that the transfer function
P contains information on how both the nominal system
and the uncertain parameters affect the output of the system
y. The output of the system is driven by the feedback
control input vFB and the uncertain input perturbation u*

through the transfer functions P22 and P21, respectively. The
uncertain input perturbation is driven by the uncertain output
perturbation y* through the uncertain matrix *. Finally, the
output perturbation is driven by the feedback control input vFB

and the uncertain input perturbation u* through the transfer
functions P12 and P11, respectively. If there were no uncertain
perturbations, i.e. * = 0, the input–output equation of the
system would be reduced to

y = P22vFB. (35)

Therefore, the transfer function P22 describes the nominal
response of the system, and the transfer functions P11, P12 and
P21 describe how the uncertain parameters affect the output of
the system.

5.2. Identification and decoupling of relevant control
channels

It is desired that the controlled output y(t) be able to track
a reference value r(t), therefore, we define the tracking error
e(t) as

e(t) = r(t) − y(t). (36)

The conditions to bring the tracking error exactly to zero are
typically not met because the number of controlled outputs (n)
is larger than the number of controlled inputs (3). As a result,
we can only independently control 3 linear combinations of
the output of the system. Therefore, in order to synthesize
an effective feedback controller, it is necessary to determine
which output directions are the most controllable and which
input directions are the most influential. If these directions
are not identified, the feedback controller could actuate in a
direction that the system does not respond to and a lot of control
energy could be spent for a marginal improvement in the value

7
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of the tracking error. The technique we employ to identify
and decouple the most relevant control channels is based on a
singular value decomposition of the static (steady-state) gain
matrix of the nominal state-space system A0, B0, C0 and D0.
The relationship between the outputs y and the inputs vFB of the
nominal system is expressed in terms of the nominal transfer
function G0(s) which is defined as

G0(s) = C0(sIn − A0)
−1B0 + D0 y = G0(s)vFB. (37)

To begin the process of determining the relevant control
channels, we consider a steady-state performance index J̄ ,
which is defined as

J̄ = lim
t→∞

eT(t)Qe(t) = ēTQē, (38)

where ē denotes the steady-state tracking error, (·)T denotes
the matrix transpose, and Q ∈ Rn×n is a symmetric positive
definite matrix that is used to weight which components of
the tracking error, relative to the other components, are more
important to minimize. Assuming a constant reference r̄

and provided the closed-loop system is internally stable, the
system can be maintained at steady state, which means the
output and the input of the system will reach constant values
that define an equilibrium of the closed-loop system. Under
these assumptions, the input–output relation in steady state is
expressed as

ȳ = Ḡ0v̄FB =
(
−C0(A0)

−1B0 + D0
)
v̄FB, (39)

where ȳ denotes the steady-state output, v̄FB denotes the
steady-state input, and Ḡ0 denotes the steady-state gain of
the plant G0(s) (i.e. s → 0). We introduce another positive
definite matrix R ∈ R3×3 to weight which inputs have more
control authority relative to the other inputs. We then define the
‘weighted’ steady-state transfer function G̃0 and its ‘economy’
size singular value decomposition [20] as

G̃0 = QηḠ0R
−η = U2V T, (40)

where 2 = diag{σ1, σ2, σ3} ∈ R3×3 is a diagonal matrix
of steady-state singular values with σ1 > σ2 > σ3 > 0,
U ∈ Rn×3 and V ∈ R3×3 are matrices that possess the
following properties:

V TV = V V T = I UTU = I, (41)

where I is an identity matrix with the appropriate dimensions,
and η = 1/2 is chosen to enable the performance index (38)
to be written as a function of 2 as will be shown below.
The weight matrices Q and R are iteratively chosen based
on simulation testing and on a sensitivity analysis of the static
gain matrix of the nominal model Ḡ0.

By employing (40), the steady-state input–output relation
(39) is expressed as

ȳ = Q−1/2G̃0R
1/2v̄FB = Q−1/2U2V TR1/2v̄FB. (42)

We note that the columns of the matrix Q−1/2U2 define a
basis for the subspace of obtainable steady-state output values.
Therefore, any obtainable steady-state output can be written as

a linear combination ȳ∗ ∈ R3×1 of the basis vectors, and we
can write

ȳ = Q−1/2U2ȳ∗ ⇐⇒ ȳ∗ = 2−1UTQ1/2ȳ. (43)

This implies that only the component of the reference vector
r̄ that lies in this subspace will be able to be tracked in
steady state. Therefore, we decompose the reference vector as
r̄ = r̄t + r̄nt where r̄t is the trackable component and r̄nt is the
non-trackable component. The trackable component lies in the
subspace, therefore, it can be written as a linear combination
r̄∗ ∈ R3×1 of the basis vectors, and we can write

r̄t = Q−1/2U2r̄∗. (44)

The non-trackable component does not lie in the subspace,
therefore it can be expressed as

2−1UTQ1/2r̄nt = 0 ⇐⇒ r̄∗ = 2−1UTQ1/2(r̄t + r̄nt). (45)

By defining

v̄∗
FB = V TR1/2v̄FB ⇐⇒ v̄FB = R−1/2V v̄∗

FB, (46)

where v̄∗
FB ∈ R3×1, and by employing (43) and (42), a

decoupled relationship between the outputs ȳ∗ and the inputs
v̄∗

FB is obtained as

ȳ∗ = 2−1UTQ1/2ȳ

= 2−1UTQ1/2Q−1/2U2V TR1/2v̄FB = v̄∗
FB. (47)

The steady-state tracking error is now written as

ē = r̄ − ȳ = Q−1/2U2(r̄∗ − ȳ∗) (48)

and the performance index (38) is expressed as

J̄ = ēTQē =
(
r̄∗ − ȳ∗)T

2UTQ−1/2QQ−1/2U2
(
r̄∗ − ȳ∗)

=
(
r̄∗ − ȳ∗)T

22(r̄∗ − ȳ∗) =
(
ē∗)T

22(ē∗) =
3∑

i=1

σ 2
i

(
ē∗
i

)2
,

(49)

where ē∗ = r̄∗ − ȳ∗ , σi denotes the ith singular value and ē∗
i

denotes the ith component of ē∗.
We note that the ith singular value acts as a weight

parameter for the ith component of the tracking error in (49).
It is possible that two sequential singular values could exhibit
a large difference in magnitude, i.e. σi ) σi+1. Therefore,
no matter how large the component of the tracking error
associated with σi+1 is, its contribution to the overall value of
performance index will be small compared to the component
of the tracking error associated with σi . As a result, if we take
all of the singular values into account, we could spend a lot of
control effort for only a small improvement in the value of the
performance index (49). To avoid this penalty, we partition
the singular values into k significant singular values 2s and
3−k negligible singular values 2ns, and a reduced form of the
performance index (49) is written as

J̄s =
(
r̄∗

s − ȳ∗
s

)T
22

s

(
r̄∗

s − ȳ∗
s

)
=

(
ē∗

s

)T
22

s

(
ē∗

s

)
, (50)

where ē∗
s ∈ Rk×1 is the significant component of the

tracking error, r̄∗
s = 2−1

s UT
s Q1/2(r̄t + r̄nt) ∈ Rk×1,

8
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(a) (b)

Figure 2. Steady-state (a) reference output singular vectors and (b) input singular vectors.

ȳ∗
s = 2−1

s UT
s Q1/2ȳ ∈ Rk×1 and Us ∈ Rn×k and Vs ∈ R3×k

are the components of U and V that are associated with the
significant singular values. By examining (46), we observe that
the significant component of the control input can be defined
as v̄∗

FBs
= V T

s R1/2v̄FB ∈ Rk×1. See appendix B for a derivation
of the reduced performance index and of a reduced form of the
decoupled system (47).

The singular vectors of the basis for the subspace
of obtainable steady-state output values, and therefore the
trackable components of the reference vector, Q−1/2U are
shown in figure 2(a). The corresponding singular vectors
associated with the steady-state input values R−1/2V are shown
in figure 2(b). The associated singular values are σ1 = 7.9360,
σ2 = 0.2738 and σ3 = 0.0015, which are the result of the
dynamic model assumptions, the actuator configuration, and
the input scaling. As evidenced by the magnitude of the first
singular value relative to the others, the first output singular
vector is the dominant shape of an achievable steady-state
profile, according to the model. In order to generate this profile
shape, the feedback controller can actuate in the direction
associated with the first input singular vector, which contains
a strong contribution from the boundary feedback control
component v3FB . As the value of the singular value decreases,
a larger amount of control effort is needed along the direction
of the associated input singular vector to produce a significant
contribution to the steady-state profile in the direction of the
associated output singular vector.

5.3. Feedback controller synthesis

The control goal is to design a feedback controller that can
minimize (1) while using as little feedback control effort as
possible and achieve a set of specified closed-loop performance
objectives by controlling the significant portion of the output
of the system (33). The feedback controller must also be able
to stabilize the system for all allowable perturbations *. If
the controller achieves this goal it is said to robustly stabilize
the system. This control problem is shown schematically in
figure 3. The blocks 2−1

s UT
s Q1/2 and R−1/2Vs are used to

obtain a one-to-one relationship between the outputs and the
inputs of the system, which provides us the ability to synthesize
a square feedback controller K . The block 2−1

s UT
s Q1/2

extracts the significant component of the tracking error e∗
s

Figure 3. Schematic of control problem formulation.

from the error signal e. The feedback controller is driven
by the error e∗

s and outputs the significant component of the
feedback control input v∗

FBs
. Finally, the block R−1/2Vs is used

to compute the feedback control input vFB that is applied to the
system from the control signal v∗

FBs
. The outputs of the closed-

loop system Z1 and Z2 are defined as Z1 = Wpe
∗
s and Z2 =

Wuv
∗
FBs

, where Wp and Wu are frequency dependent functions
that will be used to optimize the closed-loop performance of
the system during the controller design process by minimizing
the frequency-weighted tracking error (Z1) and control
effort (Z2).

One possible approach to designing a feedback controller
K is to directly take the uncertainty * into account during
the design process. This technique aims to synthesize a
feedback controller that robustly stabilizes the system by
iterating between controller design and robust stability analysis
in a systematic sequence of steps. This approach would
guarantee that the designed controller would robustly stabilize
the system, however, the computational complexity of this
design technique is high, and the iterations may not converge
to the best solution. Therefore, we adopt a different approach
to synthesize a feedback controller. The technique we employ
is to design a nominal controller K to achieve the specified
control goals for the nominal closed-loop system, i.e. we
assume * = 0. We then take the uncertainty * into account
by analyzing the robust stability of the system with this
nominal controller. If the controller successfully robustly
stabilizes the system, we have achieved all of our control
goals. If the controller does not robustly stabilize the system,
we must repeat the process of designing a controller for the

9
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nominal system while relaxing the performance objectives of
the closed-loop system.

The H∞ norm of any stable transfer function F(s)

represents the maximum gain in any direction at any frequency
between the outputs and inputs of F(s) and is expressed
mathematically as

||F(s)||∞ = max
ω

σ̄ (F (jω)), (51)

where || · ||∞ denotes the H∞ norm and σ̄ (F (jω)) denotes the
maximum singular value of the function F at each frequency
ω. For single-input-single-output systems, specifications on
the shape of the frequency response of the magnitude of
the transfer function F , which is denoted as |F |, can be
captured by an upper bound, 1/|Wf(s)|, on the magnitude of F ,
where Wf(s) is a weight function. This frequency dependent
specification is expressed mathematically as

|F(jω)| < 1/|Wf(jω)|, ∀ω

⇔ |WfF | < 1, ∀ω ⇔ ||WfF ||∞ < 1, (52)

where the last equivalence relationship follows from the
definition of the H∞ norm (51). This method is easily
extendable to multi-input–multi-output systems and yields the
same H∞ relationship between the weight function and the
transfer function shown in (52).

We begin the controller design process by writing the
nominal performance condition of the closed-loop system
shown in figure 3 as

[
Z1

Z2

]
=

[
WpSDCO

WuKSDCO

] [
r∗

s

]
, (53)

where the function SDCO = (I + 2−1
s UT

s Q1/2P22R
−1/2VsK)−1

is the transfer function from the reference signal r∗
s to the error

signal e∗
s (i.e. e∗

s = SDCOr∗
s ) and the function KSDCO is the

transfer function from the reference signal r∗
s to the feedback

control signal v∗
FBs

(i.e. v∗
FBs

= KSDCOr∗
s ). See appendix C

for a derivation of this nominal performance condition. We
want to synthesize a feedback controller that keeps the tracking
error small while using as little feedback control effort as
possible for any external reference signal. The outputs of
the system naturally lie between zero and one in magnitude,
and we have scaled our model so the inputs of the system
have a magnitude less than or equal to one. Therefore, we
can specify the desired frequency response of the closed-
loop transfer functions knowing that all of the control signals
(references, outputs, inputs, etc.) are less than or equal to one
in magnitude. Typically references are low-frequency signals,
therefore, for good reference tracking, the magnitude of the
transfer functionSDCO should approach zero at low frequencies.
Accordingly, the feedback controller will need to have some
control authority at low frequencies to produce good reference
tracking. As a result, the magnitude of the transfer function
KSDCO should be slightly larger than one at low frequencies.
In order to prevent amplification of high-frequency noise in
the closed-loop system, such as measurement noise, the peak
magnitude of the transfer function SDCO needs to be suppressed,
and the magnitude of SDCO should approach a value of one at
high frequencies. In addition, the feedback controller should
not react to any high-frequency noise, so the magnitude of
the transfer function KSDCO should be suppressed below one

at high frequencies. Finally, the frequency range over which
the feedback controller can actuate the system is specified by
placing upper and lower limits on the bandwidth of the closed-
loop system.

The functions Wp(s) and Wu(s) are used to place upper
bounds 1/σ̄

(
Wp(jω)

)
and 1/σ̄

(
Wu(jω)

)
on the shape of

the frequency responses of the magnitude of the transfer
functions SDCO and KSDCO , respectively. Therefore, the
control design problem is formulated as the following stacked
H∞ minimization problem:

min
K

∣∣∣∣

∣∣∣∣
WpSDCO

WuKSDCO

∣∣∣∣

∣∣∣∣
∞

∀ω, (54)

where we have made use of the property (52). The weight
functions Wp and Wu are parametrized as [21]

Wp(s) =
(
s/

√
Mp + ωp

)2

(
s + ωp

√
H ∗

p

)2 Wu(s) =
(
s/

√
Mu + ωu

)2

(
s + ωu

√
H ∗

u

)2 , (55)

where the parameters Mp and Mu are related to the high-
frequency behaviour, the parameters H ∗

p and H ∗
u are related

to the low-frequency behaviour, and the parameters ωp and ωu

are related to the bandwidth of the upper bounds 1/σ̄
(
Wp(jω)

)

and 1/σ̄
(
Wu(jω)

)
, respectively. The design parameters are

chosen as Mp = 1, H ∗
p = 10−4.5, ωp = 10−0.3, Mu = 1,

H ∗
u = 100.1 and ωu = 1 so the shape of the frequency

response of the upper bounds coincides with the desired shape
of the frequency response of the closed-loop transfer functions
previously described.

If we are able to find a controller K that minimizes the
stacked norm of the transfer functions WpSDCO and WuKSDCO ,
we will have minimized the effect a change in the reference r∗

s
has on the error e∗

s while using as little feedback control effort
v∗

FBs
as possible and achieved a desired performance in the

response of the nominal closed-loop system to changes in the
reference r∗

s . Therefore, by solving the minimization problem
(54), we have synthesized a controller that minimizes (1) while
using as little control effort as possible and produces a desired
closed-loop response of the system. The feedback controller
K found by solving (54) is written in state-space form as

ẋc = Acxc + Bce
∗
s ,

v∗
FBs

= Ccxc + Dce
∗
s , (56)

where the vector xc ∈ Rp×1 is the internal controller states,
Ac ∈ Rp×p, Bc ∈ Rp×1, Cc ∈ R1×p and Dc ∈ R1×1 are the
controller system matrices and p is the number of controller
states. For this controller design, the significant singular values
are chosen as 2s = σ1 and the negligible singular values are
chosen as 2ns = diag{σ2, σ3}. By neglecting the second and
third singular values, the feedback controller will be able to
actuate the system in the direction associated with the first input
singular vector shown in figure 2(b) to produce the dominate
shape of an achievable steady-state profile associated with the
first output singular vector shown in figure 2(a). The frequency
response of the magnitude of the maximum singular value of
the upper bounds 1/Wp and 1/Wu along with the achieved
transfer functions SDCO and KSDCO computed with the nominal
controller (56) are shown in figure 4. As can be seen from the
figure, the frequency response of the magnitude of the closed-
loop transfer functions lie below their respective upper bounds,

10
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and the control goals for the nominal closed-loop system are
therefore achieved.

We now test the closed-loop system with the nominal con-
troller (56) for robustness against the uncertain perturbations
*. To analyze the robust stability of the closed-loop system,
the structure of the uncertainty is taken into account. Because
the uncertainty has a defined structure, * = diag{δ}, we can
define the structured singular value µ [21] as

µ
(
N11(jω)

)
= 1

min{km| det(I − kmN11*) = 0}
, (57)

where N11 is the transfer function between the signals y* and
u* (i.e. y* = N11u*) in figure 3. See appendix C for a
derivation of this transfer function. The closed-loop system
is robustly stable for all allowable perturbations if and only
if µ

(
N11(jω)

)
< 1, ∀ω [21]. Figure 5 shows a plot of the

achieved structured singular value versus frequency, and as can
be seen from the figure, the robust stability condition is satisfied

with the nominal controller (56). Therefore, the controller (56)
achieves all of our closed-loop control specifications.

The inputs that are applied to the system P are the control
signals vFB and the measurements that are available from
the system P are the error signals e. Therefore, we must
convert the input and output of the controller (56) to these
signals. This is accomplished by substituting the relationships
e∗

s = 2−1
s UT

s Q1/2e and vFB = R−1/2Vsv
∗
FBs

into (56). Finally,
the multi-input-multi-output feedback controller K̂ ∈ R3×n is
expressed in state-space form as

ẋc = Acxc + Bc2
−1
s UT

s Q1/2e,

vFB = R−1/2VsCcxc + R−1/2VsDc2
−1
s UT

s Q1/2e. (58)

6. Plasma profile control algorithm implementation
in the DIII-D PCS

In this section, we describe the implementation of a real-time
feedforward + feedback algorithm for magnetic and kinetic
profile control in the DIII-D PCS. We provide in section 6.1
an overview of the algorithm implemented in the DIII-D
PCS. In section 6.2, we describe the framework for real-
time feedforward + feedback control of magnetic and kinetic
plasma profiles implemented in the DIII-D PCS. Finally, in
section 6.3 we present a simulation simserver that can interface
with the DIII-D PCS to test the correctness of the real-time
implementation of the control algorithm and to determine the
effectiveness of the proposed controller.

6.1. Overview of feedforward + feedback control algorithm

The overall feedforward + feedback control algorithm
synthesized from the first-principles-driven model of the
poloidal flux profile evolution can be summarized as follows.
The feedforward control inputs are computed as

u1FF(t) =
(

n̄FF(t)

IFF(t)
√

PtotFF(t)

)3/2

u2FF(t) =
√

PtotFF(t)

IFF(t)
,

u3FF(t) = IFF(t), (59)

11
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where IFF(t), PtotFF(t) and n̄FF(t) are determined off-line
[15, 16]. In accordance with (17), the feedforward control
inputs are modified as

v1FF = u1FF v2FF = u2FF v3FF = u1FFu3FF . (60)

Finally, the closed-loop control inputs are computed as

v1 = v1FF + v1FBu1norm v2 = v2FF + v2FBu2norm ,

v3 = v3FF + v3FBu1normu3norm , (61)

where (·)FF denotes a feedforward quantity and (·)FB denotes
a feedback quantity computed on-line via (58). The closed-
loop signals for the control actuators I (t), Ptot(t) and n̄(t) are
computed as

I (t) = v3

v1
Ptot(t) =

(
v2v3

v1

)2

n̄(t) =
v2v

2
3

v
4/3
1

. (62)

6.2. Framework of plasma profile control algorithm in
DIII-D PCS

A general framework for real-time feedforward + feedback
control of magnetic and kinetic plasma profiles + a scalar
quantity has been implemented in the DIII-D PCS. The
magnetic profiles that can be controlled are: the safety factor
q, the rotational transform ι = 1/q, the poloidal flux ), or
the poloidal flux gradient θ . The kinetic profiles that can be
controlled are: the electron temperature, the ion temperature,
or the toroidal rotation velocity. The scalar quantities that
can be controlled are: the normalized plasma beta βN, the
minimum value of q, or the internal inductance of the plasma.
The selected magnetic profile can be controlled at 20 evenly
spaced points on the domain ρ̂ ∈ [0.05, 1], and the selected
kinetic profiles can be controlled at 10 evenly spaced points on
the domain ρ̂ ∈ [0.1, 1]. The feedback portion of the controller
was interfaced with the real-time EFIT (rtEFIT) equilibrium
reconstruction code [22] for magnetic profile control and with
the real-time charge-exchange recombination (rtCER) code
[23] for kinetic profile control. The control scheme in this work
has only been designed to control the magnetic poloidal flux
gradient profile, therefore, only the magnetic profile portion
of the control algorithm implemented in the DIII-D PCS is
described below.

The diagnostics provided to the PCS by rtEFIT, are the
plasma current I , the poloidal stream function at the magnetic
axis ψaxis and at the plasma boundary ψbdry, and the safety
factor q on a normalized flux spatial domain ψn where

ψn = ψ − ψaxis

ψbdry − ψaxis
. (63)

The safety factor q(ψ rt
n ) is provided by rtEFIT at 64 evenly

spaced points

ψ rt
nk

= 0, 1/64, 2/64, . . . , 63/64. (64)

The feedback portion of the controller was implemented as
a discrete time state-space system with a sampling time of
20 ms. This sampling time was set based on the modulation
of the MSE beam used to obtain q profile measurements in
real-time. In this case the MSE beam was modulated on for

Figure 6. Configuration between the DIII-D tokamak and the
DIII-D PCS real-time code for magnetic profile control.

10 ms then off for 10 ms. The configuration between the real-
time code running in the DIII-D PCS and the DIII-D tokamak
is shown in figure 6. The coordinate transformation block
in the PCS is an algorithm that is executed to construct the
selected magnetic profile yM(ρ̂), either q, ι, ) or θ , controlled
by the feedback controller from the data provided by the rtEFIT
algorithm q(ψ rt

n ), ψaxis, ψbdry and I . See appendix D for a
derivation of this algorithm. By implementing the feedback
controller with two input signals, rM − yMFF and yM − yMFF ,
controllers designed with different tracking error definitions
can be employed with the same implementation configuration.
The nonlinear transformation block in the PCS represents the
conversion (62) of the outputs prescribed by the feedforward +
feedback controller to the control signals I (t), Ptot(t) and n̄(t).
This PCS configuration provides us the ability to introduce
artificial input disturbances through the signal vd in figure 6
and to specify various target profile trajectories through the
signal rM in figure 6. These two signals allow us to test
the feedback controller in reference tracking and disturbance
rejection experiments.

It is important to note that the requests made by the
combined feedforward + feedback controller are the references
to the respective control loops commanding the physical
actuators. For example, in the case of the plasma current, a
PID loop regulates the ohmic coil voltage so the plasma current
follows the desired waveform requested by the feedforward
+ feedback algorithm. Similarly to the case of the plasma
current, a PID loop regulates gas puffing to make the line
average density measured by a CO2 interferometer follow the
combined controller requested density. Finally, the neutral
beam control loop manages the individual beam modulation
to follow the total average neutral beam power request made
by the feedforward + feedback controller. Recent experiments
in DIII-D have shown the possibility of controlling both the
plasma current and the neutral beam power very accurately.
However, the control of the line average density appears more
challenging.

We also note that the q profile is not a directly
measurable quantity and is reconstructed for feedback control
by combining diagnostic measurements with a real-time Grad-
Shafranov equilibrium solver, which is the case for the rtEFIT
algorithm. However, the accuracy of this reconstruction

12
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Figure 7. Simserver architecture.

method is limited by the difficulty of obtaining reliable internal
plasma diagnostic measurements with adequate spatial and
temporal resolution to obtain a complete description of the q

profile evolution during the discharge. An alternative approach
to constructing the q profile in real-time is to synthesize
a closed-loop observer based on the first-principles-driven,
physics-based model that governs its evolution, i.e. the same
model used to synthesize the feedback controller in this work.
The dynamics of the closed-loop observer would filter any
diagnostic measurement noise not consistent with the physics
of the current profile evolution that propagates through the
currently employed reconstruction algorithm, thus providing a
more complete picture of the magnetic profile evolution during
the plasma discharge.

If the feedfoward + feedback controller drives the physical
control actuators to saturation, causing any integral component
of the feedback controller to wind up, undesirable oscillations
in the system could develop. Therefore, some type of anti-
windup design is necessary to ensure that the closed-loop
system remains well behaved in the presence of actuator
saturation. The approach taken here is to augment the given
feedforward + feedback controller (59)–(62) with an anti-
windup compensation feedback designed to guarantee stability
and keep the feedforward + feedback controller well behaved
when actuator saturation is present. This is accomplished
through the addition of another input signal to the feedback
portion of the combined controller. When there is no actuator
saturation, the anti-windup compensator leaves the nominal
closed-loop system unmodified. See [24] for an example of
the employed anti-windup augmentation.

6.3. Simserver architecture

The simulation simserver (Simserver) architecture is a valuable
simulation environment which is used for testing algorithms
running in the DIII-D PCS, and its architecture is shown in
figure 7. It incorporates a tokamak simulation model that is
used to test the PCS in realistic closed-loop simulations. The
simulation model accepts control inputs from the PCS and
then generates simulated diagnostics. A test switch connects
the PCS (left) to either the DIII-D tokamak (upper right) or
the DIII-D simulated tokamak (bottom right) depending on

which mode of operation is selected. The Matlab/Simulink
modelling environment is used to model the major features of
the tokamak, and the only restriction on the Simulink models is
that their inputs and outputs must be consistent with the input
and output channels in the PCS. This type of simulation is used
to determine the effectiveness of controllers and correctness of
their real-time implementation before experimental tests are
conducted [25, 26].

In order to carry out a Simserver simulation, a Simulink
model of the magnetic diffusion equation (7) was developed
and integrated into a Simserver that can interface with the
DIII-D PCS. To construct the model, the governing infinite
dimensional PDE (7) is approximated by a finite dimensional
system of ODEs. The process used to obtain the reduced-
order model is the same one used in section 4 where the non-
dimensional spatial domain is represented as l nodes while
the time domain is left continuous. This discretization process
results in l ordinary differential equations that can be integrated
in time to simulate the current profile evolution in response to
the control actuator signals. In order to be compatible with
the diagnostics provided to the PCS by rtEFIT, the Simulink
model of the magnetic diffusion equation is required to output
the plasma current I (t), the poloidal stream function at the
magnetic axis ψaxis and at the plasma boundary ψbdry, and the
safety factor q(ψ rt

n ).

7. Simserver simulation testing of control algorithm

In this section, we show results from a Simserver simulation
used to test the implementation of the control algorithm (59)–
(62) in the DIII-D PCS and to demonstrate the effectiveness of
the proposed control algorithm. In order to test the feedback
controller in a realistic tokamak operating scenario we need to
generate simulation conditions where there is a mismatch (i)
between the actual and the assumed initial conditions and (ii)
between the actual plant and the model used for the control
design. The nominal initial poloidal flux gradient profile θ(ρ̂)

is shown in figure 8, which is extracted from DIII-D shot #
129412 at an experimental time of t = 0.5 s. In order to
satisfy the first simulation condition requirement, we perturb
the initial θ profile as shown in figure 8. We denote as the
nominal model the PDE model of the θ profile evolution in a
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Figure 8. (Simulation reference tracking) Initial poloidal flux
gradient profile θ(ρ̂) at time t = 0.5 s.

tokamak presented in section 3. This nominal model is used to
design both the feedforward and the feedback controllers. In
order to satisfy the second simulation condition requirement,
we perturb the nominal electron temperature model (4) and
non-inductive current density model (5) as

T profile,dis
e (ρ̂) = a × T profile

e (ρ̂) kdis
Te

= a × kTe ,

j
profile,dis
NIpar

(ρ̂) = a × j
profile
NIpar

(ρ̂) kdis
NIpar

= a × kNIpar , (65)

where a = 1.1 in order to produce a plant (disturbed model)
that is different from the nominal model used to synthesize the
control algorithm. These simulation conditions provide the
means to test the feedback controller in a realistic operating
scenario where there is a mismatch between the actual and
the assumed initial conditions and between the plant and the
model.

We now describe the setup for a test conducted to
determine the reference tracking capabilities of the feedback
controller through simulation with the real-time code utilized
in the DIII-D PCS. We begin by producing a target poloidal flux
gradient profile evolution θtar(ρ̂, t) by executing a feedfoward
control only simulation, i.e. vFB = vd = 0 in figure 6,
with the optimal feedforward control inputs vFFOpt [15, 16].
For this simulation, the Simserver simulates the nominal
model with the nominal initial condition. Next, we produce
a second poloidal flux gradient profile evolution θFF(ρ̂, t)

that is different from the target evolution θtar(ρ̂, t). This is
accomplished by generating a non-optimal set of feedfoward
control trajectories vFF by perturbing the optimal feedfoward
control inputs and then executing another feedfoward control
only simulation with these perturbed control inputs. For
this simulation, the Simserver simulates the disturbed model
(plant) with the perturbed initial condition. Finally, we
determine the ability of the feedback controller to track the
target profile evolution θtar(ρ̂, t) by executing a feedforward
+ feedback control simulation. For this simulation, the
Simserver simulates the disturbed model (plant) with the
perturbed initial condition. The setup of the feedforward +
feedback simulation is as follows. The feedback controller
is on for the duration of the simulation, the non-optimal
feedforward control inputs vFF are used, no input disturbances

are applied, i.e. vd = 0, and the reference vector is set
according to rM(ρ̂, t) = θtar(ρ̂, t). The tracking error e is
defined at any time t during the simulation as

e = (rM − yMFF) − (yM − yMFF) =
[
θtar(ρ̂) − θFF(ρ̂)

]

−
[
θ(ρ̂) − θFF(ρ̂)

]
= θtar(ρ̂) − θ(ρ̂), (66)

which in turn implies the feedback controller is trying to drive
the θ profile to the desired target profile.

The ramp-up phase of the simulated discharges
corresponds to an experimental time t = [0.5, 1.7] s, and the
early flat-top phase of the simulated discharges is associated
with the experimental time t = [1.7, 2.9] s. A comparison
between the target profile, the θ profile achieved by the plant
(disturbed model) with feedforward + feedback control, and
the θ profile achieved by the plant with feedforward only
control at experimental times t = 1.7, t = 2.3 and t = 2.9 s
is shown in figure 9. During the ramp-up phase, the feedback
controller reacts to the initial tracking error and begins to drive
the plant towards the target. At the end of the ramp-up phase,
the modification of the θ profile of the plant towards the target
profile is evident as shown in figure 9(a). As the feedforward
+ feedback simulation progresses into the beginning of the
flat-top phase, the feedback controller is able to successfully
drive the plant to the target profile and then regulate the
θ profile evolution around the target trajectory as shown in
figures 9(b) and 9(c). A comparison of the feedforward and
feedforward + feedback control trajectories for I (t), Ptot(t)

and n̄(t) is shown in figure 10. In order to (i) track the target
profile evolution, (ii) overcome the disturbance in the initial
θ profile and (iii) overcome the uncertainty in the plant, the
feedback component of the combined controller modifies the
non-optimal feedforward control trajectories throughout the
feedforward + feedback simulation.

8. Experimental testing of control algorithm

The actuators used to manipulate the poloidal flux gradient
profile evolution θ(ρ̂, t) have a limited ability to drive the
system towards a desired target profile based on the physical
design of the DIII-D tokamak. As a result, there are a limited
number of target profiles that are physically achievable by
the machine no matter what type of profile control strategy
is employed. The control actuators themselves are also
physically constrained in magnitude as well as rate of change,
which further reduces the range of target profiles achievable
for a given initial θ profile. The goal of the experimental
tests was to verify that the feedback controller synthesized
from a first-principles-driven model of the poloidal flux profile
evolution is able to drive the system to a target profile that is
physically achievable by the machine. Towards this goal, we
first sought a target poloidal flux gradient profile evolution
θtar(ρ̂, t) that was physically achievable by the machine. We
executed a feedfoward control only discharge with a nominal
set of feedforward control inputs vFFNom in DIII-D shot #
145477, and from this discharge we extracted a physically
achievable target profile evolution that we employed to test
the feedback controller in reference tracking and disturbance
rejections experiments.
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Figure 9. (Simulation reference tracking) Poloidal flux gradient profile θ(ρ̂) at time (a) t = 1.7 s, (b) t = 2.3 s and (c) t = 2.9 s.
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Figure 10. (Simulation reference tracking) Control trajectory comparison: (a) plasma current (MA), (b) total non-inductive power (MW)
and (c) line average density (1019 m−3).

8.1. Reference tracking

In this subsection we describe the results of a test designed to
determine the reference tracking capabilities of the feedback
controller in the DIII-D tokamak during the ramp-up and early
flat-top phases of the discharge. We first produced a poloidal
flux gradient profile evolution θFF(ρ̂, t) that was different from
the target evolution θtar(ρ̂, t). This profile evolution was
obtained by perturbing the nominal feedfoward control inputs
to obtain a second set of feedfoward control inputs vFFPtrb and
executing a feedfoward control only discharge in DIII-D shot
# 146411. Next, we determined the ability of the feedback
controller to track the target profile evolution θtar(ρ̂, t) by
executing a feedforward + feedback control discharge in
DIII-D shot # 146458. During this discharge, the feedback
controller was on for the duration of the experiment, the
feedforward control inputs vFFPtrb were used as the feedforward
component of the combined controller, and the reference vector
was set according to rM(ρ̂, t) = θtar(ρ̂, t). As seen in (66), this
choice of the reference vector implies the feedback controller
was trying to drive the θ profile to the desired target profile.

In the reference tracking experiment, the ramp-up phase
was associated with the time t = [0.5, 1.2] s, and the early
flat-top phase corresponded to the time t = [1.2, 2.25] s.
Time traces of the poloidal flux gradient θ at normalized radii
ρ̂ = 0.3, 0.4, 0.6, 0.7, 0.8 and 0.9 achieved during the target
discharge, the feedforward + feedback control discharge and
the feedforward control discharge are shown in figure 11. The
feedback controller can manipulate the θ profile evolution
through diffusivity, interior and boundary actuation. Due to the
fact that the boundary actuation is one of the more influential
actuators as shown in figure 2(b), the feedback controller

can more effectively control the θ profile near the plasma
boundary because of the spatial proximity of the actuator
and the controlled quantity. Therefore, a tracking error in
the interior of the plasma will take longer to be eliminated
because the control action applied at the plasma boundary
will have to diffuse towards the centre of the plasma. This
behaviour is shown in figures 11(c)–(f ) for the time traces
of θ at normalized radii ρ̂ = 0.6, 0.7, 0.8 and 0.9 achieved
in the feedforward + feedback control discharge. During this
discharge, the θ evolution at ρ̂ = 0.6 and 0.7 was initially
below the desired target evolution. Therefore, the feedback
controller caused θ at ρ̂ = 0.8 and 0.9 to overshoot the desired
target evolution at these spatial locations in order to cause
the θ evolution at ρ̂ = 0.6 and 0.7 to increase towards the
target evolution through diffusion. Once the target θ evolution
was achieved at ρ̂ = 0.6 and 0.7 at the time t = 2.0 s as
shown in figures 11(c) and (d), the feedback controller began
to reduce the tracking error at the normalized radii ρ̂ = 0.8
and 0.9 during the time interval t = [2.0, 2.25] s as shown in
figures 11(e) and (f ).

A comparison between the target profile, the θ(ρ̂) profile
achieved in the feedforward + feedback control discharge,
and the θ(ρ̂) profile achieved in the feedforward control
discharge at times t = 0.538, t = 1.218, t = 1.618 and
t = 2.258 s is shown in figure 12. Due to the nonlinear
behaviour of the tokamak plasma and the physical limitations
of the actuators to manipulate the θ profile evolution, there was
no guarantee that the feedback controller would be able to drive
the θ profile evolution in the feedforward + feedback control
discharge to the target profile evolution from the perturbed
initial condition shown in figure 12(a). During the ramp-up
phase of the feedforward + feedback control discharge, the
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(a) (b) (c)

(f)(e)(d)

Figure 11. (Experiment reference tracking) Time trace of poloidal flux gradient θ at normalized radii (a) ρ̂ = 0.3, (b) ρ̂ = 0.4, (c) ρ̂ = 0.6,
(d) ρ̂ = 0.7, (e) ρ̂ = 0.8 and (f ) ρ̂ = 0.9.

(a) (b)

(d)(c)

Figure 12. (Experiment reference tracking) Poloidal flux gradient profile θ(ρ̂) at time (a) t = 0.538 s, (b) t = 1.218 s, (c) t = 1.618 s and
(d) t = 2.258 s.
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(a) (b) (c)

Figure 13. (Experiment reference tracking) Control trajectory comparison: (a) plasma current (MA), (b) total non-inductive power (MW)
and (c) line average density (1019 m−3).

feedback controller began to drive the plasma towards the
target profile by modifying the perturbed feedforward actuator
trajectories as shown in figures 12(b) and (c). At the end of
the early flat-top phase of the feedforward + feedback control
discharge, the feedback controller was able to drive the θ

profile as close as possible to the target profile as shown in
figure 12(d).

A comparison of the actuator trajectories during the
feedforward control discharge and during the feedforward +
feedback control discharge is shown in figure 13. In order
to track the target profile evolution, the feedback component
of the combined controller modified the actuator trajectories
throughout the feedforward + feedback control discharge.
Also shown in figure 13 is the ability of the control loops
commanding the physical actuators to follow the requests made
by the control algorithm. The control loops commanding the
total plasma current and the total average neutral beam power
were able to follow the requests very well, and the control loop
commanding the line average density was able to follow the
request reasonably well.

8.2. Disturbance rejection

In this subsection we describe the results of a test designed to
determine the disturbance rejection capabilities of the feedback
controller in the DIII-D tokamak during the flat-top phase
of the discharge. To determine the ability of the feedback
controller to reject an artificial input disturbance, a feedforward
+ disturbance + feedback control discharge was executed in
DIII-D shot # 146153. During this discharge, the nominal
feedforward control inputs vFFNom were used during the time
interval t = [0.5, 2] s (ramp-up and early flat-top phases)
with the feedback controller off. During the time interval
t = [2, 5] s (flat-top phase), a disturbance was added to the
nominal feedforward actuator trajectories. The disturbance
was added according to

v1FFdis
= u1FFNom

v2FFdis
= u2FFNom

,

v3FFdis
= u1FFNom

[
u3FFNom

− 0.1
]

(67)

to produce a feedforward + disturbance set of control inputs
vFFdis . By examining (62) it can be seen that this disturbance
will propagate into each of the three control actuators I (t),
Ptot(t) and n̄(t). The feedback controller was turned on and

off throughout this discharge according to

vFB =






0.5 to 2.2 s OFF
2.2 to 2.7 s ON
2.7 to 3.2 s OFF
3.2 to 5.0 s ON

(68)

to see the effect the disturbance had on the plasma and to
determine the ability of the feedback controller to reject the
disturbance and regulate the θ profile evolution around the
target profile evolution. The reference vector was set according
to rM(ρ̂, t) = θtar(ρ̂, t), which implies the feedback controller
was trying to regulate the θ profile around the desired target
profile.

A comparison between the target profile and the θ(ρ̂)
profile achieved during DIII-D shot # 146153 (FF + Dist. + FB)
at several times throughout the discharge is shown in figure 14.
When the disturbance was initially introduced to the plasma
at the time t = 2.0 s, the θ profile was close to the desired
target profile as shown in figure 14(a). During the time interval
t = [2.0, 2.2] s, the disturbance slightly moved the θ profile
away from the target profile as shown in figure 14(b). At the
time t = 2.2 s, the feedback controller was turned on and it was
able to reject the effects of the disturbance. This resulted in the
target profile being successfully achieved when the feedback
controller was turned off at the time t = 2.7 s as shown in
figure 14(c). During the time interval t = [2.7, 3.2] s, the θ
profile again drifted away from the target profile due to the
disturbance as shown in figure 14(d). Finally, the feedback
controller was turned on for the remainder of the discharge
at the time t = 3.2 s and it was once again able to reject the
effects the disturbance had on the θ profile evolution. This
resulted in the θ profile evolution being driven to and then
successfully regulated around the target profile evolution as
shown in figures 14(e) and (f ).

Time traces of θ at normalized radii ρ̂ = 0.3, 0.4, 0.6,
0.7, 0.8 and 0.9 achieved during the target discharge and DIII-
D shot # 146153 are shown in figure 15. The effect the
uncontrolled disturbance had on the θ profile evolution can
be seen in the time traces of θ at normalized radii ρ̂ = 0.6,
0.7, 0.8 and 0.9 as shown in figures 15(c)–(f ). During the
time intervals t = [2.0, 2.2] s and t = [2.7, 3.2] s when the
feedback controller was off, the disturbance caused θ to drift
away from the target. Also shown in these time traces of θ
is the ability of the feedback controller to reject the effects
of the disturbance and regulate θ around the target during the
time intervals t = [2.2, 2.7] s and t = [3.2, 5.0] s when the
feedback controller was on.
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(a) (b) (c)

(f)(e)(d)

Figure 14. (Experiment disturbance rejection) Poloidal flux gradient profile θ(ρ̂) at time (a) t = 1.998 s, (b) t = 2.198 s, (c) t = 2.698 s,
(d) t = 3.158 s, (e) t = 3.998 s and (f ) t = 4.958 s.

(a) (b) (c)

(f)(e)(d)

Figure 15. (Experiment disturbance rejection) Time trace of poloidal flux gradient θ at normalized radii (a) ρ̂ = 0.3, (b) ρ̂ = 0.4, (c)
ρ̂ = 0.6, (d) ρ̂ = 0.7, (e) ρ̂ = 0.8 and (f ) ρ̂ = 0.9.

A comparison of the actuator trajectories during the target
discharge and during the feedforward + disturbance + feedback
control discharge is shown in figure 16. In order to regulate
the θ profile around the target profile and reject the effects
of the disturbance, the feedback component of the combined
controller modified the actuator trajectories throughout the
discharge. The actuator limits during this control test were

0.3 MA ! I (t) ! 1.5 MA,

2.24 MW ! Ptot(t) ! 4.4275 MW,

2(10)19 m−3 ! n̄(t) ! 10(10)19 m−3. (69)

As can be seen in figure 16, the combined control algorithm
drove the line average density request to saturation, however,
the line average density requested by the control algorithm
was around 1.9(10)19 m−3. Therefore, the level of actuator
saturation was small, and the anti-windup compensator was
able to successfully keep the closed-loop system well behaved
in the presence of the actuator saturation. Also shown in
figure 16 is the ability of the control loops commanding the
physical actuators to follow the requests made by the combined
control algorithm. The control loops commanding the total
plasma current and the total average neutral beam power were
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(a) (b) (c )   

Figure 16. (Experiment disturbance rejection) Control trajectory comparison: (a) plasma current (MA), (b) total non-inductive power
(MW) and (c) line average density (1019 m−3).

able to follow the requests very well, but the control loop
commanding the line average density was not able to follow the
request very well. This resulted in an additional, unintentional
disturbance the feedback controller needed to overcome.

9. Conclusions and future work

A robust feedback controller was synthesized to control the
poloidal flux gradient profile evolution in the DIII-D tokamak
from a first-principles-driven model of the poloidal flux profile
evolution. A general framework for real-time feedforward +
feedback control of magnetic and kinetic plasma profiles was
successfully implemented in the DIII-D PCS. The feedback
component of the control algorithm was interfaced with
the available real-time measurements and successfully tested
experimentally during both the ramp-up and flat-top phases of
L-mode discharges. Even though the model used to synthesize
the feedback controller neglected the effects of the bootstrap
current, the adequate performance of the feedback controller
during the flat-top phase of the discharge can be attributed
to the facts that the effects of the bootstrap current on the
θ profile evolution are typically small in L-mode plasmas
and the feedback controller is robust against the unmodelled
bootstrap current dynamics in this operating regime. These
experiments mark the first time ever a first-principles-driven,
model-based, closed-loop magnetic profile controller was
successfully implemented and tested in a tokamak device.

Now that the performance of the synthesized feedback
controller for plasma magnetic profile control has been exper-
imentally validated in L-mode, the combined feedforward +
feedback control scheme will be extended to H-mode advanced
tokamak operating scenarios. Work towards developing a sim-
plified nonlinear, dynamic, control-oriented PDE model of the
poloidal flux profile evolution valid for H-mode plasma dis-
charges will be carried out by once again proposing simplified
models for the electron temperature, the plasma resistivity, and
the non-inductive current drive. The fact that the characteris-
tic thermal diffusion time is much faster than the characteristic
resistive diffusion time will be exploited to determine some
of these models. The co-injection neutral beams, the counter-
injection neutral beams, and the electron cyclotron heating will
be modelled individually rather than together, which may im-
prove the controllability of the current profile by providing ad-
ditional actuators. The effects of the non-inductive bootstrap
current will also be taken into account since they are expected
to be significant in H-mode. Finally, first-principles-driven
feedforward + feedback control schemes will be proposed

to regulate both the magnetic and kinetic plasma profiles
around desired target profiles simultaneously in H-mode
discharges.
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Appendix A. Representation of time-varying model
in robust control framework

By employing (28), the model for the deviation dynamics (27)
is expressed as

ẋk = γv

(
1 + βvδv

) n∑

j=1

,k,j xj

+
[ n∑

i=1

,k,i

(
γ i

α

(
1 + β i

αδi
α)

)
, -k, .k

]
vFB, (A.1)

where k = 1, 2, . . . , n, xk denotes the kth component of x,
,k,j denotes the kth row j th column component of ,, and -k

and .k denote the kth component of - and ., respectively.
This representation of the deviation dynamics is rewritten as

ẋk =
n∑

j=1

[
A0k,j

+ δvA1k,j

]
xj +

[
B0k

+
n∑

i=1

δi
αBik

]
vFB, (A.2)

where

A0k,j
= γv,k,j A1k,j

= γvβv,k,j ,

B0k
=

[
n∑

i=1

γ i
α,k,i , -k, .k

]

Bik =
[(

γ i
αβ i

α

)
,k,i , 0, 0

]

(A.3)

and A0k,j
and A1k,j

denote the kth row j th column component
of A0 and A1, respectively, and B0k

and Bik denote the kth
component of B0 and Bi respectively. By defining the total
uncertainty vector δ as δ = [δ1

α, . . . , δn
α, δv] ∈ R(n+1)×1, the

representation of the state-space matrices A(t), B(t), C and D

given in (29)–(31) is obtained.
A linear system with state-space matrices A, B, C and D

has a transfer function representation G(s) = C(sIn−A)−1B+
D, where s denotes the Laplace variable and n is the number
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Figure A1. Transfer function G(s) (a) represented as a LFT and (b) with uncertainty * pulled out.

of states of the system. By defining the matrix

Ma =
[
A B

C D

]
(A.4)

the system transfer function G(s) can be written as a linear
fractional transformation (LFT) as

G(s) = D + C(sIn − A)−1B = D + C
1
s
In

(
In − A

1
s
In

)−1

B

=Ma22 + Ma21

1
s
In

(
In − Ma11

1
s
In

)−1

Ma12 = Fu

(
Ma,

1
s
In

)
,

(A.5)

where Fu denotes the upper LFT. The block diagram of the
system transfer function G(s) (A.5) is shown in figure A1(a)
with equivalent equations

w1 = 1
s
Inz1, y = Fu

(
Ma,

1
s
In

)
vFB = G(s)vFB. (A.6)

By employing (29), the matrix Ma , defined in (A.4), is
written in the form of a general affine state-space uncertainty

Ma =
[
A0 +

∑n+1
m=1 δmA∗

m B0 +
∑n+1

m=1 δmB∗
m

C0 +
∑n+1

m=1 δmC∗
m D0 +

∑n+1
m=1 δmD∗

m

]
. (A.7)

By exploiting the structure of the state matrices in (A.7), the
uncertainty is formulated into a LFT by achieving the smallest
possible number of repeated blocks [27]. With this purpose in
mind, the matrix Jm is formed as

Jm =
[
A∗

m B∗
m

C∗
m D∗

m

]
∈ R2n×(n+3). (A.8)

By using singular value decomposition and grouping terms,
the matrix Jm is expressed as

Jm = Um2mV ∗
m = (Um

√
2m)(

√
2mV ∗

m) =
[
Lm

Wm

]
.

[
Rm

Zm

]∗
,

(A.9)

where [·]∗ denotes the complex conjugate transpose. If the
rank of the matrix Jm is qm, then each inner matrix has the
following dimensions:

Lm ∈ Rn×qm Wm ∈ Rn×qm Rm ∈ Rn×qm Zm ∈ R3×qm .

(A.10)

By employing (A.9), the uncertainty is written as

δmJm =
[
Lm

Wm

]
[δmIqm

]
[
Rm

Zm

]∗
, (A.11)

where Iqm
is a qm × qm identity matrix. Finally the matrix Ma ,

defined in (A.7), is expressed as

Ma =
[
A0 B0

C0 D0

]
+

n+1∑

m=1

δmJm = F11 + F12*F21, (A.12)

where

F11 =
[
A0 B0

C0 D0

]
F12 =

[
L1 . . . Ln+1

W1 . . . Wn+1

]
,

F21 =




R∗

1 Z∗
1

...
...

R∗
n+1 Z∗

n+1



 * =




δ1Iq1 0

. . .

0 δn+1Iqn+1



 .

(A.13)
The representation of the matrix Ma , defined in (A.12), is equal
to the lower LFT

Ma = Fl(F, *) = F11 + F12*(IqT − F22*)−1F21

= F11 + F12*F21, (A.14)
where

F =
[
F11 F12

F21 0

]
(A.15)

qT is the total rank of the * matrix given by

qT =
n+1∑

m=1

qm (A.16)

and Fl denotes the lower LFT.
The block diagram of the system is now drawn as in

figure A1(b) with equivalent equations

w1 = 1
s
Inz1 w2 = *z2,

y = Fu

(
Fl(F, *),

1
s
In

)
vFB = G(s)vFB. (A.17)

The transfer function G(s) of the uncertain state-space model
is next expressed as

G(s) = Fu

(
Ma,

1
s
In

)
= Fu

(
Fl(F, *),

1
s
In

)

= Fl

(
Fu

(
F,

1
s
In

)
, *

)
= Fl(P

′, *). (A.18)
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Figure A2. Block diagram manipulation to obtain plant P .

For convention purposes, it is necessary to move the
uncertainty to create an upper LFT by employing the definition

G(s) = Fl(P
′, *) = Fu(P, *), (A.19)

where

P ′ =
[
P22 P21

P12 P11

]
P =

[
P11 P12

P21 P22

]
. (A.20)

The corresponding block diagram manipulation is shown in
figure A2. The input–output equations of the system in this
robust control framework are given by (33).

Appendix B. Identification of significant control
channels

During the process of determining the relevant control
channels, we consider the performance index (49). We
partition the singular values into k significant singular values
2s and 3 − k negligible singular values 2ns and introduce the
partitions

U =
[
Us Uns

]
V =

[
Vs Vns

]
2 =

[
2s 0
0 2ns

]
, (B.1)

r̄∗ =
[
r̄∗

s
r̄∗

ns

]
ȳ∗ =

[
ȳ∗

s
ȳ∗

ns

]
v̄∗

FB =
[
v̄∗

FBs

v̄∗
FBns

]
, (B.2)

where Us ∈ Rn×k , 2s ∈ Rk×k , Vs ∈ R3×k , r̄∗
s ∈ Rk×1,

ȳ∗
s ∈ Rk×1 and v̄∗

FBs
∈ Rk×1. By employing the partitions

(B.1), the properties V TV = I and UTU = I are expressed as

V TV =
[
V T

s
V T

ns

] [
Vs Vns

]
=

[
V T

s Vs V T
s Vns

V T
nsVs V T

nsVns

]
=

[
I 0
0 I

]
,

UTU =
[
UT

s
UT

ns

] [
Us Uns

]
=

[
UT

s Us UT
s Uns

UT
nsUs UT

nsUns

]
=

[
I 0
0 I

]
.

(B.3)

Using (B.1) and (B.2), we obtain the reduced form of the
performance index given by (50). By employing (B.1), (B.3),
and using the relationships ȳ∗

s = 2−1
s UT

s Q1/2ȳ ∈ Rk×1 and
ȳ = Q−1/2U2V TR1/2v̄FB, a reduced form of the decoupled
system ȳ∗ = v̄∗

FB is expressed as

ȳ∗
s = 2−1

s UT
s Q1/2ȳ = 2−1

s UT
s Q1/2Q−1/2U2V TR1/2v̄FB

= 2−1
s UT

s

[
Us Uns

] [
2s 0
0 2ns

] [
V T

s
V T

ns

]
R1/2v̄FB

= 2−1
s

[
I 0

] [
2sV

T
s

2nsV
T

ns

]
R1/2v̄FB = v̄∗

FBs
, (B.4)

where we have defined

v̄∗
FBs

= V T
s R1/2v̄FB ⇐⇒ v̄FB = R−1/2Vsv̄

∗
FBs

. (B.5)

Appendix C. Derivation of nominal performance
condition of closed-loop system

The feedback system shown in figure 3 is expressed in the
conventional * − P ∗ − K robust control design framework
shown in figure C1(a) where P ∗ is the generalized plant, K

is the feedback controller, Z1 = Wpe
∗
s , Z2 = Wuv

∗
FBs

and
Wp and Wu are frequency dependent weight functions. The
input–output equations of the generalized plant P ∗ are





y*

Z1

Z2

e∗
s



 =





P ∗
11 P ∗

12 P ∗
13

P ∗
21 P ∗

22 P ∗
23

P ∗
31 P ∗

32 P ∗
33

P ∗
41 P ∗

42 P ∗
43








u*

r∗
s

v∗
FBs



 , (C.1)

where

P ∗
11 = P11 P ∗

21 = −Wp2
−1
s UT

s Q1/2P21 P ∗
31 = 0,

P ∗
12 = 0 P ∗

22 = Wp P ∗
32 = 0,

P ∗
13 = P12R

−1/2Vs P ∗
23 = −Wp2

−1
s UT

s Q1/2P22R
−1/2Vs

P ∗
33 = Wu, P ∗

41 = −2−1
s UT

s Q1/2P21 P ∗
42 = I,

P ∗
43 = −2−1

s UT
s Q1/2P22R

−1/2Vs. (C.2)

If the generalized plant P ∗ is partitioned as

P ∗ =
[
P̃ ∗

11 P̃ ∗
12

P̃ ∗
21 P̃ ∗

22

]
, (C.3)

where

P̃ ∗
11 =




P ∗

11 P ∗
12

P ∗
21 P ∗

22
P ∗

31 P ∗
32



 P̃ ∗
12 =




P ∗

13
P ∗

23
P ∗

33



 ,

P̃ ∗
21 =

[
P ∗

41 P ∗
42

]
P̃ ∗

22 =
[
P ∗

43

]
(C.4)

the system (C.1) can be written in the N − * control analysis
configuration shown in figure C1(b) by using the definition of
the lower LFT, which is denoted as Fl, between P ∗ and K

N = Fl(P
∗, K) = P̃ ∗

11 + P̃ ∗
12K(I − P̃ ∗

22K)−1P̃ ∗
21. (C.5)

The transfer function N is expressed as

N =




N11 N12

N21 N22

N31 N32



 , (C.6)
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Figure C1. Model in (a) * − P ∗ − K robust control design framework and (b) N − * control analysis configuration.

where

N11 = P11 − Ty*vK(I + GDCK)−1Tyu*
,

N12 = Ty*vK(I + GDCK)−1,

N21 = Wp(GDCK(I + GDCK)−1 − I )Tyu*
,

N22 = Wp(I − GDCK(I + GDCK)−1),

N31 = −WuK(I + GDCK)−1Tyu*
,

N32 = WuK(I + GDCK)−1 (C.7)

and

GDC = 2−1
s UT

s Q1/2P22R
−1/2Vs,

Ty*v = P12R
−1/2Vs,

Tyu*
= 2−1

s UT
s Q1/2P21. (C.8)

By using the definitions

SDCO = (I + GDCK)−1,

TDCO = GDCK(I + GDCK)−1,

I = SDCO + TDCO , (C.9)

where SDCO is the decoupled output sensitivity function
and TDCO is the decoupled output complementary sensitivity
function, (C.6) is written as

N =




P11 − Ty*vKSDCOTyu*

Ty*vKSDCO

−WpSDCOTyu*
WpSDCO

−WuKSDCOTyu*
WuKSDCO



 . (C.10)

The closed-loop system is now expressed as




y*

Z1

Z2



 = N

[
u*

r∗
s

]
(C.11)

and the nominal performance condition of the closed-loop
system is given by (53).

Appendix D. Interfacing feedback controller with
available rtEFIT measurements

The coordinate transformation algorithm in the DIII-D PCS
is employed to construct the magnetic profiles available for

Table D1. Measurements available in real-time.

Measurement Description Units

q(ψ rt
n ) Safety factor on normalized

flux spatial domain None
ψaxis Poloidal stream function

on magnetic axis Wb rad−1

ψbdry Poloidal stream function
on plasma boundary Wb rad−1

I Plasma current MA

real-time feedback control on the normalized effective minor
radius spatial domain ρ̂ from the data provided by the real-
time EFIT (rtEFIT) equilibrium reconstruction code. The
measurements that are available in real-time on the normalized
flux spatial domain ψn are shown in table D1. The normalized
flux ψn is defined as

ψn = ψ − ψaxis

ψbdry − ψaxis
. (D.1)

The safety factor q(ψ rt
n ) is provided by rtEFIT at 64 evenly

spaced points

ψ rt
n = 0, 1/64, 2/64, . . . , 63/64. (D.2)

We begin the magnetic profile construction algorithm by
determining the normalized effective minor radius coordinates
associated with the rtEFIT normalized flux coordinates (D.2).

D.1. Computing normalized effective minor radius
coordinates

The basic definition of the safety factor is

q = −d%

d)
= − d%

2πdψ
, (D.3)

which we use to calculate the toroidal flux coordinates %(ψ rt
n )

corresponding to the values of q(ψ rt
n ) provided by rtEFIT. By

using the relationship

dψ =
(
ψbdry − ψaxis

)
dψn (D.4)
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we integrate (D.3) to obtain
ψ∫

ψaxis

d% = %(ψ) − %(ψaxis) = −2π

ψ∫

ψaxis

q(ψ)dψ,

%(ψn) − %(0) = −2π

ψn∫

0

(
ψbdry − ψaxis

)
q(ψn)dψn,

%(ψn) = −2π

ψn∫

0

(
ψbdry − ψaxis

)
q(ψn)dψn, (D.5)

where %(0) = 0 by definition. By numerically integrating the
right-hand side of (D.5) by employing trapezoidal integration,
we compute the toroidal flux coordinates %(ψ rt

n

∣∣
k
), 2 ! k !

64, as

%(ψ rt
n

∣∣
k
)=

2π(ψaxis − ψbdry)

2
1

64

k∑

j=2

[
q(ψ rt

n

∣∣
j−1) + q(ψ rt

n

∣∣
j
)

]

= %(ψ rt
n

∣∣
k−1) +

2π(ψaxis − ψbdry)

2
1

64

×
[
q(ψ rt

n

∣∣
k−1) + q(ψ rt

n

∣∣
k
)

]
, (D.6)

where %(ψ rt
n |1) = 0. Because the safety factor is not

computed at the plasma boundary by rtEFIT, we employ the
approximation q(ψ rt

n

∣∣
65) = q(ψ rt

n

∣∣
64) to compute % at the

plasma boundary. This approximation results in

%(ψ rt
n

∣∣
65) = %(ψ rt

n

∣∣
64) + 2π(ψaxis − ψbdry)

1
64

q(ψ rt
n

∣∣
64).

(D.7)
By using the relationship between the toroidal flux coordinates
and the mean effective minor radius ρ

% = πBφ,0ρ
2, (D.8)

where Bφ,0 is the reference toroidal magnetic field at the
geometric major radius of the tokamak, we calculate the mean
effective minor radius ρ(ψ rt

n

∣∣
k
), 1 ! k ! 65, as

ρ(ψ rt
n

∣∣
k
) =

√
%(ψ rt

n

∣∣
k
)

πBφ,0
. (D.9)

The normalized effective minor radius ρ̂(ψ rt
n

∣∣
k
), 1 ! k ! 65,

is then computed as

ρ̂(ψ rt
n

∣∣
k
) =

ρ(ψ rt
n

∣∣
k
)

ρ(ψ rt
n

∣∣
65)

. (D.10)

We now know the normalized effective minor radius
coordinates associated with the rtEFIT normalized flux
coordinates (D.2), which we use to construct the magnetic
profiles available for real-time control on the desired spatial
domain.

D.2. Constructing magnetic profiles available for real-time
control

Due to the unique relationship between the normalized
effective minor radius coordinates (D.10) and the rtEFIT
normalized flux coordinates (D.2), we can construct the desired
magnetic profiles available for real-time control shown in
table D2 from the measurements q(ψ rt

n ) provided by rtEFIT.

Table D2. Magnetic profiles available in real-time.

Description (On normalized
Profile effective minor radius domain) Units

q(ρ̂) Safety factor None

i(ρ̂) Rotational transform None

)(ρ̂) Poloidal flux Wb

θ(ρ̂) = ∂ψ/∂ρ̂ Poloidal flux gradient Wb rad−1

D.2.1. Safety factor profile: q. The safety factor profile
q(ρ̂(ψ rt

n

∣∣
k
)), 1 ! k ! 64, is computed as

q(ρ̂(ψ rt
n

∣∣
k
)) = q(ψ rt

n

∣∣
k
). (D.11)

As the safety factor is not computed at the plasma boundary
by rtEFIT, we employ the approximation

q(ρ̂(ψ rt
n

∣∣
65)) = q(ψ rt

n

∣∣
64) (D.12)

to compute the safety factor at the plasma boundary.

D.2.2. Rotational transform profile: i. The rotational
transform profile is defined as i = 1/q, therefore, i(ρ̂(ψ rt

n

∣∣
k
)),

1 ! k ! 64, is computed as

i(ρ̂(ψ rt
n

∣∣
k
)) = 1

q(ψ rt
n

∣∣
k
)
. (D.13)

As the safety factor is not computed at the plasma boundary
by rtEFIT, we employ the approximation

i(ρ̂(ψ rt
n

∣∣
65)) = 1

q(ψ rt
n

∣∣
64)

(D.14)

to compute the rotational transform at the plasma boundary.

D.2.3. Poloidal flux profile: ). The relationship between
the poloidal flux ) and the poloidal stream function ψ is

) = 2πψ. (D.15)

Therefore, we use (D.1) and (D.2) to compute the poloidal flux
profile )(ρ̂(ψ rt

n

∣∣
k
)), 1 ! k ! 65, as

)(ρ̂(ψ rt
n

∣∣
k
)) = 2π

(
ψaxis +

k − 1
64

(ψbdry − ψaxis)

)
. (D.16)

D.2.4. Poloidal flux gradient profile: θ . By using the
definition of the safety factor (D.3), the relationship between
% and ρ (D.8), and the definition of the normalized effective
minor radius (D.10), the safety factor can be expressed as

q = −Bφ,0ρbρ

θ
. (D.17)

Therefore, the poloidal flux gradient profile θ(ρ̂(ψ rt
n

∣∣
k
)), 1 !

k ! 64, is computed as

θ(ρ̂(ψ rt
n

∣∣
k
)) = −

Bφ,0ρ(ψ rt
n

∣∣
65)ρ(ψ rt

n

∣∣
k
)

q(ψ rt
n

∣∣
k
)

. (D.18)
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If (D.18) is used to compute θ at the plasma boundary, the
construction algorithm will fail because of the approximation
q(ψ rt

n

∣∣
65) = q(ψ rt

n

∣∣
64). In order to overcome this construction

failure at the plasma boundary, the constructed poloidal flux
gradient at the plasma boundary is computed as

θ(ρ̂(ψ rt
n |65)) = −k3I, (D.19)

where k3 is defined in (9). This definition is consistent
with the boundary conditions (8) of the magnetic diffusion
equation model of the poloidal flux profile evolution in the
tokamak.

D.3. Computing selected magnetic profile

The selected magnetic profile is denoted as yM(ρ̂(ψ rt
n )). The

spatial domain that the magnetic profile can be controlled on
in real-time is 20 evenly spaced points

ρ̂ = 0.05, 0.1, 0.15, . . . , 1. (D.20)

Therefore, to complete the magnetic profile construction
algorithm, the selected magnetic profile yM(ρ̂(ψ rt

n )) is
interpolated onto the spatial domain (D.20).
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