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The control of kinetic profiles is among the most important problems in fusion reactor research. It is strongly related to a
great number of other problems in fusion energy generation such as burn control, transport reduction, confinement time
improvement, MHD instability avoidance and high-� or high-confinement operating modes access. We seek a controller
which is able to make the kinetic profiles converge to their desired equilibrium profiles. We are interested in constructing
a stabilizing controller that achieves stability for unstable equilibrium profiles and increases performance for stable
equilibrium profiles. As a first approach, we consider in this work a set of non-linear partial differential equations
(PDEs) describing approximately the dynamics of the density and energy profiles in a non-burning plasma. This non-
linear PDE model represents the one-dimensional transport equations for the kinetic variables, density and energy, in
cylindrical geometry. The transport coefficients in this model are in turn non-linear functions of the kinetic variables. The
original set of PDEs is discretized in space using a finite difference method which gives a high order set of coupled non-
linear ordinary differential equations (ODEs). Applying a backstepping design we obtain a discretized coordinate
transformation that transforms the original system into a properly chosen target system that is asymptotically stable
in l2-norm. To achieve such stability for the target system, convenient boundary conditions are chosen. Then, using the
property that the discretized coordinate transformation is invertible for an arbitrary (finite) grid choice, we conclude that
the discretized version of the original system is asymptotically stable and obtain a non-linear feedback boundary control
law for the energy and density in the original set of coordinates. Numerical simulations show that the feedback control
law designed using only one step of backstepping can successfully control the kinetic profiles.

1. Introduction

The regulation of the kinetic profiles is essential to

achieving optimal fusion performance and making

fusion an economically viable source of energy.

Plasma behaviour is critically influenced, in several

ways that are listed next, by the plasma density and

temperature profiles.

The maintenance of certain profiles is expected to

influence transport and consequently the energy confine-

ment time. In-depth understanding of the processes rul-

ing the tranport of both energy and particles provides

information about the optimal profiles for operation.

Thus a reliable profile control system is necessary to

achieve those profiles that minimize transport. In fact,

the inverse procedure should also be considered. The use

of profile control in experimental devices could provide

useful information of the transport process and conclu-

sions about applicability of specific transport models.

The control of the kinetic profiles is also fundamen-

tal for MHD (magnetohydrodynamics) instability

avoidance. The profile control can be used to achieve

those plasma density, current density and temperature

profiles which in turn achieve the pressure and safety

factor profiles that are favourable for ideal MHD

stability. The accesses toH-mode, where the energy con-

finement time is up to twice the value of the L-mode,

and to high � modes free from instabilities have also

been accomplished by modifying the density and tem-
perature profiles.

One of the topics of most interest is burn control, the

control of an ignited or subignited plasma. A D-T

plasma may be thermally unstable in some regions of

operation and a tight control is required for avoiding

thermal excursion or quenching. Auxiliary heating, fuel-

ling and impurity injection are among the most common

actuators used to keep the density and temperature of

the plasma at a desired working point. Among the prob-

lems related to the control of the kinetic variables, the

problem of burn control is the most extensive found in

the literature. This can be explained by the fact that the
problem of controlling the burn instability can be

approached considering a 0-D (zero-dimensional)

model where spatially averaged quantities are consid-

ered. The availability of conventional control tools

that are capable of dealing with this kind of model,

where the dynamics of the average kinetic variables is

described by ODEs, encourages the study of the prob-

lem. In previous works the problem is simplified by lin-

earizing the non-linear 0-D model and putting the model

in a standard control form for which simple linear con-

trol techniques can be used. Recently, we have intro-

duced a new approach where the linearization of the
model is avoided and much higher levels of performance

and robustness are achieved (Schuster et al. 2001, 2002,

2003). However, the 0-D control of the burn instability

using modulation of bulk heating, fuelling and impurity

density does not take into account the 1-D (one-dimen-
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sional) effect of this modulation on the profiles. The
heating, fuelling and impurity density are distributed
throughout the plasma volume affecting the density
and temperature profiles which in turn can change the
transport mode, the energy confinement time and the
plasma stability. In addition, the robustness of the
resulting controller against uncertainties in some par-
ameters of the model that are functions of the density
and temperature profiles, like energy confinement time
and reactivity rate, are very hard to evaluate using 0-D
actuation.

All of these phenomena point out the importance of
controlling the profiles of plasma density and tempera-
ture. To achieve this goal we need a control technique
that can deal with the distributed and non-linear nature
of those quantities, their coupling with one another, and
their, at times conflicting, control objectives. The work
we present here is inspired by Fuchs et al. (1983),
Firestone and Kessel (1991) and Miley and
Varadarajan (1992) and to some extent by Firestone
et al. (1997 a, b). In all these mentioned works the 1-D
model is represented by a set of non-linear PDEs. The
reduction of the distributed parameter description of the
system to a lumped parameter description is carried out
using different methods. The resulting set of ODEs are
linearized and conventional linear control methods are
applied for the synthesis of the controller. In contrast to
these previous works, the control method presented in
this paper is based on the full non-linear model. As we
showed for the 0-D case, the plasma dynamics is highly
non-linear and fundamental information about the
system is lost through the linearization, imposing in
this way a limit on operability. Therefore, the lineariza-
tion of the model should be avoided and this is central to
our approach. We control the system by means of ther-
mal and density actuation.

The goal of the controller is to make the kinetic
profiles converge to their desired equilibrium profiles.
We are interested in constructing a stabilizing controller
that achieves stability for unstable equilibrium profiles
and increases performance for stable equilibrium pro-
files. In order to simplify this initial approach to kinetic
profile control in fusion reactors, we consider a non-
burning plasma whose dynamics is described by a 1-D
non-linear PDE model. This 1-D non-linear PDE model
consists of the diffusion equations of the kinetic vari-
ables in cylindrical geometry where the diffusion coeffi-
cients, on the other hand, are non-linear functions of
these kinetic variables. The original set of PDEs is dis-
cretized in space using a finite difference method which
gives a high order set of coupled non-linear ODEs.
Applying a backstepping design we obtain a discretized
coordinate transformation that transforms the original
system into a properly chosen target system that is
asymptotically stable in l2-norm. To achieve such stab-

ility for the target system, convenient boundary con-
ditions are chosen. Then, using the property that the
discretized coordinate transformation is invertible for
an arbitrary (finite) grid choice, we conclude that the
discretized version of the original system is asymptoti-
cally stable and obtain a non-linear feedback boundary
control law for the energy and density in the original set
of coordinates. This technique has been already applied
successfully for other different physical applications
(Boskovic and Krstic 2001, 2002). Numerical simula-
tions show that the feedback control law designed on
a very coarse grid (using just a few measurements of the
energy and density in the core of the reactor) can suc-
cessfully control the kinetic profiles.

The paper is organized as follows. In } 2 a non-linear
one-dimensional PDE model that governs the dynamics
of the density and energy profiles in a non-burning
plasma is introduced. The control objective is stated in
} 3. In } 4 a non-linear feedback control law that achieves
asymptotic stabilization is presented, followed by the
proof of stability for the target system in } 5. A feedback
control law designed on a coarse grid is shown through a
simulation study to successfully control the kinetic pro-
files of the plasma in } 6. Finally, some conclusions and
suggestions are stated in } 7.

2. Model

The mathematical model used in this work is basic-
ally the set of transport equations in cylindrical geome-
try used by Firestone and Kessel (1991). The energy and
density transport equations are given by
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where n is the density, T is the temperature, E ¼ 3
2
nT is

the energy, Paux is the auxiliary heating power (actuator)
and S is the fuelling rate (actuator). The radiation loss
considered in this model is the bremsstrahlung loss

Pbr ¼ AbZeffn
2
e

ffiffiffiffi
T

p

where Zeff ¼ ð
P

i niZ
2
i Þ=ne, ne is the electron density and

ni is the ion density. Since this model describes a non-
burning plasma the alpha particle density is neglected.
Therefore the quasi-neutrality condition ne ¼ niZi im-
plies that ne ¼ ni because the only ion present in the
plasma is the deuterium–tritium ion (Zi ¼ 1). This
implies in turn that Zeff ¼ 1. The electron and ion tem-
peratures are considered to be equal. The ohmic heating
is neglected.

The thermal diffusivity coefficient is given by the
empirical scaling relation (Becker et al. 1998)
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� ¼ nð0Þ
nðrÞ

m2

s
ð3Þ

whereas the heat conduction coefficient is defined as

� � n� ¼ nð0Þm
2

s
ð4Þ

implying that the heat conduction coefficient is constant
and equal to the central density. The inward pinch
velocity is given by the empirical scaling relation
(Becker et al. 1988)
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1

2
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T
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With the purpose of simplification, we write the dif-
fusion coefficient as

D ¼ 2

3
� ¼ 2

3

nð0Þ
nðrÞ

m2

s
ð6Þ

which is an approximation of the diffusion coefficient
used in Firestone and Kessel (1991) and proposed in
Becker et al. (1988). This approximation is not a require-
ment for the control method and its only purpose is the
simplification of the presentation of the control method.
The approximation simplifies the coupling between
the temperature and density terms, reducing (1) and
(2) to
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We consider the arbitrary boundary conditions
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3. Control objective

We write Eðr; tÞ ¼ �EEðrÞ þ ~EEðr; tÞ and nðr; tÞ ¼ �nnðrÞþ
~nnðr; tÞ, where �EEðrÞ and �nnðrÞ are the equilibrium profiles
which in turn are the solutions of the equilibrium equa-
tions
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It is clear that the equilibrium profile will depend not
only on the boundary conditions but also on the auxili-
ary power and fuelling rate equilibrium profiles. With
the boundary conditions chosen, a proper selection of
the equilibrium profiles for the auxiliary power �PPaux and
fuelling rate �SS allows us to achieve the desired equilib-
rium profiles for the energy and the density. It is import-
ant to note that in this approach to kinetic profile
control we consider only density and thermal actuation
at the edge of the plasma. Therefore, the fuelling rate
S ¼ �SS and the auxiliary power Paux ¼ �PPaux are used only
for the definition of the equilibrium profiles. The
dynamics of the deviation variables ~EEðr; tÞ and ~nnðr; tÞ
is given by
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Taking into account that
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we can rewrite the equations for the deviation variables
as
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with boundary conditions
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The objective is to stabilize ~EEðr; tÞ and ~nnðr; tÞ, making
them converge to zero, by using � ~EErðtÞ and �~nnrðtÞ as
actuation at the edge of the plasma.

4. Controller design

Figure 1 summarizes the essence of the control
method. We discretize the original set of PDEs in
space using a finite difference method which gives a
high order set of coupled non-linear ordinary differential
equations (ODEs). Applying a backstepping design we
obtain a discretized coordinate transformation that
transforms the original system into a properly chosen
target system that is asymptotically stable in l2-norm.
To achieve such stability for the target system, conveni-
ent boundary conditions are chosen. Then, using the
property that the discretized coordinate transformation
is invertible for an arbitrary (finite) grid choice, we con-
clude that the discretized version of the original system
is asymptotically stable and obtain a non-linear feed-

back boundary control law for the energy and density
in the original set of coordinates.

The idea is to design controllers using only a small
number of steps of backstepping, or equivalently using
only a small number of state measurements. The meas-
urements are taken from the core of the plasma and the
actuation is applied at the edge of the plasma.

To discretize the problem, let us start by defining
h ¼ 1=N, where N is an integer. Then using the notation
xiðtÞ ¼ xðih; tÞ, i ¼ 0; 1; . . . ;N, we write the discretized
version of (21) and (22) as
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for i ¼ 1; . . . ;N � 1 and the discretized version of the
boundary condition equations (23)–(26) as
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The choice of a backward approximation for the deri-
vatives of D and Dn=E at point i is key to our approach.
In this way it is possible to write Diþ1

2
and ðDn=EÞiþ1

2
as

functions of the state variables at points i and i � 1. This
is a requirement for the backstepping procedure as will
be discussed below.

We consider now the asymptotically stable (in L2

norm) target system
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where CF > 0, Cm > 0 and the boundary conditions
given by
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with G > 0. The choice of the target system is based on
the need to maintain the parabolic character of the par-
tial differential equation (to keep the highest order deri-
vatives) while removing the ‘problematic’ terms.

We write the discretized equations for the target
system as
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with boundary conditions written as
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Finally we look for a backstepping transformation
of the discretized original system into the discretization
of the target system. This coordinate transformation is
sought in the form
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Subtracting (39) from (27) ((40) from (28)) we obtain
_��i�1 ¼ _~EE~EEi � _~FF~FFi ( _��i�1 ¼ _~nn~nni � _~mm~mmi). Expressing the obtained
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equation in terms of �k�1 ¼ ~EEk � ~FFk, k ¼ i � 1; i; i þ 1
(�k�1 ¼ ~nnk � ~mmk, k ¼ i � 1; i; i þ 1) we can obtain the
expression for �i (�i)
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ð�i � �i�1Þ
�

ð49Þ

_��i�1 ¼
Xi�1
k¼1

@�i�1

@ ~EEk

_~EE~EEk þ
Xi�1
k¼1

@�i�1
@~nnk

_~nn~nnk ð50Þ

_��i�1 ¼
Xi�1
k¼1

@�i�1

@ ~EEk

_~EE~EEk þ
Xi�1
k¼1

@�i�1
@~nnk

_~nn~nnk ð51Þ

At this point we note the importance of the discretiza-
tion method used to express Diþ1

2
and ðDn=EÞiþ1

2
. The

avoidance of writing these terms as functions of the state
variables at point i þ 1 is fundamental to achieve the
desired backstepping transformation (45) and (46).
However, it is important to emphasize that although
the usage of this specific discretization method is a
requirement for the backstepping procedure, it does
not represent any limitation at all.

Similarly, subtracting (43) from (31) ((44) from (32))
and expressing the obtained equation in terms of �k�1 ¼
~EEk � ~FFk, k ¼ i � 1; i (�k�1 ¼ ~nnk � ~mmk, k ¼ i � 1; i) we
can define the control � ~EEr (�~nnr) as

� ~EEr ¼
�N�1 � �N�2

h
� kE

~EEN � G ~EEN � �N�1
� 	

ð52Þ

�~nnr ¼
�N�1 � �N�2

h
� kn~nnN � G ~nnN � �N�1ð Þ ð53Þ

These expressions for � ~EEr and �~nnr allow us to finally
write the stabilizing laws for the modulation of the
energy and the density at the edge of the plasma

~EEN ¼ �N�1 þ
1

1þ Ghð Þ
~EEN�1 � �N�2
� �

ð54Þ

~nnN ¼ �N�1 þ
1

1þ Ghð Þ ~nnN�1 � �N�2½ 
 ð55Þ

5. Asymptotic stability of the discretized target system

To show stability of the target system (33) and (34),
we take the Lyapunov function candidate

V ¼ 1

2

ða
0

r
~FF2

k2
þ ~mm2

 !
dr

with k ¼ 1:380 662� 10�23 J=K (recall that ~FF is Oð105Þ
and ~mm is Oð1020Þ). Then we have

_VV ¼
ða
0

r
~FF

k2
_~FF~FF þ ~mm _~mm~mm

� �
dr

¼
ða
0

r

�
~FF

k2
1

r

@

@r
rD

@ ~FF

@r

� �
� CF

~FF


 �

þ ~mm
1

r

@

@r
rD

3

2

@ ~mm

@r
� 1

2

n

E

@ ~FF

@r

� �� �
� Cm ~mm


 ��
dr

¼
~FF

k2
rD

@ ~FF

@r

����
a

0

�
ða
0

1

k2
rD

@ ~FF

@r

� �2

dr� CF

k2

ða
0

r ~FF2 dr

þ ~mmrD
3

2

@ ~mm

@r
� 1

2

n

E

@ ~FF

@r

� �����
a

0

�
ða
0

@ ~mm

@r
rD

3

2

@ ~mm

@r
� 1

2

n

E

@ ~FF

@r

� �
dr� Cm

ða
0

r ~mm2 dr

¼ aDðaÞ
� ~FFðaÞ

k2
~FFrðaÞþ

3

2
~mmðaÞ ~mmrðaÞ�

1

2

nðaÞ
EðaÞ ~mmðaÞ ~FFrðaÞ

�

�
ða
0

r
CF

k2
~FF2 þ Cm ~mm2

� �
dr�

ða
0

r
D

k2
~FF2
r dr

� 3

2

ða
0

rD ~mm2
r drþ

1

2

ða
0

rD
n

E
~FFr ~mmr dr

where we have used the notation @ð�Þ=@r ¼ ð�Þr.
Taking into account the boundary conditions (37)

and (38) and recalling that E ¼ 3
2
nT , we can write

_VV ¼ �
ða
0

r
CF

k2
~FF2 þ Cm ~mm2

� �
dr� 1

2
GaDðaÞ ~mm2ðaÞ

� 1

2

ða
0

rD ~mm2
r dr

þ GaDðaÞ
�
�

~FF2ðaÞ
k2

� ~mm2ðaÞ þ 1

3

~FFðaÞ ~mmðaÞ
TðaÞ

�

þ
ða
0

rD



�

~FF2
r

k2
� ~mm2

r þ
1

3

~FFr ~mmr

T

�
dr

and taking C ¼ minðCF ;CmÞ we can conclude

_VV � �CV þ GaDðaÞ
�
�

~FF2ðaÞ
k2

� ~mm2ðaÞ þ j ~FFðaÞjj ~mmðaÞj
TðaÞ

�

þ
ða
0

rD



�

~FF2
r

k2
� ~mm2

r þ
j ~FFrjj ~mmrj

T

�
dr
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Writing T ¼ kT� where T� is in K (Kelvin), while T is in
J (Joule), and taking into account that T� >> 1, we can
state

_VV � �CV þ GaDðaÞ

�
�
�

~FF2ðaÞ
k2

� ~mm2ðaÞ þ
~FFðaÞ
k

����
����j ~mmðaÞj

�

þ
ða
0

rD



�

~FF2
r

k2
� ~mm2

r þ
~FFr

k

����
����j ~mmrj

�
dr

By Young’s inequality we know that�
�

~FF2ðaÞ
k2

� ~mm2ðaÞ þ
~FFðaÞ
k

����
����j ~mmðaÞj

�
� 0

ða
0

rD



�

~FF2
r

k2
� ~mm2

r þ
~FFr

k

����
����j ~mmrj

�
dr � 0

and we conclude that _VV � �CV showing that the
system is asymptotically stable.

The proof that the discretized target system (39) and
(40) with boundary conditions (43) and (44) is asymp-
totically stable in l2 norm would be completely analo-
gous. The discrete Lyapunov function Vd ¼
1
2

PN
i¼0 ð ~FF2

i =k
2Þ þ ~mm2

i

� 	
would be considered instead and

following an identical procedure the condition _VVd �
�CVd would be obtained.

6. Simulation results

The simulation presented in this section is run using
the FTCS (forward in time, central in space) finite dif-
ference method for a time step �t ¼ 0:001 s, a ¼ 2:4m
and Ns ¼ 24 ) hs ¼ 0:1. The subscript ‘s’ stands for
simulation. In this way we differentiate the fine grid
used for simulation purposes and the coarse grid used

for control design purposes. The controller is designed

using only one step of backstepping, i.e. for

N ¼ 2 ) h ¼ 1:2. We show that controllers of relatively

low order, designed on a much coarser grid, which use

the measurement of the energy and density fields only

at a limited number of points, can successfully control

the system. The choice of the simulation grid follows the

standard guidelines for stability and accuracy of the

numerical method used. However, the choice of the

backstepping grid, i.e. the number of sensors, is driven

by the objective to use the least number of sensors, mini-

mizing in this way the implementation cost.

As shown in } 4, control laws for the energy (55) and
the density (56) are given in terms of �N�1, �N�2 and

�N�1, �N�2, respectively, which can be obtained from

the expressions (47) and (48) by using symbolic tools

available.

For the considered non-burning plasma with

boundary conditions (9)–(12), quadratic profiles �SS ¼
S0½1� ðr=aÞ2Þ
 and �PPaux ¼ ðPauxÞ0½ð1� ðr=aÞ2
, the equi-
librium profiles given by equations (13) and (14) are

stable. However the rate of convergence to the equilib-

rium profiles from some initially perturbed profiles is

very slow. Therefore, the main goal of the controller

in this case is the improvement of performance.

Considering ~EEðr; 0Þ ¼ ð�1þ 2r=aÞ105 and ~nnðr; 0Þ ¼
ð�1þ 2r=aÞ1019, figure 2 shows the evolution of the

kinetic profiles from these initial perturbed profiles to

their equilibrium values. It is possible to note from the

figures that the settling time is approximately 2 s. This

represents an improvement of an order of magnitude

with respect to the open loop settling time. Figure 3

show the actuation at the edge of the plasma that

makes this possible.
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0
1

2
3

4 00.511.52

0

0.5

1

1.5

2

2.5

x 10
5

r [m]Time [sec]

Equilibrium Profile 

Initial Profile 

Plasma Core 

Plasma Edge 

(a)

0
1

2
3

4 00.511.52

3

4

5

6

7

8

9

10

x 10
19

r [m]Time [sec]

Equilibrium Profile 

Initial Profile 

Plasma Core

Plasma Edge

(b)

Figure 2. Profile evolution in time for E (a) and n (b).



7. Conclusions and future work

A non-linear feedback controller based on

Lyapunov backstepping design that achieves asymptotic
stabilization of the equilibrium kinetic profiles in a cylin-

drical plasma has been synthesized. The result holds for
any finite discretization in space of the original PDE

model. The simulation study shows that the boundary

controller designed using only one step of backstepping,
i.e. using only one measurement from the interior of the

reactor, can successfully control the kinetic profiles.

The control of the kinetic profiles by boundary con-
trol has been shown to be feasible. However, more study

is necessary to find a way of modulating the kinetic
variables at the edge of the plasma, i.e. achieving the

desired values of � ~EErðtÞ and �~nnrðtÞ given by equations

(53) and (54), through the modulation of physical prop-
erties of the scrape-off layer (SOL) such as gas puffing,

gas pumping and impurity injection. In case the necess-

ary modulation of the temperature and density at the
edge of the plasma could not be achieved by physical

means, actuation directly in the core of the plasma
would be considered; approaching in this way a less

challenging problem where the auxiliary power and fuel-

ling rate is used not only for the definition of the equi-
librium profiles but also for the stabilization of such

profiles.

In the future a zero-dimensional model of the toka-
mak SOL will be used as a complement of the one-

dimensional model for the core. In this way, we are
going to be able not only to search for physical ways

to achieve the modulation of the kinetic variables at the

edge of the plasma required by our control method but

also to work with kinetic profiles which are closer to the

ones found in real reactors. This is due to the fact that

the zero-dimensional model of the tokamak SOL will

allow us to work with more realistic boundary con-

ditions. Based on the fact that the one-dimensional

model for the core and the zero-dimensional model of

the tokamak SOL are connected through the values of

the energy and density fluxes at the boundary, we have

decided to use Neumann boundary conditions in this

work as an anticipation of the future step.

In addition, a burning plasma model will be consid-

ered. In this way, it will be possible to test the control

method for an inherently thermally unstable system.

More updated correlations for the transport coefficients

(D, �, �, Vp), if available, will also be considered. The

research of transport coefficients is in a considerable

state of flux. For this reason we synthesized a controller

which does not depend on the particle diffusivity D.

Note that the stability proof in } 5 is completely inde-

pendent of D and we only assumed that D > 0.

However, we approximated the relationship between

the particle diffusivity D and the thermal diffusivity �
that modified the model and consequently the controller

design. There are many models for thermal and particle

transport and it is very difficult, if not impossible, to

decide which one is the best. Since there is no clear

evidence that the original relationship gives a better

model of the system than the one given by the approx-

imate relationship, we took this last one to simplify the

design and therefore the presentation. However, if this
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were the case we would only have to study the robust-
ness of the controller against this simplification and
eventually in the worst case to redesign it taking into
account the original relationship. Although there are
several transport codes based on theoretical studies
or experimental observations that succeed reproducing
the transport behaviour of the plasma, none of them is
suitable for control applications. At this stage of the
fusion research, stronger emphasis must be put on the
development of transport models suitable for control
purposes.
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