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Abstract
An integrated plasma profile control strategy, ARTAEMIS, is being developed for extrapolating present-day advanced
tokamak (AT) scenarios to steady-state operation. The approach is based on semi-empirical modelling and was
initially explored on JET (Moreau et al 2008 Nucl. Fusion 48 106001). This paper deals with the general applicability
of this strategy for simultaneous magnetic and kinetic control on various tokamaks. The determination of the device-
specific, control-oriented models that are needed to compute optimal controller matrices for a given operation
scenario is discussed. The methodology is generic and can be applied to any device, with different sets of heating
and current drive actuators, controlled variables and profiles. The system identification algorithms take advantage
of the large ratio between the magnetic and thermal diffusion time scales and have been recently applied to both
JT-60U and DIII-D data. On JT-60U, an existing series of high bootstrap current (∼70%), 0.9 MA non-inductive
AT discharges was used. The actuators consisted of four groups of neutral beam injectors aimed at perpendicular
injection (on-axis and off-axis), and co-current tangential injection (also on-axis and off-axis). On DIII-D, dedicated
system identification experiments were carried out in the loop voltage (Vext) control mode (as opposed to current
control) to avoid feedback in the response data from the primary circuit. The reference plasma state was that
of a 0.9 MA AT scenario which had been optimized to combine non-inductive current fractions near unity with
3.5 < βN < 3.9, bootstrap current fractions larger than 65% and H98(y,2) = 1.5. Actuators other than Vext were
co-current, counter-current and balanced neutral beam injection, and electron cyclotron current drive. Power and loop
voltage modulations resulted in dynamic variations of the plasma current between 0.7 and 1.2 MA. It is concluded
that the response of essential plasma parameter profiles to specific actuators of a given device can be satisfactorily
identified from a small set of experiments. This provides, for control purposes, a readily available alternative to
first-principles plasma modelling.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The design of an economically attractive steady-state fusion
reactor relies on the development of so-called advanced
tokamak (AT) operation scenarios in which an optimization of
some plasma parameter profiles results in a large improvement
in fusion performance, at reduced plasma current [1–3].
A high-gain fusion burn could then be achieved while a
major fraction of the toroidal current is self-generated by
the neo-classical bootstrap effect. However, in present-day

experiments, the high performance phase is often limited in
duration by transport and MHD phenomena. Advanced plasma
control and in particular real-time control of the magneto-
thermal plasma state generally referred to as magneto-kinetic
control (or simply kinetic control) are therefore of paramount
importance for the extrapolation of the scenarios to steady-state
operation in ITER [4, 5] and for the development of nuclear
fusion as an attractive source of energy.

In a tokamak, the multiple magnetic and fluid or kinetic
parameter profiles which define the plasma state (poloidal
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magnetic flux, safety factor, plasma density, velocity, pressure,
etc) are known to be strongly coupled, and the heating
and current drive (H&CD) control actuators are generally
quite constrained and limited in number. Among the most
commonly used H&CD systems are neutral beam injection
(NBI), electron cyclotron resonance heating (ECRH) or current
drive (ECCD), ion cyclotron resonance heating (ICRH), fast
wave current drive (FWCD) and lower hybrid current drive
(LHCD). Although non-linear, the linkage between the various
plasma parameters can be taken as an advantage for controller
design because the effective number of controlled profiles can
be reduced to a small set of essential ones. There is no general
method, however, to take into account non-linearities in the
design of controllers and, for tokamak kinetic control, accurate
non-linear plasma models are not available yet. But, in
many cases, controllers based on empirically identified linear
response models [6] provide satisfactory results. If the system
is linearized around an equilibrium which is close enough to the
target, linear control will be effective in regulating the system
at the target, even in the presence of various disturbances.
Multiple-input–multiple-output (MIMO) control of the safety
factor profile based on the static linear response to three H&CD
actuators has been reported on JET [7]. The same model-
based technique was then applied, with partial success, to the
simultaneous control of the safety factor profile and of a kinetic
parameter profile, the electron temperature gradient [8], but
clear limitations came from the use of the static response model
to describe a system in which the magneto-kinetic dynamics is
important, and takes place on two, significantly different, time
scales.

If, however, an approximate two-time-scale linear
response model can be empirically identified for the most
relevant magnetic and kinetic parameter profiles subject to
specific actuators, while retaining essential couplings between
all parameters, then an integrated feedback controller can
be designed to regulate the global plasma state through a
minimization algorithm [7–9]. For any chosen set of target
profiles, the closest self-consistent plasma state achievable
with the available actuators can be defined with an appropriate
metric, and it will then be reached and sustained by the
regulatory action of feedback control, provided that the
approximate response model is relatively accurate for the
given operation scenario, in some broad vicinity of the
target state. With a small number of actuators, this global
state control represents a reasonable objective to pursue
rather than attempting to control each plasma parameter or
profile accurately and independently with a specific actuator.
Based on this philosophy, proof-of-principle profile control
experiments were performed in 2007 on JET. The results
were published in [9], together with a complete description
of the system identification scheme, underlying assumptions
and justifications, mathematical developments and control
algorithms for the general case of magneto-fluid plasma state
control. This can include, for example, the simultaneous
control of the current density, plasma rotation, ion and electron
temperature and/or pressure profiles. Then, in order to
demonstrate that the method has a large potential and is generic
in that it can be applied to any tokamak and any set of actuators,
joint experiments have been proposed on other large fusion
devices with AT operation capability. These experiments have

been carried out under the framework of the International
Tokamak Physics Activity for Integrated Operation Scenarios
(ITPA-IOS).

This paper focuses on the identification of control-
oriented magneto-fluid plasma models from experimental data
obtained on JT-60U and DIII-D. The semi-empirical, physics-
based ARTAEMIS6 approach referred to above, and followed
here, is motivated by the fact that a real-time magneto-kinetic
control strategy based on first-principles (e.g. gyrokinetic)
plasma models is as yet unaffordable. This is partly because
turbulent transport models are not mature enough to make real-
time predictions of the detailed dynamic response of the plasma
profiles, but also because they are extremely complex and not
really suited for real-time applications. Indeed, the approach
developed here provides, for control purposes, a pragmatic
and readily available alternative to first-principles plasma
modelling. By showing that the dynamics of the magneto-fluid
parameter profiles can be satisfactorily modelled on various
tokamaks by the same semi-empirical technique, this paper
provides a validation of the system identification methodology,
and therefore offers the perspective of successful plasma
control applications.

The state-space structure [6] of the models to be
experimentally identified has been naturally obtained from a
simplified set of transport equations which are projected on
appropriate radial basis functions through a Galerkin scheme
[9]. The model order is then further reduced using the theory of
singularly perturbed systems in which the small parameter, ε,
represents the typical ratio of the thermal and resistive diffusion
time scales. The state-space formalism is therefore particularly
suited to the problem, because it allows singular perturbation
methods to be used. A near-optimal control algorithm can
therefore be rigorously developed within the two-time-scale
approximation, yielding the optimal control law correct to
order ε2 [10]. Thus, starting from a set of appropriate data,
the ARTAEMIS algorithms generate two coupled dynamic
models, a slow model that evolves the various parameters on
the resistive time scale and a fast one for the evolution of the
system on the particle, momentum and thermal diffusion time
scale. They also generate the various gain matrices that should
be loaded into the corresponding near-optimal two-time-scale
controller.

The next section describes the choice of the relevant state
variables, and the structure of the reduced state-space models
based on a general analysis of the plasma transport equations.
Then, in section 3, the proposed system identification method
is applied to existing JT-60U data. A model for the coupled
response of the safety factor and of the toroidal rotation profiles
to four neutral beam actuators is obtained. In section 4,
dedicated modulation experiments performed on DIII-D are
described, and the results of the model identification for the
coupled dynamics of the poloidal magnetic flux and toroidal
rotation profiles are reported. Finally some conclusions will
be drawn.

6 The two-time-scale system identification and plasma state control
algorithms described in [9] and based on applying the theory of singularly
perturbed systems to a set of simplified plasma transport equations will
hereafter be referred to using the acronym ARTAEMIS (for ‘advanced real-
time algorithms based on empirical modelling of integrated scenarios’).
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2. Two-time-scale state-space structure of the
ARTAEMIS plasma models

When the usual set of plasma transport equations are averaged
over magnetic flux surfaces they yield a one-dimensional
model in which all physical variables depend only on a radial
variable, x, and on time. The system is linearized around an
equilibrium state which is referred to as the reference state,
and which need not be known explicitly. A state-space model
of minimal complexity is then found, within assumptions that
have been made to keep the system order within reasonable
limits and its experimental identification tractable [9]. The
state variables appear naturally to be the variations of the
internal poloidal magnetic flux, #, and of a set of fluid/kinetic
variables such as the plasma density, n, toroidal velocity, V$,
and temperature, T (ideally [Ti, Te]), with respect to their
reference values. One can then introduce some unknown
linear differential operators, Lα,β{x}, and row vectors, Lα,β(x),
depending upon the variable x but independent of time, such
that the system under consideration reads

∂#(x, t)

∂t
= L#,#{x} ◦ #(x, t) + L#,K{x} ◦




n(x, t)

V$(x, t)

T (x, t)





+ L#,P (x) · P(t) + Vext(t) (1a)

ε
∂

∂t




n(x, t)

V$(x, t)

T (x, t)



 = LK,#{x} ◦ #(x, t)

+ LK,K{x} ◦




n(x, t)

V$(x, t)

T (x, t)



 + LK,P (x) · P(t) (1b)

with inputs P(t) = [P1(t), P2(t), P3(t), etc], the heating,
fuelling and current drive inputs, e.g. powers from NBI,
ICRH, ECCD, LHCD, FWCD, gas injection, etc, and Vext,
the plasma surface loop voltage. Here, the ◦ symbol means
that the operator, Lα,β{x}, which is on the left of the symbol,
is to be applied to the function of x that appears on the
right. Normal dots represent the usual matrix product.
The small parameter, ε (ε # 1, constant), represents the
typical ratio between the characteristic time for the evolution
of the kinetic parameters (equation (1b)) and the resistive
diffusion time which characterizes the evolution of magnetic
parameters (equation (1a)). It is introduced here to scale
the operators Lψ,ψ {x} and LK,K{x} so that their smallest
eigenvalues have similar magnitudes, and it allows singular
perturbation methods to be applied in order to simplify both
model identification and controller design.

A pragmatic way to identify the various operators in
equations (1a) and (1b) is to resort to a finite set of trial
basis functions on which to project the distributed plasma
parameters, and to find the best least-square fits of the discrete
system to experimental data. Ideally, one would try to retain
the differential nature of the original system using appropriate
techniques, rather than projecting the system onto a finite
set of basis functions. There are indeed situations in which
a genuine system of partial differential equations (PDEs)
is definitely required to design a satisfactory distributed-
parameter controller (a low-order discrete model would be
inappropriate if high order modes were unstable). However,

because of the high dimensionality of the physical state space,
the numerical identification of a comprehensive distributed-
parameter model (equations (1a) and (1b)) can be anticipated
to be extremely difficult. Therefore, unless the need for
such a model becomes really apparent (there is a priori
no need for this), and bearing in mind that the system
identification will have to be made from noisy experimental
data until an accurate tokamak plasma simulator is available,
a discretization seems unavoidable. What is needed, at this
level, is only an interpolation scheme that allows the data to be
projected on a fixed radial grid and the system to be discretized.
The choice of the interpolation/discretization scheme is not
essential here because the data can be interpolated offline.
It is simply assumed that, by increasing the space-time
resolution of the data and the number of radial points and
basis functions, the identified lumped-parameter system would
converge towards the PDE model that would best fit the data.
Nonetheless, a sufficient number of radial points is required if
the original distributed-parameter system is to be fairly well
approximated. The number of parameters to be identified
rapidly increases with the order of the system and the number
of points on the radial grid. The identification problem then
becomes increasingly ill-conditioned, yielding solutions that
are unphysical and unstable to small changes in the data. It
was found that eight to ten equally spaced radii was a good
compromise.

A Galerkin approach has been chosen for the interpolation
of the data and the discretization of the system [9]. The
projection of a generic dynamical variable, Y (x, t), on the
chosen basis functions then reads

Y (x, t) =
N∑

i=1

Gy,i(t)ai(x) + Ry,i(x, t) (2)

where ai(x) are the basis functions (e.g. cubic splines7) with
i = 1, 2, . . . N , and Ry,i(x, t), are residues chosen to be
orthogonal to every basis function:

∫ 1

0
ai(x)Ry,i(x, t) dx = 0. (3)

The expansion coefficients, Gy,i(t), will be called Galerkin
coefficients and the vector array containing the Galerkin
coefficients of the variable Y (x, t) will simply be named Y (t).
After this discretization has been made, a lumped-parameter
version of the state-space model is obtained, which reads

#̇(t) = A1,1 · #(t) + A1,2 ·




n(t)

V$(t)

T (t)



 + B1 · P(t)

+ B#,V · Vext(t) (4a)

ε




ṅ(t)

V̇$(t)

Ṫ (t)



 = A2,1 · #(t) + A2,2 ·




n(t)

V$(t)

T (t)



 + B2 · P(t)

(4b)

where parameter profiles are now represented by vectors, and
where Ahk , Bh (with h = 1, 2 and k = 1, 2) are unknown
matrices and B#,V is a known matrix.
7 The set of basis functions could be different for each dynamical variable and
must be chosen judiciously to provide satisfactory fits of the corresponding
parameter profiles.
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Part of the difficulty in identifying the various matrices
in equations (4a) and (4b) stems from the fact that widely
varying time scales are involved in the dynamics of the system.
Indeed, the order of magnitude of the parameter, ε, introduced
above is about 0.05 in present tokamaks, and it will be even
smaller in burning plasmas, as in ITER. It therefore seems
judicious to take advantage of this ordering parameter and
to use identification and control techniques which are based
upon the theory of singularly perturbed systems and multiple-
time-scale expansions [10]. This amounts to expanding each
dependent variable in powers of ε, defining an additional
independent variable, τ = t/ε, to describe the fast dynamics
while t describes the slow dynamics, and to splitting variables
into a sum of a fast and a slow component which depend on τ

and t , respectively. A well-posed set of ordinary differential
equations is then obtained by grouping terms of equal order in ε

and imposing the condition that, in the asymptotic limit where
ε tends to zero, the initial conditions for the slow dynamics
(t = 0) match the quasi-steady-state solution on the fast
dynamics (τ → ∞).

It is clear from the structure of the original system that
the magnetic variable, #(t), has only a slow evolution because
there is no term of order 1/ε in the d#/dt expansion. Following
[9, 10], we shall therefore seek two models of reduced orders,
a slow model

#̇(t) = AS · #(t) + BS ·
[

PS(t)

Vext,S(t)

]

with




nS(t)

V$,S(t)

TS(t)



 = CS · #(t) + DS · PS(t) (5)

and a fast model:



ṅF(t)

V̇$,F(t)

ṪF(t)



 = AF ·




nF(t)

V$,F(t)

TF(t)



 + BF · PF(t) (6)

where any input or fluid/kinetic variable, X, is to be split into a
slow and a fast component, XS and XF, respectively, according
to X = XS + XF. The slow linkage between the magnetic
equilibrium and the fluid and kinetic parameter profiles is
represented, in its linearized form, by the CS matrix.

Now, although the poloidal magnetic flux appears as
a natural state variable, one may sometimes find it more
practical, depending on the application, to perform magnetic
control through the inverse safety factor profile, ι(x), a non-
dimensional parameter that is defined by ι(x) = 1/q(x) =
d#(x)/d$(x) where $(x) is the toroidal magnetic flux. At
constant vacuum toroidal field and plasma shape, and when the
radial variable, x, is defined as ($/$max)

1/2 where $max is the
toroidal flux within the last closed flux surface, $(x) depends
weakly on the power inputs in comparison with #(x). Thus,
for control purposes, an alternative state-space model can be
sought where the linearized variations of ι(x) around a given
equilibrium are assumed to map onto those of #(x), so that
ι(x) can be substituted to #(x) in equations (5), and assumed
to be the magnetic state variable. This substitution was indeed
made for magnetic profile control experiments on JET [9] and
will be illustrated in section 3, while #(x) will be retained as
the magnetic state variable in section 4.

3. System identification from existing JT-60U data

The first extended version of the ARTAEMIS identification
algorithm that allows a two-time-scale magneto-fluid model
to be identified has been developed using existing JT-60U
data typical of steady-state AT operation [11]. A series of
nearly non-inductive discharges with more than 70% bootstrap
current fractions were analysed (pulses #45862, and #45903–
45914) and an iterative identification procedure was set up.
It allowed the matrices AS, BS, CS, DS, AF and BF to be
chosen in such a way that the model structure described above
(equations (5) and (6)) best fits the data, while satisfying
some mathematical and physical constraints that reduce the
dimensionality of the unknown parameter space.

The reference plasma state was characterized by a
magnetic field of 3.7 T, a fully non-inductive plasma current
of 0.9 MA, and a central plasma density of 3 × 1019 m−3.
The selected actuators consisted of four groups of neutral
beam injectors corresponding to (i) on-axis perpendicular
injection, (ii) off-axis perpendicular injection, (iii) on-
axis co-current tangential injection, (iv) off-axis co-current
tangential injection.

The selected output profiles were the inverse safety factor,
ι(x) = 1/q(x), toroidal rotation velocity, V$(x), and ion
temperature, Ti(x). In order to take into account the coupling
of these variables with the plasma density although n(x, t) is
not considered here as a controlled variable, the line-averaged
density was included as an additional input to the system (i.e.
included in the vector P(t) in equations (4a), (4b)–(6)). The
output data were then interpolated on a unique radial grid
for each parameter profile through a cubic-splines Galerkin
approximation, and on a unique temporal grid through linear
interpolation. The radial grids were chosen in relation to
the availability of the data for the discharges under study,
i.e. x = 0.5, 0.6, 0.7, 0.8 and 0.9 for ι(x), and x = 0.2,
0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 for V$(x). Examples of radial
profiles of the safety factor and toroidal rotation velocity are
shown in figures 1(a) and (b) where the original data and the
cubic-splines Galerkin fits with knots on the radial grids given
above can be compared (the rotation data for x > 0.8 were
discarded in this analysis because the controller was originally
designed for 0.1 ! x ! 0.8). Typical time-dependent data
used for system identification can then be seen in figure 2.
Figure 2(a) shows the time evolution of the safety factor at
x = 0.6 in various pulses in which the actuator inputs varied,
and figure 2(b) shows the evolution of the toroidal velocity
at x = 0.2, 0.3, . . . 0.8 in pulse #45903. The large change
in plasma rotation between t = 7 s and 8 s is mainly due to
the replacement of 2 MW of tangential injection by 2 MW of
perpendicular injection, as can be seen in figures 3(a) and (b).

The system identification was performed starting at
t = 6 s, i.e. during the current flat top of the discharges, and
through a number of iterations in which the data were projected
onto subspaces of varying dimensions, following the general
methodology described in [9]. In particular, in each dataset
an offset corresponding to the average of the data in the time
window under consideration is subtracted from the data, so
that the identification routines only handle datasets with zero
average while searching for the best linear response model.
At each step of the identification process for a given plasma
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Figure 1. (a). Interpolation of the safety factor profile versus normalized radius on JT-60U (pulse #45903 at t = 7 s). The red crosses are
experimental data and the black curve is the Galerkin fit using cubic-splines with knots shown by the black dots. (b) Interpolation of the
toroidal velocity profile (105 m s−1) versus normalized radius on JT-60U (pulse #45903 at t = 7 s). The red crosses are experimental data
and the black curve is the Galerkin fit using cubic-splines with knots shown by the black dots (data at x > 0.8 are discarded).
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Figure 2. (a). Time evolution of the safety factor at x = 0.6 in JT-60U pulses #45903-04-06-07-09-14. (b) Time evolution of the toroidal
velocity (105 m s−1) at x = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 in JT-60U pulse #45903.

parameter profile, Y (x, t), ARTAEMIS maximizes a global fit
parameter, f , which is defined as

f = 1 −
[ ∑

samples

∫ x2

x1

(Y (x) − Ysim(x))2 dx

/ ∑

samples

∫ x2

x1

(Y (x) − 〈Y (x)〉samples)
2 dx

]1/2

(7)

where Ysim represents the data simulated by the current model
after reconstruction of the profiles from the basis functions
and the Galerkin coefficients, [x1, x2] is the radial window on
which the model is to apply and 〈Y (x)〉samples stands for the
average of the data over the time samples at a given radius.

The slow model was identified by considering the time
evolution of five Galerkin coefficients of the ι(x, t) data at
knots x = 0.5, 0.6, 0.7, 0.8 and 0.9 together with the input
data, both filtered with a low-pass filter with a cutoff frequency
of 4 Hz. The first iterations provided an approximation of the
AS matrix by selecting pulses with the least input variations,
so that the slowest eigenmodes of the system can be better
estimated. In subsequent iterations, the eigenmodes with the
longest characteristic times were fixed when satisfactory fits
could be obtained while searching for columns of the BS matrix
corresponding to different inputs. This was done gradually by
selecting pulses where the respective inputs had been varied.
After each satisfactory iteration, the static gain matrix of the
model was updated and the new matrix was used to define the
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NBI power (MW) in JT-60U pulse #45903: tangential on-axis injection.

subspace in which the following iterations were performed.
The best model that was found for the evolution of ι(x, t)

was finally a model of order four, while the dimension of the
original data space was five since Galerkin coefficients were
calculated at five radial knots. The four eigenvalues of the
AS matrix correspond to characteristic times of 3.28 s, 2.92 s,
1.23 s and 0.18 s.

The AS and BS matrices were then fixed when searching
for the CS, DS matrices and for the fast model. There, the
splitting between the slow and the fast components of the data
to define the slow input vector, PS, in equation (5) was made by
filtering the data with a cutoff frequency of 1.25 Hz. This was
the lowest frequency at which the inputs could be filtered while
retaining a good fit of the unfiltered ι(x, t) data by the slow
model. In order to show that the same method can be applied
to various fluid/kinetic profiles, two models were identified,
one for V$(x, t) coupled to ι(x, t) and one for Ti(x, t) coupled
to ι(x, t). Further couplings between V$(x, t) and Ti(x, t)

could be allowed to possibly improve the model if simultaneous
control of these profiles was to be attempted. After removing
the low frequency part of the data, below 1.25 Hz, the same
iterative procedure was followed for determining the AF and
BF matrices, as for the slow model.

For the identification of the matrices, CS and DS, that
represent the slow coupling between the safety factor profile
and both the toroidal rotation and ion temperature profiles, the
V$,F and Ti,F data predicted by the fast model using the high
frequency part (above 1.25 Hz) of the inputs, PF (equation (6)),
were removed from the measurements before processing. The
model for V$(x, t) was restricted to the radial knots x = 0.4,
0.5, 0.6 and 0.7 and the model for Ti(x, t) to the radial knots
from x = 0.2 to 0.7 (note that the ι(x, t) data were only
available for x " 0.5). The best model that was found for the
fast components of V$(x, t) was a model of order four whose
characteristic times were 0.38 s, 0.15 s, 0.10 s and 0.015 s. For
Ti(x, t), the best model was of order six with characteristic
times of 0.44 s, 0.20 s. 0.15 s, 0.13 s, 0.05 s and 0.04 s.
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Figure 4. Comparison between the measured (black, full) and
model-simulated (blue, dotted) ι = 1/q data versus time, at x = 0.5,
0.6, 0.7, 0.8 and 0.9 (JT-60U pulse #45862). Global fit: f = 87%.

Figures 4–7 illustrate, for different plasma radii, typical
comparisons between the zero-average measured data and
the model simulations from which the same offset has been
subtracted. An example of the slow model ι(x) response to
the experimental actuator input data (equation (5)) is shown
in figure 4 and can be compared with the experimental ι(x)

response (the fast component of ι(x) that can be seen in
figure 2(a) was attributed to noise, and disregarded). In
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addition to the global fit parameter, f , defined in equation (7),
local fit parameters have been defined using, in the numerator
of formula (7), the error at a given radius weighted by (x2 −x1)
instead of its integral between x1 and x2. They are displayed in
each frame of the figures. The fast model V$ (x) response to
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0.5, 0.6 and 0.7 (full model, JT-60U pulse #45862). Global fit:
f = 31%.

the fast component of the same actuator data (equation (6)) is
shown in figure 5 and can be compared with the fast component
of the experimental V$(x) response (the fit parameters are
computed consistently, i.e. using only the fast component
of the data). The responses from the full (two-time-scale)
model combining the slow and fast models (equations (3),
(4a) and (4b)) are shown for V$(x) and Ti(x), and for the
same discharge, in figures 6 and 7, respectively. It must be
recalled that the JT-60U data used for system identification
were gathered from a chosen set of pre-existing discharges
and are not as rich as data obtained in dedicated modulation
experiments (see next section). Therefore, here, the same
data were used for the identification and the validation of the
models.

Finally, to illustrate the potential use of the control-
oriented models obtained above, we display in figures 8(a)
and (b) the results of a typical closed-loop simulation based
on a near-optimal two-time-scale controller whose design was
thoroughly described in [9]. The simulation corresponds to
a virtual discharge with the same field and current as pulse
#45903, but with controller-driven NBI actuators. The inverse
safety factor profile, ι(x), and the toroidal velocity profile,
V$(x), are controlled using the four groups of NBI injectors, (i)
to (iv), defined earlier and labelled Pnb1 to Pnb4, respectively,
in figure 8(a). The line-integrated density is assumed constant
here, but its variations could be feedforward compensated in
real-time. In these linear simulations whose only purpose is
to validate the controller design and the associated software,
the inputs to the controller, i.e. the ‘measured data’ or the
error signals between the ‘measured data’ and the target
profiles, must of course be provided by an ad hoc plasma
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model. The plasma response used to close the feedback loops
was therefore idealized and assumed to be simply linear and
governed by a full-order state-space model which, in the limit
ε → 0, reproduces the identified two-time-scale reduced-order

models. Note, however, that given the identified AS, BS, CS,
DS and AF, BF matrices there is an infinite arbitrariness in
the choice of a full-order model, as displayed in equations (4a)
and (4b). In particular, the off-diagonal blocks of the full-order
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model, A12 and A21, contribute to the definition of AS, and BS,
together with the diagonal blocks A11 and A22 [9], but A12

cannot be retrieved unequivocally from AS and BS.
The closed-loop response of the controller clearly exhibits

the two-time scale convergence of the system towards the
requested target, consistent with the characteristic time
constants of the reduced-order slow and fast models which
were 3.28 s and 0.38 s, respectively. In these simple linear
simulations, the steady-state gains of the closed-loop system8

can be computed since the plasma response to the controller is
given by a known model. The straight dotted lines in figure 8(a)
show the final values that should be reached by each actuator,
as anticipated from these closed-loop steady-state gains. The
corresponding values of the controlled parameters are also
shown by straight dotted lines in figure 8(b).

4. System identification experiments on DIII-D

The development of model-based profile control on DIII-D
is motivated by the potential gain that it could yield in
running stable and reproducible AT discharges, for studying
the physics of integrated high-beta, high bootstrap current,
steady-state scenarios for ITER. A set of dedicated experiments
has therefore been performed in order to identify plasma
models to be used in future control experiments. Using
the same methodology as on JET and JT-60U, successful
modelling of the DIII-D experiments will further assess the
generic character of the semi-empirical ARTAEMIS approach
for control-oriented plasma modelling on tokamaks, and the
potential of the corresponding two-time-scale controllers.

For the DIII-D system identification experiments
presented here, the chosen reference plasma state was that of a
1.8 T, βN-controlled AT scenario, at a central plasma density,
ne0 ≈ 3.5 × 1019 m−3 and plasma current, Ip = 0.9 MA. The
scenario had been developed to combine non-inductive current
fractions near unity with normalized pressure 3.5 < βN < 3.9,
bootstrap current fractions larger than 65%, and a normalized
confinement factor, H98(y,2) ≈ 1.5 [12]. The NBI and ECCD
systems provided the H&CD sources for these experiments.
Available beamlines and gyrotrons were grouped to form,
together with Vext (equations (1a) and (1b)), five independent
H&CD actuators: (i) co-current NBI power, PCO, (ii) counter-
current NBI power, PCNT, (iii) balanced NBI power, PBAL,
(iv) total ECCD power from all gyrotrons in a fixed off-axis
current drive configuration, PEC, and (v) Vext.

Actuator modulations were applied from t = 2.5 s, i.e.
after 1 s of a 0.9 MA current flat top. At this time, in all
discharges, the Vext control mode (i.e. the use of Vext as an
actuator) was enabled and the Ip and βN controls were disabled.
This is important as it ensures that there is no feedback in the
response data when identifying the plasma response model.
In addition to being a natural input variable in the model
(equations (1a), (4a) and (5)), using Vext as an actuator to
control the current profile of the plasma during its transient
evolution to an advanced non-inductive state is also a natural
mode of operation in steady-state tokamaks: when sufficiently
close to the required plasma state, controlled steady-state

8 The steady-state gain matrix of the closed-loop system relates the target
values of the controlled parameters to the values they reach in steady state
upon feedback action of the controller during closed-loop operation.
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Figure 10. Comparison between the measured (black, full) and
model-simulated (blue, dotted) # data (Wb) at x = 0.1, 0.2, . . . 0.9
for DIII-D shot #140093. The corresponding input data are shown
in figure 9(a). The data for t > 2.6 s were used for system
identification. Global fit: f = 81%.

operation can be readily obtained by letting the weight of
Vext vanish with respect to other actuators in the near-optimal
controller gain matrices. Altogether, 23 discharges were
obtained, with Ip modulations in the range 0.7–1.2 MA, thus
providing a broad database around the reference scenario. The
undesired but measured variations of two additional parameters
were included in the system as additional inputs that could be
treated as disturbances and compensated for in future closed-
loop operation. These were the gas injection rate, PGAS, that
was used in a density control loop, and the power, PCER, from
a beamline that was used for diagnostic purposes. Figures 9(a)
and (b) display typical modulations of the system inputs and
of the resulting plasma current, line-averaged density and
normalized pressure.

System identification for the internal poloidal flux,
#(x, t), was carried out with nine Galerkin coefficients
computed at knots x = 0.1, 0.2, . . . 0.9, starting at t = 2.6 s.

9



Nucl. Fusion 51 (2011) 063009 D. Moreau et al

–0.4
0.0
0.4

 

 

–0.4
0.0
0.4

 

 

–0.4
0.0
0.4

 

 

–0.4
0.0
0.4

 

–0.4
0.0
0.4

 

–0.4
0.0
0.4

 

 

–0.4
0.0
0.4

 

 

–0.4
0.0
0.4

 

1 2 3 4 5 6 7

–0.4
0.0
0.4

Time (s)

 

Experiment
Model (Fit=  80%)

Experiment
Model (Fit=  83%)

Experiment
Model (Fit=  85%)

Experiment
Model (Fit=  86%)

Experiment
Model (Fit=  87%)

Experiment
Model (Fit=  89%)

Experiment
Model (Fit=  92%)

Experiment
Model (Fit=  92%)

Experiment
Model (Fit=  96%)

Ψ
(0

.1
)

Ψ
(0

.2
)

Ψ
(0

.3
)

Ψ
(0

.4
)

Ψ
(0

.5
)

Ψ
(0

.6
)

Ψ
(0

.7
)

Ψ
(0

.8
)

Ψ
(0

.9
)

Figure 11. Comparison between the measured (black, full) and
model-simulated (blue, dotted) # data (Wb) at x = 0.1, 0.2, . . . 0.9
for DIII-D shot #140094. The corresponding input data are shown
in figure 9(a). The data for t > 2.6 s were used for system
identification. Global fit: f = 87%.

The search was initiated by a first guess of the static gain matrix
simply obtained through Fourier analysis. Then, iterations
were performed following the same technique as in section 3,
i.e. gradually including more inputs and more discharges while
fixing some columns of the static gain matrix corresponding to
other inputs, and/or fixing some of the identified eigenvectors
and eigenvalues when they were found to be physically sound
and provide a good fit to the data. The dimension of the
subspace and the static gain matrix used for the definition of the
subspace was also updated when necessary while the iterations
were executed. During all this process, the unfiltered input and
output data could be used and the best model that was found
was a model of order 5 in a subspace of dimension 5. The
characteristic times corresponding to the eigenvalues of the
AS matrix were 5.46 s, 3.06 s, 1.98 s, 1.10 s and 0.023 s.

Figures 10–12 illustrate the typical fits of the experimental
poloidal flux obtained from the model. As before an offset has
been subtracted from all the datasets so that the measured data
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Figure 12. Comparison between the measured (black, full) and
model-simulated (blue, dotted) # data (Wb) at x = 0.1, 0.2, . . . 0.9
for DIII-D shot #140075 (an n = 1 NTM is present from 2.3 s to the
end). This shot was not used for system identification. Global fit:
f = 85%.

have zero average. It must be stressed that excellent fits are
obtained for all shots, including shots that were not used in the
identification process (see figure 12, for example). Moreover,
for all discharges, the model fits the data satisfactorily starting
from t = 0.32 s, i.e. not only during the phase when the
identification was carried out but also during the current ramp-
up phase. This is remarkable since only the data from t = 2.6 s,
i.e. after 1 s of current flat top (see figure 9(b)), were used for
model identification. Finally, another feature of interest of this
magnetic model is that it also produces satisfactory #(x, t)

fits for eight discharges that were affected by an unstable
n = 1 neo-classical tearing mode (NTM), and for which the
unstable phases were all disregarded for system identification.
A typical example can be seen for shot #140075 (figure 12)
where the n = 1 NTM appeared at t = 2.35 s and remained,
with varying amplitude, during the whole duration of the
high-power modulation phase (2.5 s ! t ! 7 s). This means
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Table 1. Model validation on shots performed prior to the system identification experiment.

Shot # 136206 136212 137537 137539 137559 137573 137575 137576

Flat-top current (MA) 1.4 0.96 0.96 1.4 0.96 1.15 1.4 1.15
Ramp-up time (s) 2.6 s 1.6 s 1.6 s 3 s 1.6 s 2.3 s 3 s 2.1 s
q0/qmin 3.5/2.2 1.6/1.6 2/2 2/2 3.4/3 1.6/1.5 2.3/1.8 2.2/2
Global fit 80% 65% 43% 91% 77% 87% 92% 90%

that the controller based on this relatively robust model (i)
could be used to tailor the q-profile during current ramp-up
and provide a favourable target for the high-power phase, and
(ii) could also allow the discharge to recover from an unstable
NTM due to a transiently unfavourable current density profile
during the high-power phase.

An additional validation test was performed on a set of
discharges which were obtained on DIII-D several months
prior to the system identification experiment described here. In
these discharges, different NBI and ECCD power waveforms
were used during plasma current ramp-up in the aim of
scanning the q-profile obtained at the end of ramp-up to study
the effect of the current profile on plasma transport during
the subsequent high-power, high-beta phase of AT discharges
(current flat top). The toroidal magnetic field was 2 T, the
flat-top plasma current varied between 0.9 and 1.4 MA and
was obtained with various ramp-up rates. Both monotonic
and non-monotonic safety factor profiles were obtained with
central values, q0, ranging from 1.6 (monotonic) to 3.5 (non-
monotonic), and with minimum values, qmin, ranging from 1.6
(monotonic) to 3 (non-monotonic), at the beginning of current
flat top. Model-predicted poloidal flux was compared with
experimental data in these earlier discharges, during the ramp-
up phases, in order to assess the possibility of controlling the
current density profile in real-time during plasma ramp-up. For
all these discharges, the measured and model-simulated data
were very similar and the comparison was satisfactory, as it was
for the identification discharges (see figures 10–12). The main
characteristics of these validation discharges and the global fit
parameters obtained in the validation tests are summarized in
table 1.

Then, given the matrices AS and BS, a two-time-scale
model for the coupled evolution of #(x, t) and V$ (x, t)
was sought. Eight Galerkin coefficients computed at knots
x = 0.1, 0.2, . . . 0.8 were used for the V$ profiles, and only
the data for t " 2.6 s were processed. The lowest frequency
at which the inputs could be filtered while retaining a good
fit of the unfiltered #(x, t) data by the slow model was found
to be around 1 Hz. A cutoff frequency of 1 Hz was therefore
chosen for separating the slow and fast components of both
the input data and the toroidal rotation data in equations (5)
and (6). The order of the final fast model for V$(x, t) was 5,
i.e. the same as the dimension of the subspace in which the
model was sought, and characteristic times of 0.163, 0.128,
0.076, 0.058 and 0.038 s were obtained from the eigenvalues
of the AF matrix.

In a final step, the matrices, CS and DS, that represent
the slow coupling between the poloidal flux and the toroidal
rotation were identified. For this, as in section 3, the V$,F

data predicted by the fast model using the fast inputs, PF (see
equation (6)), were removed from the measurements. Since the
fast model is not perfect, the resulting signals still contained
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Figure 13. Comparison between the measured (black, full) and
model-simulated (blue, dotted) V$ data at x = 0.1, 0.2, . . . , 0.8 for
DIII-D shot #140074. Global fit: f = 51%.

frequency components above 1 Hz. They were also filtered
out to retain only slowly evolving data. Altogether, when
combining the slow and the fast models with the coupling
equations (5) that contain the identified CS and DS matrices,
the resulting two-time-scale model for the coupled evolution of
#(x, t) and V$ (x, t) was a model of order 10, with a resistive
diffusion time of 5.4 s and a momentum confinement time of
0.16 s. Figures 13–15 illustrate typical fits obtained for V$

(x, t) with the full model.
The essential elements of the identified state-space

response model are the steady-state (or static) gain matrix of the
system, KS = −(CS ·A−1

S ·BS)+DS, and the eigenmodes of AS
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Figure 14. Comparison between the measured (black, full) and
model-simulated (blue, dotted) V$ data at x = 0.1, 0.2, . . . 0.8 for
DIII-D shot #140076. Global fit: f = 68%.

and AF with their corresponding eigenvalues or characteristic
times. A representation of the static gain matrix of the
identified tenth order model can be seen in figure 16 where the
steady-state response of the poloidal flux and plasma rotation
profiles to unit change of the various inputs in the model are
plotted.

A number of remarks can be made about this diagram in
which powers are expressed in MW, loop voltage in units of
0.1 V and gas flow in units of 10 Torr l s−1. Unsurprisingly,
the most powerful actuator for changing the current profile in
absolute terms is indeed the loop voltage, in other words the
ohmic transformer, as voltages of 0.5 to 2–3 V are routinely
obtained during plasma current ramp-up. In contrast, the total
power capability of the three beamlines that constitute the co-
current NBI actuator is of the order of 7.5 MW (as seen, for
example, in figure 9(a)). In addition, one of these beamlines
cannot really be used as a control actuator because it is precisely
needed for measuring, through the MSE diagnostic (motional
Stark effect), the plasma poloidal flux profile to be controlled.
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Figure 15. Comparison between the measured (black, full) and
model-simulated (blue, dotted) V$ data at x = 0.1, 0.2, . . . 0.8 for
DIII-D shot #140106. Global fit: f = 30%.

Nevertheless, co-current NBI is the second most powerful
actuator for changing the poloidal flux profile, and therefore
the current profile.

The response of the poloidal flux profile to the co-current
and counter-current NBI actuators is found to be very
asymmetrical and, consistently, balanced injection leads to
an increase in the poloidal flux or plasma current. However,
the uncertainties in these responses are difficult to evaluate.
For the poloidal flux, rough estimates could be obtained
from the standard deviations of the various columns of the
BS matrix during the final iterations of the identification
process where the AS matrix was fixed. They are plotted in
figure 16. The standard deviation of the AS matrix elements
when the steady-state gains are fixed has also been estimated
and corresponds to a relative variation of 4% for the norm
of AS. The asymmetry between co- and counter-current
NBI is in qualitative agreement with detailed experimental
investigations on beam-ion confinement for different injection
geometries [13]. These studies showed that tangential counter-
current injection results in a lower fast-ion confinement in
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Figure 16. Representation of the model steady-state gain matrix. Each column represents the variation of the poloidal flux (top) and
toroidal rotation (bottom) profiles corresponding to unit positive step variation of a given input. Columns #1–7 correspond to PCO (MW),
PCNT (MW), PBAL (MW), PCER (MW), PEC (MW), PGAS (10 Torr l s−1) and Vext (0.1 V), respectively. Estimates of the uncertainties for the
poloidal flux response are shown in the top frames (dotted).

comparison with co-current injection, and that the counter-
injected beams disappear faster through thermalization or
charge exchange losses. This necessarily leads to a reduction
in current drive efficiency. The difference between the
experimental observations and the results of simulations based
on classical fast-ion transport was also found to be larger
than the estimated uncertainties [13]. Counter-current NBI is
therefore not expected to be a powerful actuator for current
profile control only, but it can be essential in providing
some decoupling between current drive and rotation drive in
magneto-kinetic control. Balanced injection could have a more
specific role in decoupling the current and rotation control
from, say, the ion temperature or pressure control but this will
be the subject of future investigations.

The last point worth mentioning is the non-local effect of
the off-axis ECCD actuator on the toroidal plasma rotation
in the centre of the plasma. Such rotation braking in the
plasma core has indeed already been observed on DIII-D [14]
and on other tokamaks [15, 16]. The fact that this effect can
be detected by the present system identification algorithms is
indeed worth noticing.

5. Conclusion

In order to extend advanced tokamak scenarios to steady-
state operation, the plasma state, as defined by a number of
parameter profiles such as the poloidal flux, current density,
plasma density, velocity and temperature, will have to be
controlled in real-time. For this purpose, the experimental
system identification and control methodology that was
initially developed for JET profile control experiments has now

been generalized for magneto-fluid control on other devices,
with different sets of actuators and sensors. In this work, the
resulting ARTAEMIS algorithms and computer routines have
been applied to the identification of dynamical models for
the coupled evolution of various magnetic and fluid/kinetic
parameter profiles on JT-60U and DIII-D.

The system has the structure of a state-space model in
which some physical variables appear naturally as the state,
output and input variables, respectively. Singular perturbation
methods are used to take advantage of the small ratio between
the confinement and resistive diffusion time scales (two-time-
scale approximation). This method was shown to yield control-
oriented, reduced-order models which could fairly reproduce
the slow and the fast evolution of coupled plasma parameter
profiles, in a broad vicinity of a reference equilibrium plasma
state which need not be known explicitly. In this study, the
controlled plasma variables were chosen to be the inverse
safety factor or the poloidal flux, the toroidal rotation velocity
and the ion temperature. The actuators are the H&CD powers,
and the plasma surface loop voltage can be used as an additional
actuator if it is adequately controlled by the poloidal field
system. A linear closed-loop simulation using the two-time-
scale model derived from the JT-60U data was shown in order to
illustrate, on a simple example, how magnetic and fluid/kinetic
parameter profiles could be simultaneously controlled using
the proposed strategy and algorithms.

This semi-empirical method provides, for control
purposes, a readily available alternative to first-principle
plasma modelling. It was shown that it can be used in
different devices, for simple as well as more comprehensive
controls, with different sets of actuators and sensors, and that
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the identified models describe satisfactorily the dynamics that
are considered relevant for magneto-kinetic plasma control.
New experimental investigations on pulsed (DIII-D, ASDEX
Upgrade) and steady-state tokamaks (Tore-Supra, EAST,
KSTAR, SST-1 and later JT-60SA) would also be beneficial
to fully assess the accuracy and robustness of the identified
response models, and of the controllers based on them, in order
to achieve magneto-fluid plasma state control in steady-state
scenarios. The experimental identification of such control-
oriented models will open the way to the development of
real-time profile control as an essential means of achieving
advanced tokamak operation in steady state—a requirement
for a steady-state fusion reactor—and may provide a lead for
developing advanced kinetic control in ITER.
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