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In this work, m synthesis is employed to stabilize a
model of the resistive wall mode (RWM) instability in the
DIII-D tokamak. The General Atomics/FAR-TECH DIII-D
RWM model, which replaces the spatial perturbation of
the plasma with an equivalent perturbation of surface
current on a spatially fixed plasma boundary, is used to
derive a linear state-space representation of the mode
dynamics. The spatial and current perturbations are equiv-
alent in the sense that they both produce the same mag-
netic field perturbation at surrounding conductors. The
key term in the model characterizing the magnitude of
the instability is the time-varying uncertain parameter
cpp, which is related to the RWM growth rate g. Taking
advantage of the structure of the state matrices, the model
is reformulated into a robust control framework, with the
growth rate of the RWM modeled as an uncertain param-
eter. A robust controller that stabilizes the system for a
range of practical growth rates is proposed. The control-

ler is tested through simulations, demonstrating signifi-
cant performance increase over the classical proportional-
derivative controller, extending the RWM growth rate
range for which the system is stable and satisfies pre-
defined performance constraints, and increasing the level
of tolerable measurement noise. The simulation study
shows that the proposed model-based DK controllers can
successfully stabilize the mode when the growth rate var-
ies over time during the discharge because of changes in
the operating conditions such as pressure and rotation.
In terms of robust stability, this method eliminates the
need for growth-rate online identification and controller
scheduling.

KEYWORDS: RWM stabilization, model-based robust con-
trol, structured singular value control synthesis

Note: Some figures in this paper are in color only in the electronic
version.

I. INTRODUCTION

One of the major nonaxisymmetric instabilities in
tokamaks is the resistive wall mode ~RWM!, a form of
plasma kink instability whose growth rate is moderated
by the influence of a resistive wall.1 This instability is
present in sufficiently high-pressure plasmas in which
the plasma kinks in a similar manner to that of a garden
hose. In a kink mode, the entire plasma configuration
deforms in a helically symmetric manner with an ex-
tremely fast growth time ~a few microseconds! generat-

ing time-varying magnetic perturbations that induce eddy
currents in the surrounding conductive structure. These
induced currents, in turn, generate magnetic fields that
oppose the plasma deformation, slowing the overall growth
rate of the instability ~to a few milliseconds!, which al-
lows the use of feedback to control the RWM. If the
surrounding structure were perfectly conductive at a crit-
ical distance from the plasma, the system would be sta-
bilized by the mode-induced eddy currents; however, the
resistive losses cause a decay in the wall currents, which
allow for growth in the mode amplitude. Recent numer-
ical and analytical efforts on modeling the coupling be-
tween the plasma and the resistive wall include Refs. 2*E-mail: schuster@lehigh.edu
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through 6. At present, research efforts focus on the sta-
bilization of the n � 1 RWM ~the plasma perturbation
repeats only once as the toroidal angle varies from 0 to
2p! because this instability is usually the first to occur
when pressure increases.

The General Atomics ~GA!0FAR-TECH DIII-D
RWM model represents the perturbed magnetic field on
the plasma surface as a toroidal current sheet and repre-
sents the resistive wall using an eigenmode approach.7,8

The plasma surface and current sheet perturbations are
equivalent in the sense that they both produce the same
magnetic field perturbation at surrounding conductors.
Observations from experiments show that the mode spa-
tial structure remains unchanged over a wide range of
growth rate.9 This spatial invariance is described as mode
rigidity, which implies that the spatial distribution of cur-
rent on the plasma surface and the wall remain intact,
while only their magnitudes and toroidal phases can
change. At extremely high beta, near the ideal stability
limit, mode rigidity may not be valid.10 However, this
study assumes mode rigidity as the mode grows as it
deals with regimes near the no-wall limit, far away from
the ideal-wall limit.

By using a surface-current representation of the mode,
it is possible to construct a state-space model of the plant
whose states consist only of the surrounding wall current
and the external control coil currents. The plasma is rep-
resented by the sine and cosine phase components of a
“single” mode, which results in many stable system ei-
genvalues and two unstable system eigenvalues associ-
ated with the phase components of the plasma mode. The
state-space model, expressed as a set of inductive circuit
equations derived from Faraday’s Law, is parameterized
with a diagonal coupling coefficient matrix Cpp, whose
entries are directly related to the growth rates of the
plasma-mode sine and cosine components. Although in
principle the Cpp matrix can have different values on its
diagonal ~reflecting different coupling of the sine and
cosine plasma-mode components with nonaxisymmetric
conductors!, in this study the coupling of the two com-
ponents of the plasma mode with the conductors is as-
sumed to be identical, and the diagonal values of the Cpp

matrix are the same. Therefore, the state-space model is
finally parameterized by a single scalar value cpp. The
two unstable eigenvalues can be viewed as a single ei-
genvalue of degeneracy two.

Although the plasma surface deformation cannot be
directly measured in real time, the magnitude and phase
of the deformation can be diagnosed from measurements
by a set of 22 magnetic field sensors composed of poloi-
dal probes and saddle loops. A set of 12 internal feedback
control coils ~I-coils! can then be used to return the plasma
to its original axisymmetric shape. Figure 1 shows the
arrangement of coils and sensors. Using an estimator for
the two orthogonal components of the assumed n � 1
mode pattern, the resultant plant can be constructed into
a reduced form from the original 12-input, 22-output

plant.11 In particular, using a typical quartet configura-
tion for the I-coils and matched filter, the plant can be
simplified to a three-input, two-output system. The quar-
tet configuration reduces the number of controllable in-
puts by locking the phase of the I-coils in sets of four,
120 deg apart. Thus, the three inputs represent three I-coils
that are independently controllable by the quartet con-
figurations. The matched filter reduces the number of
observable outputs using a calculated sensor basis vector.
For the n � 1 mode, the matched filter reduces the 22
outputs to two outputs that represent the RWM vector of
the sine and cosine components. These two outputs can
be combined to express the output as a signal composed
of the RWM amplitude ~L2-norm of the RWM vector!
and toroidal phase.11

In the past there have been many efforts on feed-
back stabilization of RWMs in DIII-D ~Refs. 12 through
15! as well as in other tokamaks such as HBT-EP
~Ref. 16!, NSTX ~Ref. 17!, and ITER, and in reversed
field pinch devices such as EXTRAP T2R ~Refs. 18
through 21! and RFX-mod ~Refs. 22, 23, and 24!. Most
of the stabilizing efforts in this field focused on design-
ing empirically tuned ~non-model-based! controllers with
proportional-derivative ~PD! action. However, there have
been some efforts on developing optimal controllers
based on state-space representations of circuit models
for a particular growth rate g of the system @DIII-D
~Refs. 25 and 26!, ITER ~Ref. 27!# . Some of these
controllers have been proved effective in extending the
stability region of the closed-loop system in simulation
studies.

The overall goal of this work is to take advantage
of the developed model of the DIII-D RWM system to
design a model-based feedback controller for stabiliza-
tion of the RWM, not for a particular value of the growth
rate g but for a predefined range. The major parameter

Fig. 1. Coils and sensors for RWM magnetic feedback
stabilization.
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characterizing the magnitude of the instability is the
time-varying uncertain parameter cpp, which is related
through the RWM growth rate g. This parameter, in
the form of the scalar coupling coefficient cpp, is buried
within the state-space representation of the plasma and
must be extracted and separated from the nominal plant
model in order to write the model in a robust control
framework. Once the uncertain parameter is extracted,
a robust controller, as measured by the structured singu-
lar value m ~Ref. 28!, is designed to stabilize the
RWM instability over a certain range of the growth rate
g. This has the benefit of designing one constant control-
ler that can stabilize the plasma RWM instability over the
entire physical range of the uncertain time-varying growth
rate.

The paper is organized as follows. Section II intro-
duces the GA0FAR-TECH DIII-D RWM plasma model
and manipulates the state-space equation to achieve an
affine parameterized form. Section III fully separates the
uncertain parameter cpp from the nominal plant using
linear fractional transformations ~LFTs!. Section IV de-
scribes the design of a robust controller based on the
parameterized model using the DK iteration for m syn-
thesis; the performance of this controller is also assessed
through simulations. Section V closes the paper stating
the conclusions.

II. PLASMA MODEL AND PARAMETERIZATION

II.A. System Model

Stated below is the GA0FAR-TECH DIII-D RWM
model, a plasma response model for the RWM using a
toroidal current sheet to represent the plasma surface7

where no plasma rotation is assumed. Most of the ma-
trices and variables presented are characteristics of
the tokamak and are well known. The state-space model
is parameterized with a diagonal coupling coefficient
matrix Cpp, which can be regarded as a reluctance ma-
trix.29 In this study the coupling of the two phase com-
ponents of the plasma mode with the conductors is
assumed to be identical, and it is possible to write Cpp �
cpp I, where I denotes the 2 � 2 identity matrix. The
model uncertainty is introduced through the single sca-
lar value cpp, which is related to the single unstable
mode growth rate g of the RWM. The relationship be-
tween these variables is shown empirically in Fig. 2 for
a particular plasma equilibrium and is further explained
in Ref. 8.

The model is represented in terms of the couplings
between the plasma p, vessel wall w, and coils c. The
model derived from Faraday’s law of induction results in
the system dynamics that reduce to

~Mss � Msp Cpp Mps ! Îs � Rss Is � Vs ,

where

Mss � mutual inductance between external conduc-
tors, including the vessel wall and the coils

Msp � mutual inductance between the external con-
ductors and the plasma

Rss � resistance matrix

Is � current flowing in the conductors

Vs � externally applied voltage to the conductors.

The matrix dimensions depend on the number of eigen-
modes used for the model ~two states are associated with
each eigenmode! and the coil configuration that deter-
mines the number of inputs. The mutual inductance ma-
trices are given by

Mss � �Mww Mwc

Mcw Mcc
� , Msp ��Mwp

Mcp
� ,

Mps � @Mpw Mpc# ,

where Mps and Msp satisfy the following condition:

Mps � Msp
T � @Mwp

T Mcp
T # ] Mpw � Mwp

T , Mpc � Mcp
T .

The resistance matrix is given by

Rss � �lw 0

0 Rc
� ,

where lw characterizes the mutual resistance matrix of
the various eigenmodes of the wall and Rc is the coil
resistance matrix. The current and externally applied volt-
age to the conductors can be written as

Fig. 2. Empirical relationship between the growth rate g and
cpp.
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Is � �Iw

Ic
� , Vs �� 0

Vc
� ,

where

Iw � wall current

Ic � coil current

Vc � externally applied voltage to the coil.

This model can be represented in a state-space for-
mulation using the current in the conductors as the states
~x � Is! and the applied voltage as the inputs ~u � Vs!.
This results in the following state-space equation:

_x � Ax � Bu ,

where

A � �Lss
�1 Rss , B � Lss

�1 , ~1!

and Lss � Mss � MspCpp Mps. The output equation of the
state-space representation is based on sensor measure-
ments that relate to the conductor currents through the
dynamics

y � ~Css � Cyp Cpp Mps !Is ,

where Cyp is the coupling matrix between the sensor and
plasma current and

Css � @Cyw Cyc #

is given by the coupling matrix between the sensor and
wall current Cyw, and the coupling matrix between the
sensor and coil current Cyc. This results in the state-space
output equation

y � Cx ,

where

C � Css � Cyp Cpp Mps .

II.B. Parameterization of the Lss
21 Matrix

The goal of this section is to extract the uncertain
parameter cpp from the uncertain state-space system and
introduce it as an uncertainty block that perturbs a nom-
inal state-space system. The initial step to obtaining the
nominal state-space system is to express each state ma-
trix as a general affine state-space representation using
nonlinear functions of the uncertainty cpp. As seen in
Eq. ~1!, the majority of the complexity is introduced
in the A and B state matrices, where the uncertainty cpp

is introduced through Lss
�1, and where Lss � ~Mss �

Mspcpp Mps!. Since the instability is two-dimensional ~sine
and cosine components of the plasma mode!, the matrix
product Msp Mps is rank 2. Recalling that the 2 � 2 diag-
onal Cpp matrix is equal to cpp I, where I denotes the 2 � 2
identity matrix, the Lss matrix can be expressed as

Lss � Mss � Msp cpp Mps

� Mss � cpp Msp Mps

� Mss � cpp(
i�1

2

ui ui
' , ~2!

where

Msp � @u1 u2 # , Mps ��u1
'

u2
'� ,

and

u1, u2 � n � 1 vectors

u1
' , u2
' � transpose of u1 and u2, respectively � 1� n

vectors

n � number of states in the RWM state-space
model.

To obtain a parameterized expression for the Lss
�1 term,

we must first compute the inverse of a matrix sum. Given
the matrix AT , the scalar bT , and the vectors CT and DT ,
the inverse of a matrix sum is given by the Sherman-
Morrison formula as30

~AT � bT CT DT !
�1 � AT

�1 �
bT ~AT

�1 CT !~DT AT
�1!

1 � bT DT AT
�1 CT

.

~3!

Using Eq. ~2!, the inverse of Lss can be written as

Lss
�1 � ~Mss � Msp cpp Mps !

�1

� ~Mss � cpp u1 u1
' � cpp u2 u2

' !�1 .

Now, using the matrix Al � Mss � cpp u1 u1
' , the preceding

equation can be written as

Lss
�1 � ~Al � cpp u2 u2

' !�1 .

This is now in the form given by Eq. ~3!, and thus, the
formula can be applied, resulting in

Lss
�1 � Al

�1 �
cpp~Al

�1 u2 !~u2
' Al

�1!

1 � cpp u2
' Al

�1 u2

. ~4!

Now the matrix Lss
�1 is expressed in terms of Al

�1, which
is equivalent to ~Mss � cpp u1 u1

' !�1 , and once again ap-
plying Eq. ~3! results in

Al
�1 � ~Mss � cpp u1 u1

' !�1

� Mss
�1 �

cpp~Mss
�1 u1!~u1

' Mss
�1!

1 � cpp u1
' Mss

�1 u1

.
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This expression can now be substituted back into Eq. ~4!. The terms can be collected and rewritten in the following
form:

B � Lss
�1 �(

i�0

4

ai Bi ,

where ai’s are nonlinear functions of cpp and Bi’s are constant matrices. The individual terms are given by the
following:

a0 � 1

a1 �
cpp

1 � cpp u1
' Mss

�1 u1

a2 �
cpp

1 � cpp u2
' Mss

�1 u2 �
cpp

2

1 � cpp u1
' Mss

�1 u1

u2
' ~Mss

�1 u1!~u1
' Mss

�1!u2

a3 � a2a1

a4 � a2a1
2

B0 � Mss
�1

B1 � @~Mss
�1 u1!~u1

' Mss
�1!#

B2 � @~Mss
�1 u2 !~u2

' Mss
�1!#

B3 � @~Mss
�1 u2 !~u2

' ~Mss
�1 u1!~u1

' Mss
�1!!� ~~Mss

�1 u1!~u1
' Mss

�1!u2 !~u2
' Mss

�1!#

B4 � @~Mss
�1 u1!~u1

' Mss
�1!u2 u2

' ~Mss
�1 u1!~u1

' Mss
�1!# .

II.C. Expressing the Parameterized State-Space Matrices

Section II.B allowed us to express the Lss
�1 matrix in

a parameterized form, which allows the parameterization
of the state and input matrices A and B, respectively. In a
similar way, the output matrix C can also be parameter-
ized. Using the fact that cpp is a scalar, the C matrix can
be written as

C � Css � Cyp cpp Mps � Css � cpp Cyp Mps

� C0 � a5 C5 ,

where

C0 � Css , C5 � �Cyp Mps , a5 � cpp .

Defining Ai � �Bi Rss, we can finally summarize the
parameterized expressions for the state matrices A, B,
and C in terms of ai’s, given as

A � A0 � a1 A1 � a2 A2 � a3 A3 � a4 A4 , ~5!

B � B0 � a1 B1 � a2 B2 � a3 B3 � a4 B4 , ~6!

and

C � C0 � a5 C5 . ~7!

III. GROWTH RATE PARAMETERIZATION

III.A. Linear Fractional Transformation

of the RWM Model

A system with state-space representation A, B,C, D
has a transfer function G~s!� D � C~sIn � A!�1B, where
n is the number of states ~or eigenvalues! in the system
and In is the convention used to describe an n � n identity
matrix. Defining the matrix

Ma � �A B

C D
� ,

we can write the transfer function as the LFT of Ma as31

G~s! � Fu��A B

C D
� ,

1

s
In�� Fu�Ma ,

1

s
In�

� Ma22
� Ma21

1

s
In�In � Ma11

1

s
In��1

Ma12

� D � C
1

s
In�In � A

1

s
In��1

B

� D � C~sIn � A!�1B .
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The graphical representation of G~s! is shown in Fig. 3,
with equivalent equations as follows:

�z1

y
� � �A B

C D
��w1

u
� ,

w1 �
1

s
z1 ,

and

y � Fu�Ma ,
1

s
In�u � G~s!u .

To introduce the uncertainty given by the parameter-
ized state-space system @Eqs. ~5!, ~6!, and ~7!#, the Ma
matrix can be written in the form of a general affine
state-space uncertainty:

Ma � �A0 �(
i�1

k

ai Ai B0 �(
i�1

k

ai Bi

C0 �(
i�1

k

ai Ci D0 �(
i�1

k

ai Di
� ,

where k � 5, A5 � 0, B5 � 0, Ci � 0 for i � 1, . . . , 4,
and Di � 0 for all i .

This uncertainty can be formulated into an LFT by
achieving the smallest possible repeated blocks using the
method outlined in Ref. 31. To begin this method, ma-
trices Ji’s are formed such that

Ji � �Ai Bi

Ci Di
� � R

~n�ny !�~n�nu !

for each i � 1, . . . , 5. Then, using singular value decom-
position and grouping terms, an expression for Ji can be
obtained ~note that A* is denoted as the complex conju-
gate transpose of the matrix A!:

Ji � UiSi Vi
*� ~UiMSi !~MSiVi

*!

� �Li

Wi
��Ri

Zi
�* .

Denoting qi as the rank of each matrix Ji , each inner
matrix is given by

Li � R
~n�qi ! , Wi � R

~ny�qi ! , Ri � R
~n�qi ! ,

Zi � R
~nu�qi ! .

Then, the uncertainty can be introduced as

ai Ji � �Li

Wi
�@ai Iqi

#�Ri

Zi
�* ,

where for this particular equilibrium,

q1 � 1 ,

q2 � 1 ,

q3 � 2 ,

q4 � 1 ,

and

q5 � 2 .

Finally, the linear fractional transformed matrix can be
written as

Ma � M11 � M12ap M21 ,

where

M11 � �A0 B0

C0 D0
� , M12 ��L1 J L5

W1 J W5
�

M21 � �
R1
* Z1

*

I I

R5
* Z5

*� , ap � �
a1 Iq1

0

L

0 a5 Iq5

� .

This is equivalent to the lower LFT:

Ma � Fl��M11 M12

M21 0
� ,ap�� Fl ~M,ap !

� M11 � M12ap~IqT
� M22ap !

�1M21

� M11 � M12ap M21 ,

where

M � �M11 M12

M21 0
�

Fig. 3. G~s! as an LFT using Ma, ~10s!In.
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and qT is the total rank of the ap matrix given by

qT �(
i

qi � 7 .

Finally, the transfer function of the uncertain state-space
model is written as

G~s! � Fu�Ma ,
1

s
In�� Fu�Fl ~M,ap !,

1

s
In� .

The graphical representation of G~s! is shown in Fig. 4,
with the equivalent equations as follows:

��
z1

y
�

z2

� � �M11 M12

M21 0
���

w1

u
�

w2

� ,

w1 �
1

s
z1 , w2 � ap z2 ,

and

y � Fu�Fl ~M,ap !,
1

s
In�u � G~s!u .

III.B. Normalizing the ��� Parameters

The system is now in a form where the uncertainty is
given by the five ai parameters. However, as shown ear-
lier, each of the ai parameters is a nonlinear function of
the single variable cpp. Thus, the next step is to express
the LFT in terms of the single uncertainty cpp. First, cpp

is normalized using

cpp � d � de ,

d � cpp
* ,

and

e � max@6cppmax
� cpp

* 6, 6cppmin
� cpp

* 6# ,

where cpp
* is the nominal value of cpp, and cppmin

and cppmax

are its minimum and maximum values, respectively. This
defines a new normalized uncertainty d that has a range
of values within 6d6 � 1 that corresponds to the desired
cpp range.

Now that each ai parameter is expressed in terms of
d, we “pull out the d” ~Ref. 28!. This is done by drawing
the block diagram for each ai system and labeling the
input to each d block z3i

and the output of each d block
w3i

. Then the matrix Q, which satisfies ap � Fl~Q,D!
with D� dImT

, can be found using

�w2i

z3i

� �
�

Qi� z2i

w3i

�
for each ai term, where mT is the total number of uncer-
tainty elements needed to represent ap. Thus, the Qi ma-
trix satisfies the equation ai � Fl ~Qi ,dImi

!, where mi is
the minimum number of uncertainty elements d needed
to represent ai . Recalling that w2 �ap z2, the system can
be formulated such that w2 � Fl~Q,D!z2. To correspond
to each ai term in the matrix ap, the w2, z2, w3, z3 ma-
trices are given by

w2 � �
w21

w22

w23

w24

w25

� , z2 � �
z21

z22

z23

z24

z25

� ,

w3 � �
w31

w32

w33

w34

w35

� , z3 � �
z31

z32

z33

z34

z35

� ,

where w2i
and z2i

are vectors of length qi , based on the
rank of each Ji matrix, and w3i

and z3i
are vectors of

length mi qi , based on the minimum number of d’s re-
quired to represent each ai and the value of qi . The com-
posite Q matrix will be defined after each individual Qi is
determined, where Qi is given by

Qi � �Qi11
Qi12

Qi21
Qi22

� .

Fig. 4. G~s! as an LFT using M, ap, ~10s!In.
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The total number of uncertainty elements mT for ap

is given by the total length of w3, which is found by

mT �(
i

mi qi .

The graphical representation of the ap block is show in
Fig. 5.

The block diagram for a1 is shown in Fig. 6. Recal-
ling that a1 � cpp0~1 � cpp u1

' Mss
�1 u1!, and using a �

u1
' Mss

�1 u1, the relationship becomes

a1 �
cpp

1 � acpp

.

Inserting the normalized relationship cpp �d�de, a1 can
be written as

a1 �
d � de

1 � a~d � de!
�

d � de

~1 � ad !� aed
.

Since there is only one uncertainty element, m1 �1. The
block diagram for a1 can be directly drawn from this
form, with the feedback terms in the denominator and the
feedforward terms in the numerator. From the diagram,

z31
� z21

� ~adz31
� aew31

! .

Solving for z31
,

z31
� adz31

� z21
� aew31

,

z31
~1 � ad ! � z21

� aew31
,

and

z31
� � 1

1 � ad
�z21

� � ae

1 � ad
�w31

.

From the diagram, the output is given by

w21
� dz31

� ew31
.

Substituting for z31
, the expression becomes

w21
� d�� 1

1 � ad
�z21

� � ae

1 � ad
�w31�� ew31

� � d

1 � ad
�z21

� �� aed

1 � ad
�� e�w31

� � d

1 � ad
�z21

� �e�1 �
ad

1 � ad
��w31

.

Thus, the governing equation for a1 is given by

�w21

z31

� � Q1� z21

w31

� ,

which results in a Q1 given by

Q1 � �
d

1 � ad
e�1 �

ad

1 � ad
�

1

1 � ad

ae

1 � ad
� ��Q111

Q112

Q121
Q122

� .

For the system matrices of the DIII-D tokamak under
the particular equilibrium, the behavior of a1 and a2 is
approximately the same, with an error on the order of
10�12. From this very good approximation, we can take
a1 �a2. Although the full model could be used, this is an
accurate enough assumption that allows the reduction of
computational complexity. As a result of this approxima-
tion, the following changes can be made to the other a
parameters:

a3 � a2a1 ] a3 � a1
2

and

a4 � a2a1
2 ] a4 � a1

3 .

Since a2 � a1, m2 � m1 � 1 and the Q2 block is simply
defined by

Q2 � Q1 .

Fig. 5. ap as an LFT using Q and D.

Fig. 6. Block diagram for a1.
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The parameter a3 is given as a3 � a1
2, or a3 � Fl~Q1,d!{Fl~Q1,d!. In general, the series connection of l identical

lower LFTs Fl~T,d!, where

T � �T11 T12

T21 T22
� ,

can be written as Fl~S,dIl !, where

S � �
T11

l T11
l�1 T12 T11

l�2 T12 {{{ T11T12 T12

T21 T22 {{{ 0

T21T11 T21T12 T22

I I T21T12 T22 I

T21T11
l�2 T21T11

l�3 T12 K T21T12 T22

T21T11
l�1 T21T11

l�2 T12 T21T11
l�3 T12 {{{ T21T12 T22

� .

A reduction can be made so that a3 � Fl~Q3,dI2!,
where I2 is the size 2 identity matrix, thus m3�2. Through
the series connection of the LFT of Q1, the Q3 block is
given by

Q3 � �
Q111

2 Q111
Q112

Q112

Q121
Q122

0

Q121
Q111

Q121
Q112

Q122

� .

Similarly to Q3, the parameter a4 is given as a4 �
a1

3, or a4 � Fl~Q1,d!{Fl~Q1,d!{Fl~Q1,d!. A reduction
can be made so that a4 � Fl~Q4,dI3!, where I3 is the size
3 identity matrix, m4 � 3, and Q4 is given by the series
connection of the LFT such that

Q4 � �
Q111

3 Q111

2 Q112
Q111

Q112
Q112

Q121
Q122

0 0

Q121
Q111

Q121
Q112

Q122
0

Q121
Q111

2 Q121
Q111

Q112
Q121

Q112
Q122

� .

Also, Q5 can be directly written as

Q5 � � d e

1 0
� ,

such that m5 � 1.
Now that there is an expression for each of the ai ~i�

1, . . . , 5! parameters in terms of an LFTai � Fl ~Qi ,dImi
!,

they can be combined to form one LFT with a common
uncertainty d. As shown earlier, the uncertainty in terms
of a is given as

ap � �
a1 Iq1

0

a2 Iq2

a3 Iq3

a4 Iq4

0 a5 Iq5

� ,

where Iqi
is the size qi identity matrix. The total number

of uncertain elements is given by mT � (i mi qi � 11.
Thus, the linear fractional transformation ap � Fl~Q,D!
with D � dImT

is given by ap � Q11 � Q12D~ImT
�

Q22D!�1Q21, where

Q � �Q11 Q12

Q21 Q22
� .

Each submatrix Qjk is given by the block diagonal matrix

Qjk � �
Q1jk

0

L

0 Q5jk

� ,

where j � 1, 2 and k � 1, 2. The matrix Qjk has the same
number of diagonal blocks as ap based on the rank of
each Ji matrix denoted by qi .

III.C. Model in Robust Control Framework

The final expanded representation of the entire sys-
tem is G~s! � Fu~Fl~M, Fl~Q,D!!, ~10s!In!, which is de-
scribed by Fig. 7 and the corresponding equation set:

��
z1

y
�

z2

� � �M11 M12

M21 0
���

w1

u
�

w2

� ,

�w2

z3
� � �Q11 Q12

Q21 Q22
�� z2

w3
� ,

w1 �
1

s
z1 , w3 � dz3 ,
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and

y � Fu�Fl ~M, Fl ~Q,D!!,
1

s
In�u � G~s!u .

Finally, the original system M can be combined with
the matrix Q through the interconnection of LFTs
~Ref. 32!. This is done using the fact that

Ma � Fl ~M,ap !� Fl ~M, Fl ~Q,D!!� Fl ~R,D! ,

where R is defined as

R �
� �R11 R12

R21 R22
� ,

and where

R11 � M11 � M12 Q11~I1 � M22 Q11!
�1M21

R12 � M12~I1 � Q11 M22 !
�1Q12

R21 � Q21~I1 � M22 Q11!
�1M21

R22 � Q22 � Q21 M22~I1 � Q11 M22 !
�1Q12 .

Since M22 � 0, it simplifies to

R � �M11 � M12 Q11 M21 M12 Q12

Q21 M21 Q22
� .

Now the system is reduced to a simple form of
R, uncertainty D � dImT

with 6d6 � 1, and ~10s!In.
The system can now be reduced using a simple prop-
erty of the LFT. The system given by G ~s! �
Fu~Fl~R,D!, ~10s!In! can be written as G~s! � Fl~Fu~R,

~10s!In!,D! � Fl~P ',D!, where P ' � Fu~R, ~10s!In!. The
final step in the system reduction moves the uncer-
tainty, creating an upper LFT for convention purposes.
This is done by using

G~s! � Fl ~P
',D!� Fu~P,D! ,

where P ' is of the form

P ' � �P11
' P12

'

P21
' P22

' � and P ��P22
' P21

'

P12
' P11

' � .

The overall system reduction is shown in Fig. 8. The
parameterization of the RWM model allows this system
to be represented in the general framework of robust
control for uncertain systems. The goal is to design a
controller K that stabilizes the plant for all uncertainty
6d6� 1. The feedback controller K can be applied to the
plant to formulate a closed-loop LFT system on the un-
certainty and the controller, given by

G~s! � Fl ~Fu~P,D!, K !

� Fu~Fl ~P, K !,D! ,

which can be seen in Fig. 9.

Fig. 7. G~s! as an LFT using M, Q, d, ~10s!In.

Fig. 8. Graphical representation of G~s! manipulation.

Fig. 9. General framework for robust control.
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IV. CONTROLLER SYNTHESIS AND SIMULATION

IV.A. DK Iteration Model–Based Controller

Experimentally, the growth rate can vary from very
low ~or even stable! to very high as higher bN and0or
strong rotation slowing down occurs. Indeed, DIII-D
can often transition to a growth rate that is apparently
uncontrollable as the rotation crashes to zero. A success-
ful controller must be able to stabilize the system as the
growth rate transitions across this entire range in a sin-
gle discharge ~or a gain scheduled sequence of control-
lers must be rapidly switched in during such transition,
which is not expected to be practical!. The goal of this
work is to design one controller that can robustly stabi-
lize the RWM and meet specified controller perfor-
mance criteria ~Table I!. That is equivalent to designing
a feedback controller K that robustly stabilizes the sys-
tem for the applicable range of D in Fig. 9. The basic
idea is that for a small enough change in the uncertain
parameter ~growth rate!, stability can be maintained.
Thus, m analysis gives a nonconservative measure of
the range of change for the uncertain parameter in which
the system remains stable and the performance criterion
is satisfied. The robust stability of the plant is deter-
mined by the N11 submatrix, where N � Fl~P, K !. The
system N represents the nominal closed-loop system.
The subsystem N11 term isolates the uncertainty from
the input and output of the system. Meanwhile, N12 and
N21 characterize the coupling between the uncertainty
and the input0output of the system, and N22 represents
the system at a nominal cpp value ~D � 0!. The robust
stability is determined by the structured singular value,
which is defined as

m~N11! �
�

1

min$km 6det~I � km N11D! � 0%

for Ts~D! � 1. Larger m values means ~I � N11D! be-
comes singular with small perturbations, thus the smaller
m the better. The robust stability condition is found by
finding the smallest value of km at the onset of instabil-

ity, or det~I � km N11D!� 0, which yields km �10m~N11!,
where km is a measure of the robust stability to pertur-
bations in D. Thus, assuming N11 and D are stable, the
system is robustly stable if and only if m~N11~ jv!! � 1,
�v. Similarly, the robust performance is given by
m~N ! � 1, �v. Both conditions assume that N is inter-
nally stable.

One available procedure to design a controller using
m synthesis is DK iteration. Since there is no direct method
to synthesize a m-optimal controller, this method is used
by combining H` synthesis and m analysis. This method
starts with the upper bound on m in terms of the scaled
singular value:

m~N ! � min
D�D

Ts~DND�1 ! ,

where D is the set of matrices D that commute with D,
i.e., DD � DD. Then, the controller that minimizes the
peak value over frequency of this upper bound is found,
namely,

min
K
�min

D�D
7DN~K !D�1 7`� .

The controller is designed by alternating between the
two minimization problems until reasonable perfor-
mance is achieved. The DK-iteration steps are summa-
rized in Ref. 32 as follows:

1. K step: Synthesize an H` controller for the scaled
problem, minK7DN~K !D�17` with fixed D~s!.

2. D step: Find D~ jv! to minimize Ts~DND�1~ jv!!
at each frequency with fixed N.

3. Fit the magnitude of each element of D~ jv! to a
stable and minimum-phase transfer function D~s! and go
to step 1.

The iteration continues until 7DN~K !D�17` � 1 or the
H` norm no longer decreases.

Using the derived P �D formulation ~Fig. 9!, a con-
troller can be designed with the DK-iteration method for
robust stabilization. For the model being used the growth
rate g ranges from 10 to 5000 rad0s. This results in a
range for the uncertain parameter cpp that goes from 71 to
0.3325. This is the range of values for which the system
should be stabilized so that the robust controller can be
considered a suitable design for DIII-D.

The complete system that is used to design the con-
troller has two additional time delay blocks preceding the
plasma model. The time delays physically represent the
plasma control system and the power supply. For design
purposes, the time delays are linearized using second-
order Padé approximations.

Two controllers are synthesized using the dksyn com-
mand in Matlab, one using the nominal plant and the
other an augmented plant with input weight. The perfor-
mance weight is added to the inputs of the system to
achieve desired loop-shaping results. The weight is of the

TABLE I

Performance Targets and Constraints

Condition Target Value
Maximum
Constraint

Rise time 1.0 ms 5.0 ms
Settling time 5.0 ms 10 ms
Overshoot 15% 50%
Input voltage N0Aa 6100 V

aN0A � not applicable.
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form W � ~M�10ns � vb
*!n0~s � vb

*A10n !n , where M �
106, vb

*� 109, A � 1, and n � 2. During the process of
synthesizing the controller, it is evident that controllers
designed with a smaller, more unstable nominal cpp value
produce the widest range of stability for cpp. This is be-
cause the normalized uncertainty d is defined by a linear
relationship with cpp, while the unstable eigenvalue of
the system is nonlinear with respect to cpp. Using a smaller,
more unstable cpp range, the defined linear relationship
with d more accurately represents the system by captur-
ing the dynamics at the more unstable values of cpp. The
DK controller is synthesized using a P � D system con-
structed for cpp

* � 0.34125 ~g* � 4890 rad0s! and guar-
antees m � 1 for the range defined by

cppmin
� 0.3325

and

cppmax
� 0.35 ,

which is equivalent to

gmax � 5000 rad0s

and

gmin � 4660 rad0s .

However, these results are conservative, and as will be
shown in the next part, the stability and performance
ranges for our system are indeed bigger. The conserva-
tism is explained by the fact that the DK-iteration implic-
itly assumes that the uncertain parameter is complex and
does not take advantage of the known phase information
of the real uncertainty. The real uncertainty can be con-
sidered using a modified algorithm, the DGK iteration.33

However, this algorithm greatly increases the numerical
complexity. The controllers were designed and simulated
using a 15-eigenmode model with 36 states. There are
two states to describe each eigenmode, three states for
the controlled I-coils in the quartet configuration, and
three states for the external coils ~C-coils!. The designed
controllers have orders of 108 and 107 for the plant with-
out weight and with weight, respectively. In both cases,
the controller order is reduced to 16 ~using the Hankel
norm model reduction technique28,32! before computing
the effective stability and performance ranges.

IV.B. Controller Simulation and Results

In order to be able to compare the proposed model-
based DK controllers with present non-model-based con-
trollers, a PD controller is designed ~integral action is not
required for this system!. The PD controller is synthe-
sized to maximize the stability range as a function of g
and is of the form

Kij �
GPij

� GDij
s

1 � tpcs s
,

where

i � number of controlled variables � 3

j � number of outputs � 2

GP � proportional gain

GD � derivative gain

tpcs � time constant, taken to be 4 � 10�4 s.

Each Kij term fills the 3 � 2 controller matrix K. Begin-
ning with a stabilizing controller with K11 � K22 and
every other term set to zero, the stability range of this
controller is obtained. Holding these terms constant and
individually checking the maximum stability range for
the remaining terms under the optimal condition, the only
term that had a more stabilizing effect was the K32 term.
It has been shown that the stability range can be maxi-
mized by a controller with nonzero K11, K22, K32 terms
and every other term set to zero. Using PD controllers for
the terms K11, K22, and K32, all six gains are optimized to
obtain the maximum range of stability as a function of g.
The resulting gains are

GP11
� 3.80 � 104 ,

GD11
� 76 ,

GP22
� 1.38 � 104 ,

GD22
� 40 ,

GP32
� 6.62 � 104 ,

and

GD32
� 103 .

The performance of the model-based DK controllers
is simulated using a Simulink model of the plasma, con-
troller, plasma control system, and power supply and is
compared to the results of a well-tuned PD controller.
The top level of the Simulink model is presented in Fig. 10.
The power supply has a time delay and a saturation block
that realizes the physical limit of the applied voltage of
6100 V. The plasma model consists of a control input
and an additional input for the varying cpp. The detail of
the plasma model in Simulink ~Fig. 11! includes the state-
space construction using the a parameters @Eqs. ~5!, ~6!,
and ~7!# and noise subsystems comprised of independent
random band-limited white noise generators. Table I pro-
vides the performance constraints in response to a unit
initial disturbance in the RWM mode amplitude.

Figure 12 shows the time response to initial con-
ditions of the plasma, normalized to a starting RWM
mode amplitude of 1 G. This simulation is performed at
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constant RWM growth rates of g � 10 rad0s and g �
5000 rad0s, the lower and upper limits, respectively, of
the growth rate range of our interest. In both cases, the
DK controllers provide quick suppression of the RWM
mode amplitude, outperforming the PD controller, which
does not provide quick suppression at the faster growth
rate ~failing the performance criteria! and even shows a
longer settling time for the slower growth rate when
compared to the DK controllers. The applied coil volt-
ages are shown in Figs. 13, 14, and 15 for the three
cases. The three curves in Figs. 13, 14, and 15 are the
three independent input control voltages to the I-coils
in the quartet configuration. For both growth rates, the
weighted DK controller design uses less applied voltage

to achieve similar results. It is possible to note from
Fig. 15, particularly from Fig. 15b ~faster growth rate!,
that the PD controller needs significantly larger coil
voltages to stabilize the system, driving the actuators
closer to saturation.

Another example is presented in Fig. 16, which shows
the time response to a unit step disturbance in the RWM
mode amplitude. Once again, this simulation is per-
formed with constant growth rates, which define our range
of interest. For the slower growth rate ~Fig. 16a!, the DK
and PD controllers have similar time responses with;20%
overshoot, and a fast rise time. For the faster growth rate,
the system remains stable for all the controllers, but the
settling time is increased beyond the time range shown

Fig. 10. Top level of the Simulink model.

Fig. 11. Simulink model of the parameterized plasma state-space representation with noise.
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in the figure. The PD controller, however, converges to
a bigger steady-state offset when compared to the DK
controllers.

IV.C. Closed-Loop Stability and Performance

It is useful to determine the range of g where the
system remains stable as well as the range where the

system performs within the limits of the performance
constraints ~see Table I!. Table II provides the ranges of
g for which stability and performance conditions are
satisfied. The first row of Table II, “Stability range,”
indicates the range of g for which the system remains
stable when using a unit step disturbance input for the
RWM model amplitude. The second row of Table II,
“Performance range ~initial!,” indicates the range of g

Fig. 12. Initial condition response RWM mode amplitude for
~a! g � 10 rad0s and ~b! g � 5000 rad0s with DK
controllers.

Fig. 13. Initial condition response control inputs for ~a! g�10
rad0s and ~b! g� 5000 rad0s for DK without weight
controller.

Fig. 14. Initial condition response control inputs for ~a! g�10
rad0s and ~b! g � 5000 rad0s for DK with weight
controller.

Fig. 15. Initial condition response control inputs for ~a! g�10
rad0s and ~b! g� 5000 rad0s for PD controller.
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for which the performance conditions are satisfied when
an initial unit excitation of the RWM mode amplitude is
forced through appropriate initial conditions. Both model-
based DK controllers show good stability and perfor-
mance properties well beyond the desiredg range and that
of the PD controller, with the weighted DK controller de-
sign having a larger range in both stability and performance.

As a final check of the controllers’ performance,
noise is added to the system to observe the predicted
effect that it will have on the system. Only the sensor
noise is taken into account, ignoring the process noise.
The sensor noise is added to the set of 22 magnetic field
sensors, before the matched filter is applied to the output.
Tests are performed to find the root-mean-square ~RMS!
noise level of the RWM mode amplitude that can be
sustained until instability is reached. The system is driven
unstable in the presence of noise because of the satura-
tion limits on the coil voltages. Table II summarizes the
approximate RWM mode amplitude noise level at which
this occurs. The Table II rows “RMS noise ~g � 5000

rad0s!” and “RMS noise ~g�2500 rad0s!” correspond to
initial condition response tests at growth rates of g �
5000 rad0s and g � 2500 rad0s, respectively. Both DK
controllers can withstand larger amounts of sensor noise
when compared to the PD controller. The PD controllers
used in present experiments require substantial deriva-
tive gain for stabilization, which implies a large response
to noise, leading to a requirement for high peak voltages
and coil currents, which in turn lead to saturation and
instability. It is important to recall at this point that as the
growth rate increases, the PD controller works closer to
saturation than the model-based DK controllers ~see
Fig. 15!.

Since the robust controller stabilizes the plant over a
range of growth rate, it is of interest to investigate the
controller performance using a time-varying growth rate
g. The results for ramping, stepping, and sinusoidal ex-
citation of the cpp parameter are presented ~Figs. 17, 18,
and 19!. The ramp function begins at an initial value of
g�120 rad0s ~cpp � 5.75! and changes linearly to cpp �
0.3325 over 5 ms. The step function also initiates at cpp �
5.75 and changes between the maximum, nominal, and
minimum values of cpp in 0.5-ms intervals over a 2.5-ms
span. The amplitude of the sinusoidal function is defined
by the design range of cpp used for the synthesis of the
controller. Its frequency is 5000 rad0s. In all three cases,
the RWM mode amplitude is quickly suppressed ~Figs. 17,
18, and 19!. Again, the weighted DK controller design
maintains less RWM amplitude compared to the DK con-
troller without weight, providing better rejection to
changes in the growth rate. In all cases the PD controller
has difficulty suppressing the RWM amplitude and be-
comes unstable in the stepping cpp case.

V. CONCLUSIONS

The GA0FAR-TECH DIII-D RWM model was re-
structured into a robust control framework, isolating the
RWM time-varying uncertain parameter cpp, the key
term influencing the size of the RWM instability. With
the system model in this framework, the DK-iteration
method was applied to develop robust controllers, as
measured by the structured singular value, for a pre-
determined range of g. Augmenting the nominal system

Fig. 16. Step response RWM mode amplitude for ~a! g � 10
rad0s and ~b! g� 5000 rad0s with DK controllers.

TABLE II

g Stability and Performance Ranges

Controller DK Without Weight DK with Weight PD

Stability range 0 to 7437 rad0s 0 to 8434 rad0s 0 to 5042 rad0s
Performance range ~initial! 0 to 6459 rad0s 0 to 7150 rad0s 0 to 4103 rad0s
RMS noise ~g� 5000 rad0s! 15.12 G 12.03 G 1.16 G
RMS noise ~g� 2500 rad0s! 37.51 G 36.09 G 14.44 G
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with performance weight provides better loop-shaping
of the closed-loop system, which results in improved
controller performance.

The DK controllers have been tested through simu-
lations and compared with present PD controllers. The
simulation study shows significant improvement over non-
model-based PD controllers, increasing the RWM growth
rate range for which the system is stable and satisfying
predefined performance constraints. The simulation study
also includes a comparison of the level of noise that can
be withstood by the different controllers, showing that

because of the derivative action the PD controller pro-
duces a larger response to noise, leading more easily to
coil saturation and instability.

Since the plasma RWM growth rate can vary with
operating conditions, the design of a controller that can
stabilize the system over the entire physical range of g is
critical. The simulations show that the model-based DK
controllers can successfully stabilize the mode for dif-
ferent types of time-varying growth rates. In terms of
robust stability, this method eliminates the need of growth
rate online identification and controller scheduling. Fu-
ture work includes the experimental validation of this
controller in DIII-D.
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