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Abstract

Equilibrium reconstruction codes calculate the distributions of flux and toroidal current density over the plasma and surrounding
vacuum region that best fit the external magnetic measurements in a least square sense, and that simultaneously satisfy the MHD
equilibrium equation (Grad-Shafranov equation). Although these codes often use direct measurements of the currents in the
plasma and poloidal coils, they sometimes neglect the current induced in the tokamak vessel due to the fact that they cannot be
directly measured. Kalman filtering theory is employed in this work to optimally estimate the current in the tokamak vessel. The
real-time version of the EFIT code is modified to accept the estimated vessel currents with the goal of improving the equilibrium
reconstruction for the DIII-D tokamak.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The efficient and safe operation of fusion devices
relies on accurate knowledge of many of the discharge
parameters. The values of several discharge parame-
ters which are not directly measurable, such as plasma
shape and current density distribution, can be recon-
structed from magnetic field and flux measurements.

∗ Corresponding author.
E-mail address: schuster@lehigh.edu (E. Schuster).

Equilibrium codes, such as EFIT [1], calculate the dis-
tributions of flux and toroidal current density over the
plasma and surrounding vacuum region that best fit,
in a least square sense, the external magnetic mea-
surements, and that simultaneously satisfy the MHD
equilibrium equation (Grad-Shafranov equation) [2].
Once the flux distribution is known, it is possible to
reconstruct the plasma boundary for shape control pur-
poses.

The most general treatment of toroidal current
sources in the fitting problem assumes that they are
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all unknown. Thus, in addition to the plasma toroidal
current, the currents in the poloidal field (PF) coils can
be free parameters and, potentially, the induced cur-
rents in the vacuum vessel and support structures can
be treated this way as well. There are direct measure-
ments of the PF coil currents, but these measurements
have uncertainties which can be properly accounted
for in the least squares fitting procedure by solving for
the external currents using the measurements as con-
straints. A similar procedure could be followed for the
vessel currents if they were measurable. Unfortunately,
this is not usually the case.

Kalman filtering theory is used in this work to opti-
mally estimate the current in the tokamak vessel. With
the ultimate goal of improving the equilibrium recon-
struction for the DIII-D tokamak, the real-time version
of the EFIT algorithm [3] is modified to accept the esti-
mated vessel currents. Furthermore, it will be shown
that the integration of Kalman filter estimation into the
equilibrium reconstruction algorithm provides a new
way to validate and refine the plasma dynamic model.
The important effect of vessel or structure currents
has been recognized in many plasma control appli-
cations [3,4]. Prior work on the incorporation of an
electromagnetic model of the passive structures in the
identification of the plasma magnetic boundary, but
without including any MHD equilibrium model, can be
found in [5,6]. Some previous effort on incorporating
an estimate of the vessel current into the equilibrium
reconstruction algorithm has been done at NSTX [7].
Estimated values for the resistances in each one of the
vessel segments are used to compute the currents for
each vessel segment, given the measured loop voltages.
However, since the discrete loop voltage sensors do
not identically reproduce the voltage over the vessel
segments, the computed vessel currents suffer from rel-
atively large errors. The Kalman filter is a refinement on
the NSTX approach which provides additional physics
for improving the exactness of the fit, once all the com-
peting physics constraints have been reconciled.

This paper is organized as follows. In Section 2,
the basis of equilibrium reconstruction is discussed.
Section 3 describes the Kalman-filter-based optimal
estimation approach for the vessel currents, and intro-
duces the linearized dynamic model of the plasma. How
to integrate the estimated vessel currents into the real-
time equilibrium reconstruction algorithm is addressed
in Section 4. Section 5 presents some present results.

Finally, conclusions and identified future work are pre-
sented in Section 6.

2. Equilibrium reconstruction basis

The primary objective of equilibrium reconstruc-
tion is twofold: (1) substantially improve the accuracy
with which the plasma boundary is estimated, thereby
improving control, (2) obtain reliable (consistent both
with known physics and with available measurements)
estimates of internal parameters, such as the current
profile.

Assuming an axisymmetric plasma in a cylindri-
cal coordinate system {r, φ, z}, the equilibrium MHD
equations (fluid mechanics equations + Maxwell’s
equations) reduce to the Grad-Shafranov equation:

�∗ψp = −μ0rJφ (1)

which describes the force balance of the tokamak equi-
librium. The elliptic operator �∗ is given by �∗ψ =
∂2ψ/∂z2 + r(∂/∂r)((1/r)(∂ψ/∂r)), Jφ is the toroidal
component of the current density, and ψ = ψp + ψext
is the total poloidal flux per radian, i.e., ψ = ψpol/2π,
whereψp is the poloidal flux resulting from the plasma
current and ψext is the poloidal flux generated by cur-
rent in the sources external to the plasma, like coil and
induced current.

The task of the equilibrium reconstruction is to cal-
culate the distributions in the r, z plane of the poloidal
fluxψ, and the toroidal current density Jφ, that provide
a least squares best fit to the diagnostic data and which
simultaneously satisfy the Grad-Shafranov Eq. (1). The
solution to the equilibrium reconstruction problem is
obtained through an iterative algorithm that estimates
the magnetic measurement Cm+1 using the flux ψm in
the plasma domain �m calculated in the previous step
m. The magnetic measurements usually have two con-
tributions, one due to the external conductor currents
Ie, and the other due to the plasma current Jφ. The mag-
netic measurement C at a generic point Zj is obtained
from the current sources placed at locations Zi’s by
means of Green’s functions G [8]:

Cm+1
Zj

=
Nc∑
i=1

G(Zj,Zi)Iei

+
∫ ∫

�m
G(Zj,Z)Jφ(Z,ψm) dZ (2)
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The estimated magnetic measurements C’s gener-
ated by EFIT, at certain locations where magnetic
sensors are placed, are compared with data from
those magnetic sensors, to obtain the plasma current
Jm+1
φ (ψm) that minimizes the quadratic error:

χ2 =
Nmeas∑
k=1

(
Mk − Ck

σk

)2

(3)

where Mk, Ck, and σk are the measured values, the
computed values, and the error associated with the
k measurement. The flux function is finally updated
solving the Grad-Shafranov Eq. (1):

�∗ψm+1 = −μ0rJ
m+1
φ (ψm) (4)

The real-time version of EFIT [3] uses a two-loop
scheme. A fast loop performs the least squares fit (3)
using new measured values from the magnetic sensors
in each iteration but using the last equilibrium flux pro-
vided by the solution of (4). The plasma current Jφ
in each iteration is used to compute, through Green’s
functions, the magnetic flux values at a predefined set of
control points (geometrical points at which the poloidal
magnetic flux is regulated by the shape controller). A
slow loop, approximately 25 times slower than the fast
loop, solves the equilibrium problem (4) to update the
magnetic flux ψ.

In real-time EFIT [3], the diagnostic data presently
consist of measurements of magnetic flux and field
outside the plasma, plasma plus vessel current from
a Rogowskii loop, field internal to the plasma from
a motional stark effect diagnostic, and current in the
poloidal field and ohmic heating coils. One of the main
contributions of this work is the incorporation of esti-
mated induced vessel currents into the diagnostic data
set (Section 4).

3. Vessel current estimation

The system composed of plasma, shaping coils,
and passive structure can be described using circuit
equations derived from Faraday’s law, and radial and
vertical force balance relations for a particular plasma
equilibrium. In addition, rigid radial and vertical dis-
placement of the equilibrium current distribution is
assumed, and a resistive plasma circuit equation is
specified. The result is a circuit equation describing the

linearized response, around a particular plasma equi-
librium, of the conductor–plasma system to voltages
applied to active conductors. The model equations for
poloidal field (PF) coil current, vessel (passive conduc-
tor) currents, and plasma current are respectively:

M∗
ccİc + RcIc +M∗

cvİv +M∗
cpİp = Vc

M∗
vvİv + RvIv +M∗

vcİc +M∗
vpİp = 0

M∗
ppİp + RpIp +M∗

pcİc +M∗
pvİv = Vno

(5)

where Ic, Iv, and Ip represent currents in PF coils,
vessel, and plasma, respectively. Vc the vector of volt-
ages applied to the PF coils, and Vno is the effective
voltage applied to drive plasma current by nonin-
ductive sources. Ra, for a ∈ {c, v, p}, represents the
resistance matrix of each one of the circuits. M∗

ab =
Mab +Xab are plasma-modified mutual inductance,
where a, b ∈ {c, v, p}. Mab is the usual conductor-to-
conductor mutual inductance, and Xab describes a
plasma motion-mediated inductance, linearized around
the plasma equilibrium. The plasma response matrix
Xab, representing changes in flux due to plasma motion,
are functions only of the equilibrium current distribu-
tion and vacuum magnetic field Beq. TheXab matrix is
computed starting with an EFIT equilibrium [1], and
added to the mutual inductanceMab as part of the model
construction process.

In contrast to the dynamic Eq. (5), the mapping from
currents to outputs (for example, diagnostic data such
as flux loops, magnetic probes, Rogowskii loops) is
expressed explicitly in terms of current deviations from
equilibrium values [9]:

δy = CIcδIc + CIvδIv + CIpδIp (6)

where δT = T − Teq, for T ∈ {Ic, Iv, Ip, y}. The sub-
script “eq” denotes values at the equilibrium from
which the models (5) and (6) are derived. In the rest
of the paper, δ will be omitted for simplicity, but it will
be implicitly assumed that the output equation is writ-
ten in terms of deviation variables. The matrices CIs ,
for Is ∈ {Ic, Iv, Ip}, are defined as

CIs = ∂y

∂Is
+ ∂y

∂rc

∂rc

∂Is
+ ∂y

∂zc

∂zc

∂Is
(7)

where the first term on the right hand side is the “direct”
response, e.g., given by Green’s function calculations
in the case of magnetic probes or flux loops. The
remaining terms are responses due to motion of the
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plasma; rc and zc denote the radial and vertical posi-
tions of the plasma current centroid, i.e., “center of
mass” of the current. It is common to include distur-
bance terms describing the response to variations in
kinetic and current profile quantities such as poloidal
beta (βp), and normalized internal inductance (�i) [10].
However, disturbance terms are neglected in the present
study.

If the estimation of the vessel current is the only
objective, a simplified model for the dynamics of the
vessel current can be extracted from (5). The second
equation in (5), combined with (6), can be rewritten in
state space form as

ẋv = Avxv + Bvuv +Gvw1

y = Cvxv +Dvuv + w2
(8)

where xv = Iv, uv = [ITc ITp İTc İTp ]
T

. The new

system matrices are Av = −M∗
vv

−1Rv, Bv =
−M∗

vv
−1[ 0 0 M∗

vc M∗
vp ], Gv = Bv, Cv = CIv ,

Dv = [CIc CIp 0 0 ]. The output y may include
flux loops, magnetic probes, and Rogowskii loops.
Process noise or disturbance w1, and measurement
noise w2 has been added to the model (8). The noise
covariance matrices are given by ε{w1w

T
1 } = Qn,

ε{w2w
T
2 } = Rn. To optimally estimate the vessel

current Iv, we implement a Kalman filter [11]:

˙̂xv = Avx̂v + Bvuv +K(y − Cvx̂v −Dvuv) (9)

where x̂v is the estimation for xv. Solving the Riccati
equation for Y:

0 = AvY + YATv +GvQnG
T
v − YCTv R

−1
n CvY,

we can obtain the Kalman gain matrix K = YCTv R
−1
n .

Carefully tuningQn andRn, based on the knowledge of
the system, an optimal estimation of the vessel current
can be obtained.

4. Reconstruction with vessel currents

The equilibrium solution consists of values ofψ and
Jφ on a rectangular grid which covers the entire area
of the vacuum vessel. The current is modeled as being
distributed among a set of rectangular elements, one
centered at each grid point, with the total number of
grid points typically 1000 or more. The large number

of grid points allows the solution to provide a realistic
distribution of the current density, including provision
for finite current density at the discharge edge. In the
Grad-Shafranov Eq. (1), the toroidal current density Jφ
is written as

Jφ = r

(
∂P

∂ψ
+ μ0F

4π2r2

∂F

∂ψ

)
(10)

where P is the plasma pressure, and the auxiliary func-
tion F is proportional to the poloidal current Ipol =
2πF/μ0 flowing in the plasma. Although Jφ is modeled
as being distributed among a large set of rectangular
elements, it is parameterized by only a small number
of free parameters. Simple polynomial models are used
to represent P ′ and FF ′:

∂P

∂ψ
=

np∑
n=0

αn

[
ψN + ∂ψN

∂z
δz

]n
(11)

μ0F

4π2

∂F

∂ψ
=

nF∑
n=0

γn

[
ψN + ∂ψN

∂z
δz

]n
(12)

where αJ = [α0, α1, . . . , αnp ], γJ = [γ0, γ1, . . . , γnF ],
and δz are the free parameters. The free parameter
δz allows the equilibrium reconstruction to follow the
vertical movement of the discharge. Of the terms con-
taining δz, only those linear in δz are retained in (11)
and (12). We define Θ = [αJ, γJ, δz] as the set of free
parameters in the parameterizations of Jφ. The nor-
malized flux is defined as ψN = (ψ − ψc)/(ψb − ψc),
whereψc is the poloidal flux at the magnetic axis (cen-
ter of the nested magnetic flux surfaces), and ψb is the
poloidal flux at the plasma boundary. The normalized
fluxψN provides an adjustable mapping from the small
number of fitting parameters to the large number of grid
points on the r, z plane. The discretized plasma current
model is written as [3]:

Iφ = Ψ ×Θ (13)

where there is one row in the matrix Ψ for each grid
element and the column values are the coefficients of
elements of αJ and γJ from Eqs. (11) and (12). The ith
row of the matrix Ψ is given by

Ψi =
[
ri, riψNi, . . . , riψ

np
Ni
,

1

ri
,
ψNi

ri
, . . . ,

ψnFNi
ri
, Cδzi

]

(14)
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where the subindex i denotes that the quantities are
evaluated at the ith grid point. All terms linearly pro-
portional to δz are collected into Cδz. In addition to
the plasma toroidal current, the currents in the exter-
nal poloidal field (PF) coils, Ic, have been considered
so far as free parameters. The direct measurements of
the external PF coil currents have uncertainties that
are properly accounted for in the least squares fitting
procedure by solving for the external currents using
the available measurements as constraints. The DIII-
D flux loops are wired so that all flux measurements
are made relative to the total flux measured at a sin-
gle reference position. This reference flux value (ψref)
has also been treated then as a free parameter with the
measured value weighted by its uncertainty used as a
constraint. In this work, we add the vessel current to
the set of free parameter. With this purpose, the vessel
structure has been discretized into 28 segments as it
is shown in Fig. 1 (a). The 28 vessel currents, Iv, are
considered as free parameters in the fitting procedure.

The optimal vessel current estimations, provided by
the Kalman filter implementation, are incorporated as
an additional constraints after weighting them by their
uncertainties. Thus, the total vector of unknowns for
the fitting problem is now U = [Ic, Iv,Θ,ψref].

Considering the discretization of the toroidal current
(13) and including the discretized vessel currents, (2)
can be rewritten in matrix form as

C = ζ × U (15)

The diagram in Fig. 2 shows the response matrix
ζ. Blocks (a) and (b) in the matrix contain the precal-
culated Green’s function coefficients that specify the
contribution to the magnetic measurement C by each of
the external coil currents and induced vessel currents.
Block (c) represents the contribution to the magnetic
measurement C by the plasma current at each grid ele-
ment. When the magnetic measurements are calculated
at positions where magnetic diagnostics are placed,

Fig. 1. (a) Cross-section of discretized vessel model and (b) discharge shape comparison (shots 121858, 900014) at 2400 ms.
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Fig. 2. Schematic of the matrix ζ that relates D to U.

we are interested in finding the vector U that makes
these measurements equal to the values measured by
the sensors, i.e., the diagnostic data D. Therefore, (15)
is rewritten as

D = ζ × U (16)

Because the number of diagnostic measurements is
usually much larger than the number of fitting param-
eters, (16) is not an exact relation. This leads to the
requirement that U be obtained in a least squares sense.
After multiplying both sides of (16) by a weight vector
W, that has one element for each diagnostic signal equal
to the inverse of the measurement uncertainty (or esti-
mation uncertainty, in the case of the vessel currents).
The solution that minimizes (3) is obtained by using the
pseudo-inverse of the weighted response matrix, i.e.,

U = (W · ζ)−1 × (W ·D) (17)

where the operator “·” indicates multiplication of each
column of the matrix by the vector, and the operator
“×” indicates matrix multiplication. The vector of all
the axisymmetric current sources, Iaxi = [Ic, Iv, Iφ], is
assembled from the solution for U. The flux is updated
by solving (4), which ensures the fulfillment of the
Grad-Shafranov equation.

5. Results

We use a data set from experimental discharges at
DIII-D to study the effectiveness of the Kalman filter
(9) in estimating the induced vessel currents. In all the
cases presented in this section, we consider that the
output vector of the system (8) is composed only of
magnetic flux loops and Rogowskii loops.

We estimate the vessel current in the interval
1.5–4.0 s. for DIII-D experimental discharge (shot)
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Fig. 3. Kalman filter estimation for shot 118572 (time (horizontal axis) [s], magnetic flux [Wb], current [A]). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of the article.)

118572, which corresponds to an approximate flattop
stage of the plasma current evolution. By carefully
tuning Qn and Rn, the output of the Kalman fil-
ter matches the diagnostic data. Fig 3 shows the
results for some of the output variables; “PCRL03”
is one of the Rogowskii loops, and “PCPSI89NB”,
“PCPSI89FB” and “PCPSI7B” are three of the mag-
netic flux loops. The figure compares measured (blue)
and Kalman-filter-estimated (green) values. Due to the
good matching it is difficult to distinguish both signals
from the figure.

Present models used by the equilibrium reconstruc-
tion algorithm and the Kalman filter are not totally
consistent, in particular for the inner vessel segments
(segments 1, 2, 3, 13, 14, 15 in Fig. 1 (a)). For this rea-
son, we set weights (matrix W in (17)) for these vessel
segments that are 1000 times smaller than those for the
other vessel segments.

We compare now reconstruction results for the time
interval 2.0–3.0 s, with and without using the vessel
current estimates. The reconstruction results obtained
using the estimates of the vessel currents are stored
in the virtual shot 900014, while those obtained with-

out using the vessel currents estimates are simply
labeled 121858. Table 1 compares the resulting χ2 at
t = 2400 ms for both shots. The PF coil χ2 contains
vessel current errors as well as coil current errors for
900014. We can appreciate that χ2 is indeed reduced
by incorporating the currents of the vessel segments
as free parameters. The similarities between the ves-
sel currents estimated by the Kalman filter and the
real-time EFIT, shown in Fig. 4, suggest that the fit-
ting error is minimized at a physical solution. Thus,
the equilibrium reconstruction has been improved. The
flux surfaces and plasma boundary for both shots are
compared in Fig. 1 (b). We expect this similarity for
equilibria in plasma current flattop, since vessel cur-
rents are relatively small at those times. The goal is to
validate the method with these comparisons, then apply

Table 1
χ2 comparison for shots 121858 and 900014 at 2400 ms

Shot PF-coil B-probe Flux loops Total

121858 1.98 33.23 5.34 40.496
900014 5.06 17.42 2.44 25.103
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Fig. 4. Kalman-filter-estimated Iv (green dashed) and real-time EFIT computed Iv (blue solid) (time (horizontal axis) [ms], currents [A]). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

the method to situations where large and changing ves-
sel currents are expected, such as in plasma current
rampup or rampdown.

6. Conclusions

The proposed Kalman filter solution improves on the
physics model used for the fit by adding free parameters
representing currents flowing in the vessel conductors.
This approach also provides additional physics, defined
by the dynamics of the current evolution, that constrain
the currents that flow in these conductors. Further work
is needed to correctly incorporate estimation uncer-
tainty (analogous to measurement uncertainty) to bal-
ance the effect of free parameters and constraints. The
advantages of the Kalman filter estimated currents are
that they provide current estimates to the reconstruction
with substantially reduced noise levels and at the same
time are able to track fast changes in vessel currents.

For the inner vessel segments, the currents esti-
mated by the Kalman filter and the real-time EFIT show
considerable disagreements. Using the vessel currents
estimated by EFIT as the output of the dynamic model
(8), a system identification approach can be followed to

better estimate the uncertain parameters in the dynamic
model such as the resistances of the vessel segments.
Kalman filter theory arises as a powerful tool for model
reconciliation, which is a very common, and at the same
time difficult, problem in plasma physics.

Future work includes the development of a schedul-
ing rule to update the linearized plasma model used by
the Kalman filter as the equilibrium evolves.
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