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a b s t r a c t

One of the major non-axisymmetric instabilities under study in the DIII-D tokamak is the resistive wall
mode (RWM), a form of plasma kink instability whose growth rate is moderated by the influence of a
resistive wall. One of the approaches for RWM stabilization, referred to as magnetic control, uses feedback
control to produce magnetic fields opposing the moving field that accompanies the growth of the mode.
These fields are generated by coils arranged around the tokamak. One problem with RWM control methods
used in present experiments is that they predominantly use simple non-model-based proportional-
derivative (PD) controllers requiring substantial derivative gain for stabilization, which implies a large
response to noise and perturbations, leading to a requirement for high peak voltages and coil currents,
usually leading to actuation saturation and instability. Motivated by this limitation, current efforts in
DIII-D include the development of model-based RWM controllers. The General Atomics (GA)/Far-Tech
DIII-D RWM model represents the plasma surface as a toroidal current sheet and characterizes the wall
using an eigenmode approach. Optimal and robust controllers have been designed exploiting the availabil-
ity of the RWM dynamic model. The controllers are tested through simulations, and results are compared
to present non-model-based PD controllers. This comparison also makes use of the � structured singular
value as a measure of robust stability and performance of the closed-loop system.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The resistive wall mode (RWM) is a form of plasma kink insta-
bility that deforms the entire plasma configuration symmetrically
in the helical direction with an extremely fast MHD Alfvenic time
scale (∼ �s). The presence of the conductive tokamak structure
acts as a stabilizing mechanism through the eddy currents that are
induced by the time-varying magnetic perturbations generated by
the plasma deformation. These induced currents generate magnetic
fields that oppose the plasma deformation, resulting in a slower
growth time (∼ms) of the RWM, which allows the use of feedback to
control this mode [1]. The inherent resistive losses of the surround-
ing structure cause a decay in the induced wall currents reducing
the stabilizing effect of the wall. Current research focuses on the
stabilization of the first (n = 1) kink mode (the plasma perturba-
tion repeats only once as the toroidal angle varies from 0 to 2�)
since this is usually the first to occur when pressure increases.

There have been many successful efforts on feedback stabiliza-
tion of resistive wall modes in DIII-D [2] as well as in other tokamaks
such as HBT-EP [3], NSTX [4], and ITER, and in reversed field pinch
devices such as EXTRAP T2R [5] and RFX-mod [6]. Most of the sta-
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bilizing efforts in this field focused on designing non-model-based,
empirically-tuned controllers with PD (proportional-derivative)
action, without taking advantage of developed models. One prob-
lem with PD controllers used in present experiments is that they
require substantial derivative gain for stabilization, which implies a
large response to noise and perturbations, leading to a requirement
for high peak voltages and coil currents. Model-based controllers
have the potential of overcoming this limitation by exploiting the
a-priori knowledge (model) of the system. There have been already
some efforts in this direction [7,8], which have been proved effec-
tive through simulation in increasing to some extent the stability
region of the closed-loop system.

The GA/Far-Tech DIII-D RWM model replaces the perturbed
plasma surface by a perturbed toroidal current sheet, and models
the resistive wall using an eigenmode approach [9,10]. The plasma
surface and current sheet perturbations are equivalent in the sense
that they both produce the same magnetic field perturbation. Using
Faraday’s Law, a set of inductive circuit equations form the state
space model that embeds a scalar coupling coefficient cpp, which
is inversely related to the growth rate � of the mode. Although the
plasma surface deformation cannot be directly measured in real
time, the magnitude and phase of the deformation can be diagnosed
from measurements by a set of 22 magnetic field sensors composed
of poloidal magnetic field probes and saddle loops, which measure
radial flux. Using an estimator for the two orthogonal components
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of the assumed n = 1 mode pattern, the 22 outputs are reduced to 2
outputs that represent the sine and cosine components of the RWM.
These two outputs can be combined to express the output as a sig-
nal composed of the RWM amplitude and toroidal phase [11]. The
quartet configuration for the internal feedback control coils (I-coils)
reduces the number of controllable inputs by locking the phase of
the I-coils in sets of four, 120◦apart. Thus, the original 12 I-coils used
to return the plasma to its original axisymmetric shape are reduced
to 3 circuits (system inputs).

The overall goal of this work is to use the developed DIII-D RWM
model to design optimal and robust model-based feedback con-
trollers for RWM stabilization over a predefined range of the growth
rate � , extending the stability range of present non-model-based
PD controllers. By designing controllers that can robustly stabilize
the RWM and meet specified controller performance criteria over
a large range of growth rates we eliminate the need of online iden-
tification and controller scheduling when the growth rate varies
during the discharge.

2. Plasma model

The matrices in the model represent characteristics of the toka-
mak and are well known. The uncertainty is introduced through
the variable cpp, which corresponds to a certain growth rate � of
the resistive wall mode. The relationship between these variables
is further explained in [10].

The model is represented in terms of the couplings between
the plasma (p), vessel wall (w), and coils (c). The model derived
from Faraday’s law of induction results in the system dynamics that
reduce to

(Mss − MspcppMps) ˙Is + RssIs = Vs (1)

where Mss is the mutual inductance between external conductors,
including the vessel wall and the coils, Msp is the mutual inductance
between external conductors and the plasma (and Mps = MT

sp), Rss is
the resistance matrix, Is is the current flowing in the conductors, and
Vs is the externally applied voltage to the conductors. The current
and externally applied voltage to the conductors can be written as
Is = [IT

w IT
c ]

T
and Vs = [0T VT

c ]
T
, where Iw is the wall current, Ic is

the coil current, and Vc is the externally applied voltage to the coil.
This model can be represented in a state space formulation using

the current in the conductors as the states (x = Is) and the applied
voltage as the inputs (u = Vs). This results in the state equation

ẋ = Ax + Bu + w1 (2)

where A = −L−1
ss Rss, and B = L−1

ss , with Lss = Mss − MspcppMps. The
output equation is given by

y = Cx + w2 (3)

with C = C̃C̄, where C̃ denotes the mode estimator and C̄ = Css −
CypcppMps. Cyp denotes the coupling matrix between the magnetic
sensors and the plasma current, and Css = [Cyw Cyc] is given by
the coupling matrices between the sensors and the wall (Cyw)
and coil (Cyc) currents. The state space system model includes the
noise effect, where w1 is the process noise and w2 is the measure-
ment noise, which are assumed to be zero-mean with covariances
Q = E(w1wT

1) and R = E(w2wT
2), where E denotes the expectation

operator.

3. Model-based advanced control design

3.1. Optimal control (time domain)

Besides achieving closed-loop stability, we are interested in
designing a control law u = Ky that minimizes the mode ampli-

Fig. 1. Plant model.

tude y and the control power u (contributing to actuator saturation
avoidance), i.e.,

min
K

J = 1
2

∫ ∞

0

(
yT Qyy + uT Ruu

)
dt (4)

where Qy and Ru are semi-positive and positive definite matrices
defined by the designer. This a well known problem in the field
of controls, and its solution is provided by Optimal Control Theory
[12].

3.2. Robust control (frequency domain)

By using the Laplace transform [13], we obtain a frequency-
domain representation of (2) and (3) given by[

z
y

]
= G(s)

[
w
u

]
=

[
G11(s) G12(s)
G21(s) G22(s)

][
w
u

]
(5)

u = K(s)y (6)

Noise signals w1 and w2 are grouped into w = [wT
1 wT

2]
T
. As shown

in Fig. 1, the output y is used by the controller K(s) to calculate the
input u. The performance output z represents a weighted function
of the control power u and the mode amplitude y that we want to
minimize. We are interested in synthesizing a stabilizing controller
K such that the H∞ norm (maximum energy amplification) of the
transfer function Tzw(G, K) between input w and output z is mini-
mized (the mode amplitude y and control power u are minimized
for any input w), i.e.,

min
K(s)

‖Tzw(G, K)‖∞ = min
K(s)

(
sup

ω
�̄(Tzw(G, K)(jω))

)
(7)

where �̄ denotes the maximum singular value and ω the frequency.
The combination of the Small Gain Theorem withH∞ control allows
the design of controllers that are able to achieve closed-loop sta-
bility and satisfy performance requirements even when the true
system and the nominal model used for design are different, i.e.,
the controller is robust against unmodeled dynamics. This a very
well known problem in the field of control systems, and its solution
is provided by Robust Control Theory [14].

4. Robust stability and performance

It is possible to extract the uncertain parameter cpp from the
uncertain state space system (2) and (3) and represent it as an
uncertainty block that perturbs a nominal state space system. The
majority of the complexity is introduced in the A and B state matri-
ces, where the uncertainty cpp is introduced through L−1

ss . Since the
instability is two-dimensional (sine and cosine components of the
unstable mode), the matrix product MspMps is rank 2. Thus, the Lss

matrix can be expressed as

Lss = Mss − MspcppMps = Mss − cpp

2∑
i=1

uiu
′
i (8)

where Msp = M′
ps = [u1 u2], and u1 and u2 are n × 1 vectors where

n is the number of states in the RWM state space model. To obtain a
parameterized expression for the L−1

ss term, we must first compute
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Fig. 2. General framework for robust control.

the inverse of a matrix sum. Given the matrix AT , the scalar bT , and
the vectors CT and DT , the inverse of a matrix sum is given by the
Sherman–Morrison formula as [15]

(AT − bT CT DT )−1 = A−1
T + bT (A−1

T CT )(DT A−1
T )

1 − bT DT A−1
T CT

. (9)

Using (9) twice it is possible to express each state matrix as a
general affine state space representation

A =
4∑

i=0

˛iAi, B =
4∑

i=0

˛iBi, C = C0 + ˛5C5, (10)

where ˛i’s are nonlinear functions of cpp, and Ai’s, Bi’s and Ci’s are
constant matrices.

By writing cpp = c∗
pp + ıe with

e = max[|cppmax − c∗
pp|, |cppmin

− c∗
pp|],

where c∗
pp is the nominal value of cpp used to compute the matrices

Ai’s, Bi’s and Ci’s, and cppmin
and cppmax are its minimum and maxi-

mum values, respectively, we define a new normalized uncertainty
ı that has a range of values within |ı| ≤ 1 that corresponds to the
desired cpp range.

The parameterization of the RWM model (see [16] for details)
allows this system to be represented in the general framework of
robust control for uncertain systems as shown in Fig. 2, where P rep-
resents the nominal plant and � = ıI the uncertainty of the system.
Given a feedback controller K, the closed system can be computed
as

Tzw(s) = Fl(Fu(P, �), K) = Fu(Fl(P, K), �)

where Fl and Fu denote the lower and upper linear fractional trans-
formations (LFT’s).

The goal is to design a controller that can robustly stabilize the
RWM and meet specified controller performance criteria (mini-
mization of the H∞ norm (maximum energy amplification) of the
transfer function Tzw(G, K). The robust stability of the plant is deter-
mined by the N11 sub-matrix, where N = Fl(P, K) represents the
nominal closed-loop system. The sub-system N11 term isolates the
uncertainty from the input w and output z of the system, and
connects y� with u�. The robust stability is determined by the
structured singular value, which is defined as

�(N11)� 1
min{km|det(I − kmN11�) = 0}

for �̄(�) ≤ 1. Larger � values means (I − N11�) becomes singu-
lar with small perturbations, thus the smaller � the better. The
robust stability condition is found by finding the smallest value of
km at the onset of instability, or det(I − kmN11�) = 0, which yields
km = 1/�(N11), where km is a measure of the robust stability to per-
turbations in �. Thus, assuming N11 and � are stable, the system

is robustly stable if and only if �(N11(jω)) < 1, ∀ω. Similarly, the
robust performance is given by �(N(jω)) < 1, ∀ω. Both conditions
assume that N is internally stable.

5. Controller synthesis and simulation

5.1. Model-based controller design

The complete system that is used to design the controller has
two additional time-delay blocks preceding the plasma model. The
time delays represent the plasma control system and the power
supply. For design purposes, the time delays are linearized using
second order Padé approximations.

Both the optimal (LQG) and the robust (Normalized Coprime
Factorization (NCF)) controllers were designed using a cpp value of
0.3325 (� = 5000) using the 29 eigenmode model with 64 states.
The LQG and NCF controllers were reduced after design to 8 and
12 states, respectively using the Hankel norm model reduction
technique [14]. For the optimal controller, we have chosen Qy =
1.0 × 10−2 and Ru = 1 weighting matrices. The noise covariance
matrices are assumed Q = 1.0 × 104 and R = 3.5 × 103.

5.2. Controller simulation and results

In order to be able to compare the proposed model-
based controllers with present non-model-based controllers, a
proportional-derivative (PD) controller is designed (integral action
is not required for this system). The PD controller is synthesized
to maximize the stability range as a function of � and is of the
form

Kij =
GPij

+ GDij
s

1 + �pcss
(11)

where i is the index for the control inputs into the system (i =
1 . . . 3), j is the index for the system outputs (j = 1 . . . 2), GPij

is
the proportional gain, GDij

is the derivative gain, and �pcs is the

time constant taken to be 4 × 10−4 s. Each Kij term fills the 3 ×
2 controller matrix K. It was found that the stability range can
be maximized by a controller with non-zero K11, K22, and K32
terms and every other term set to zero. Using PD controllers for
the terms K11, K22, and K32, all six gains are optimized to obtain
the maximum range of stability as a function of � . The resulting
gains are GP11 = 3.80 × 104, GD11 = 76, GP22 = 1.38 × 104, GD22 = 40,
GP32 = 6.62 × 104 and GD32 = 103.

The performance of the LQG and NCF controllers are simulated
using a Simulink model of the plasma, controller, plasma control
system, and power supply, and compared to the results of a well-
tuned PD controller. The power supply has a saturation block that
realizes the physical limit of the applied voltage of ±100 V. Table 1
provides the performance constraints in response to a unit step in
the RWM mode amplitude.

Fig. 3 shows the time response to initial conditions of the plasma,
normalized to a starting RWM mode amplitude of 1 Gauss. The sim-
ulation is carried out at constant RWM growth rates of � = 10 rad/s
and � = 5000 rad/s, the lower and upper limits of the growth rate
range of our interest. Both model-based controllers provide quick
suppression of the RWM mode amplitude, out-performing the PD

Table 1
Performance targets and constraints.

Condition Target value Maximum constraint

Rise time 1.0 ms 5.0 ms
Settling time 5.0 ms 10 ms
Input voltage N/A ± 100 V
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Fig. 3. Initial condition response RWM mode amplitude for � = 10 rad/s (top) and
� = 5000 rad/s (bottom).

controller, which does not provide quick suppression at the faster
growth rate. In addition, the PD controller requires a much higher
control power for stabilization.

5.3. Closed-loop stability and performance

It is useful to determine the range of � where the system remains
stable as well as the range where the system performs within
the limits of the performance constraints (see Table 1). Table 2
provides the ranges of � for which stability and performance con-
ditions are satisfied. The first row (Stability Range) indicates the
range of � for which the system remains stable when using a unit
step input for the RWM model amplitude. The second row (Perf.
Range (Step)) represents the range of � for which the performance
conditions are satisfied under the same control input. Both model-
based controllers show good stability and performance properties
well beyond the desired � range and that of the PD controller,
whose stability range is reduced in practice due to actuation satu-
ration.

Since the model-based feedback controllers stabilize the plant
over a range of growth rate, it is of interest to investigate the
performance of the controllers using a time-varying growth rate
� . The results for a sinusoidal excitation of the cpp parameter is
presented in Fig. 4. The amplitude of the sinusoidal function in
cpp units is ±5.4175 with an offset value of 5.75, which results
in a function that reaches the highest growth rate in the design
range (cpp = 0.3325 or � = 5000). Its frequency is 5000 rad/s. Both
the LQG and NCF controllers perform satisfactorily and the RWM
mode amplitude is quickly suppressed. The PD controller how-
ever has difficulty suppressing the RWM amplitude and becomes
unstable.

Table 2
Controller stability ranges.

Measure PD LQG NCF

Stability range 0–4980 rad/s 0–9109 rad/s 0–9027 rad/s
Performance range 0–3278 rad/s 0–7969 rad/s 0–8746 rad/s

Fig. 4. Initial condition response RWM mode amplitude for sinusoidal cpp .

Fig. 5. Robust stability.

Fig. 6. Robust performance.
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5.4. Robust stability and performance metrics

Figs. 5 and 6 show the structured singular values of N11 and
N, respectively as functions of the frequency. The structured sin-
gular values were computed using a 29 eigenmode model, with
a full range [0.3325,71] of cpp, centered nominal value, and no
reduction of states. The weight function used to define perfor-
mance (i.e., to shape the frequency response of Tzw) is of the form
Wp = (M−1/ns + ω∗

b
)
n
/(s + ω∗

b
A1/n)

n
, where M = 1, ω∗

b
= 104, A =

10−4, and n = 2. These frequency-domain parameters were selected
according to the time-domain specifications given in Table 1. Fig. 5
shows that the PD controller does not satisfy the robust stability
condition with a peak value of 1.0009 compared to 0.9982 and
0.9994 for the LQG and NCF controllers. None of the controllers sat-
isfy the performance condition defined by the weight Wp, but the
PD controller achieves the highest peak value of 185.56 compared to
140.43 and 110.95 for the LQG and NCF controllers, which are closer
to the satisfaction of the condition. These results are consistent with
those presented in Table 2.

6. Conclusions

Model-based optimal and robust controllers were successfully
synthesized outperforming empirically-tuned non-model-based
PD controllers. The performance improvement has been illus-
trated by time responses, stability and performance ranges, and
robust stability and performance metrics. The stability region was
improved with the model-based controllers, while maintaining an
implementable controller order. Present work includes the imple-
mentation of these controllers in DIII-D.
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