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a b s t r a c t

The control of the toroidal current density spatial profile in tokamak plasmas will be absolutely critical in
future commercial-grade reactors to enable high fusion gain, non-inductive sustainment of the plasma
current for steady-state operation, and magnetohydrodynamic (MHD) instability-free performance. The
evolution in time of the current profile is related to the evolution of the poloidal magnetic flux, which is
modeled in normalized cylindrical coordinates using a partial differential equation (PDE) usually
referred to as the magnetic flux diffusion equation. The control objective during the ramp-up phase is to
drive an arbitrary initial profile to approximately match, in a short time windows during the early flattop
phase, a predefined target profile that will be maintained during the subsequent phases of the discharge.
Thus, such a matching problem can be treated as an optimal control problem for a PDE system. A
distinctive characteristic of the current profile control problem in tokamaks is that it admits interior,
boundary and diffusivity actuation. A receding-horizon control scheme is proposed in this work to
exploit this unique characteristic and to solve the associated open-loop finite-time optimal control
problem using different optimization techniques. The efficiency of the proposed scheme is shown in
simulations.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The need for new sources of energy is expected to become a
critical problem within the next few decades. It is a fact that fossil
fuel energy is becoming more expensive and polluting. Nuclear
fission and fusion are candidate sources of energy with sufficient
energy density to supply the increasing world population with its
steadily increasing energy demands. In both fission and fusion
reactions the total masses after the reaction are less than those
before. The ‘‘lost’’ mass appears as energy, with the amount given
by the famous Einstein formula, E¼ (Mr"Mp)c

2, where E is the
energy, Mr is the mass of the reactant nuclei, Mp is the mass of the
product nuclei, and c is the speed of light. In a fission reaction, a
heavy nucleus splits apart into smaller nuclei. Fission is a mature
technology powering present nuclear power reactors. In a fusion
reaction, on the contrary, two light nuclei (deuterium and tritium
(two isotopes of hydrogen)) stick together to form a heavier
nucleus (helium) plus an energetic neutron. Like fission, fusion
produces no air pollution or greenhouse gases, since the reaction
product is helium. Unlike fission, fusion poses no risk of nuclear

accident, generation of high-level nuclear waste, and production
of material for nuclear weapons. In addition, there is an abundant
fuel supply. Deuterium, may be readily extracted from ordinary
water, which is available to all nations. Tritium does not occur
naturally but would be produced from lithium (through a nuclear
reaction that makes use of the neutron resulting from the D–T
fusion process), which is available from land deposits or from sea
water which contain thousands of years’ supply. The world-wide
availability of these materials would thus eliminate international
tensions caused by imbalance in fuel supply.

Since nuclei carry positive charges, they normally repel one
another when trying to fuse. To overcome the Coulomb barrier,
the kinetic energy of the nuclei must be increased by heating.
The fusion process requires extremely high temperatures
(50–200million Kelvin), at which the hydrogen gas ionizes and
becomes a plasma. Within a plasma, electrons are free to move
independently of the nucleus and the gas is essentially a sea of
charged particles, which conduct electricity and interact with
magnetic fields. One of the most promising approaches to fusion is
indeed the magnetic confinement concept, which exploits these
properties of the plasma. Strong magnetic fields act like a
magnetic bottle to hold the ionized (charged) nuclei together
and away from the vessel wall as they are heated to fusion
temperatures. A Russian design in the shape of a torus, called
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tokamak (Fig. 1), has proved particularly well suited for containing
a fusion reaction. A more in-depth introduction to fusion can be
found in Leuer (1995), Pironti and Walker (2005), Walker et al.
(2006) and Schuster and Ariola (2006), in which considerable
effort was made to describe the current problems of tokamak
plasma control at a level that is accessible to engineers,
mathematicians, and non-plasma physicists.

In a tokamak (Fig. 1), the magnetic field lines twist their way
around the torus to form a helical structure. The toroidal magnetic
field component is produced by the so-called ‘‘toroidal field’’ (TF)
coils. Addition of a poloidal magnetic field component, generated
by the toroidal plasma current and the ‘‘poloidal field’’ (PF) coils, is
necessary for the existence of a magnetohydrodynamic (MHD)
equilibrium (Freidberg, 1987). It is possible to use the poloidal
component of the helicoidal magnetic lines to define nested
toroidal surfaces corresponding to constant values of the poloidal
magnetic flux. The poloidal flux c at a point P is the total flux
through the surface S bounded by the toroidal ring passing
through P, i.e., c¼

R
Bpol dS. The dynamics of the poloidal magnetic

flux is governed by a parabolic partial differential equation (PDE)
usually referred to as the magnetic flux diffusion equation. The
shape of the poloidal magnetic flux profile has a direct effect on
the current density profile since they are related by spatial
derivative operations.

The need to optimize the tokamak concept for the design of an
economical, possibly steady state, fusion power plant have
motivated extensive international research aimed at finding the
so-called ‘‘advanced tokamak (AT) operation scenarios’’ (Taylor,
1997). In a large number of machines, experiments have demon-
strated the existence of such regimes characterized by a high
confinement state with improved MHD stability, which yields a
strong increase of the plasma performance quantified by the
normalized energy confinement time and plasma pressure. In such
conditions a dominant fraction of the plasma current is self-
generated by the neo-classical bootstrap mechanism, which
alleviates the requirement on externally driven current and
enables steady-state operation. This highly confined state is
achieved to a large extent by the generation of a so-called

‘‘internal transport barrier’’ (ITB) (Connor et al., 2004), a region
where the plasma turbulence (and therefore the plasma transport)
is almost suppressed. Many studies have shown the key influence
of the current density profile on triggering the ITBs (Challis, 2004).
This provides a strong motivation for the control of the current
density profile in real time.

Recent experiments in different devices around the world (JET,
(Laborde et al., 2005; Moreau et al., 2003, 2008), DIII-D (Ferron
et al., 2006), JT-60U (Suzuki et al., 2005), Tore Supra (Barana,
Mazon, Laborde, & Turco, 2007; Wijnands et al., 1997) have
demonstrated significant progress in achieving profile control. At
JET, different current and temperature gradient target profiles have
been reached and sustained for several seconds during the flattop
current phase. The control schemes rely on the experimental
identification of linearized static (Laborde et al., 2005; Moreau
et al., 2003) and dynamic (Moreau et al., 2008) response models,
using lower hybrid current drive (LHCD), ion cyclotron resonance
heating (ICRH) and neutral beam injection (NBI) as actuators. The
controllers, which finally reduce to proportional-integral regulators
incorporating information of the identified response of the system
and exploiting the different time scales of kinetic and magnetic
variables, have been proved effective in experiments. Experiments
at DIII-D (Ferron et al., 2006) focus on creating the desired current
density profile during the plasma current ramp-up and early
flattop phases with the aim of maintaining this target profile
during the subsequent phases of the discharge. Since the actuators
that are used to achieve the desired target profile are constrained,
experiments have shown that some of the desirable target profiles
may not be achieved for all arbitrary initial conditions. Therefore, a
perfect matching of the desirable target profile may not be
physically possible. In practice, the objective is to achieve the best
possible approximate matching in a short time windows [T1,T2]
during the early flattop phase of the total plasma current pulse, as
shown in Fig. 2. Thus, such a matching problem can be treated as a
finite-time optimal control problem for a parabolic PDE system.

The control of the current density profile in tokamak plasmas
is unique in the sense that it admits actuation not only through
interior control (see, e.g., Christofides, 2001 and references
therein) and boundary control (see, e.g., Krstic & Smyshlyaev,
2008 and references therein) but also through what is named

Fig. 1. Scheme of the DIII-D Tokamak. The toroidal field (TF) coils (creamy yellow)
are wrapped ‘‘poloidally’’ around the torus (the short way, going through the
center hole), while the poloidal field (PF) coils (light blue) are wrapped
‘‘toroidally’’ (the long way) around the torus. Current flowing in these conducting
coils produces the helical magnetic field that confines the plasma. The plasma
contained within the device is represented by a set of nested contours of constant
magnetic flux. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 2. The total plasma current evolution can be roughly divided into two phases:
the ramp-up phase and the flat-top phase. The control problem focuses on phase I
that includes the ramp-up phase and the first part of the flat-top phase. The
control goal is to drive the current profile from some initial arbitrary condition to a
predefined target profile at some time T between the time window [T1, T2], which
is in the flat-top phase.
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diffusivity control (plasma resistivity) in this paper. Exploiting
these actuation capabilities, previous work by the authors includes
the investigation of the use of extremum seeking (Ou et al., 2008)
and nonlinear programming (Xu et al., 2010) to achieve open-loop
solutions for the optimal control problem defined during the
ramp-up and early flat-top phases. The time evolutions of the
control inputs are obtained in the interval [0,T] in order to
minimize the quadratic error between actual and desired current
profiles at time T (see Fig. 2). The work is aimed at saving long
trial-and-error periods of time currently spent by fusion experi-
mentalists trying to manually adjust the time evolutions of the
actuators to achieve the desired current profile at some time T
within a prespecified window [T1,T2]. However, these open-loop
solutions are very sensitive to disturbances and uncertainties.

In this paper this limitation is overcome by proposing a
receding-horizon control strategy for the current profile control
problem in tokamak plasmas. The term receding horizon control
(RHC) describes a class of algorithms that at each control interval
compute an open-loop sequence of manipulated input variables in
order to optimize the future behavior of the plant over a specific
time horizon. In the last two decades, several formulations have
been developed for linear and nonlinear systems (Findeisen &
Allgower, 2002; Mayne & Michalska, 1990; Mayne, Rawlings, Rao, &
Scokaert, 2000) finding many successful applications, particularly in
the process industry (Marjanovic & Lennox, 2004; Richalet, 1993)
but also in other areas (Borrelli, Falcone, & Vecchio, 2007; Keviczky
& Balas, 2006; Kim, Yoon, & Kwon, 2001; van Straten, van
Willigenburg, & Tap, 2002). The use of RHC schemes for the control
of PDE systems is part of the literature in this field (Bleiis & Kothare,
2005; Dubljevic, El-Farra, Mhaskar, & Christofides, 2006; Irizarry-
Rivera & Seideer, 1997; Patwardhan, Wright, & Edgar, 1992; Toure,
Biston, & Gilles, 1994). In this work, extremum seeking (Ariyur &
Krstic, 2003) and nonlinear programming (Nocedal & Wright, 2006)
techniques are used at each control interval to solve the associated
optimization problem.

This paper is organized as follows. In Section 2, an infinite-
dimensional dynamic model for the poloidal flux c is introduced.
Section 3 describes the control objectives during the different
phases of the tokamak discharge, and states the control problem.
In Section 4, a closed-loop, receding-horizon approach is proposed
for the solution of a finite-time optimal problem defined for the
nonlinear distributed parameter system introduced in Section 2,
which accepts diffusivity, interior, and boundary actuation. A
simulation study showing the effectiveness of the proposed
closed-loop controller is presented in Section 5. Finally, conclu-
sions and identified future work are presented in Section 6.

2. Current profile evolution model

Let r be an arbitrary coordinate indexing the magnetic surface.
Any quantity constant on each magnetic surface could be chosen
as the variable r. The mean geometric radius of the magnetic
surface is chosen as the variable r, i.e., pBf,0r2 ¼F, whereF is the
toroidal magnetic flux and Bf,0 ¼ 1:85T is the reference toroidal
magnetic field at the geometric plasma center R0¼ 1.67m. The
variable r̂ denotes the normalized radius r=rb, and rb ¼ 0:79m is
the radius of the last closed flux surface. The evolution of the
poloidal flux in normalized cylindrical coordinates is given by the
magnetic diffusion equation (Ou et al., 2007),

@c
@t

¼
ZðTeÞ

m0r2
bF̂

2r̂
@
@r̂ r̂F̂ ĜĤ @c

@r̂

! "
"R0ĤZðTeÞ

/jNI % BS
Bf,0

, ð1Þ

where t is the time, c is the poloidal magnetic flux, Z is the plasma
resistivity, Te is the plasma electron temperature, m0 ¼ 4p&

10"7 H=m is the vacuum permeability, jNI is the non-inductive
source of current density (neutral beam, electron cyclotron,
etc.), B is the toroidal magnetic field, and /S denotes flux-
surface average. F̂ ,Ĝ,Ĥ are geometric factors, which are functions
of r̂ and are depicted in Fig. 3. The boundary conditions are
given by

@c
@r̂

####
r̂ ¼ 0

¼ 0,
@c
@r̂

####
r̂ ¼ 1

¼
m0

2p
R0

Ĝjr̂ ¼ 1Ĥjr̂ ¼ 1

IðtÞ, ð2Þ

where I(t) denotes the total plasma current.
The model makes the simplifying assumption that the

magnetic geometry is fixed in time. This excludes two potential
sources of flux—a change in rb (either by a change in the shape of
the last closed flux surface or in Bf,0) and a change in location of
the geometric center of the interior flux surfaces relative to that of
the last closed flux surface. Changes in rb are small by design in
the experiments of interest, but it is straightforward to include
this effect in the model for situations where it would be
important. Changes in the relative positions of the flux surfaces
do occur, but for cases of interest, these happen slowly enough
and they can be neglected.

During ‘‘Phase I’’ (see Fig. 2), mainly governed by the ramp-up
phase, the plasma current is mostly driven by induction. In this
case, it is possible to decouple the equation for the evolution of
the poloidal flux from the evolution equation for the temperature
Teðr̂,tÞ. Highly simplified models for the temperature and non-
inductive toroidal current density are chosen for this phase. Based
on experimental observations at DIII-D, the shapes of the profiles
are assumed to remain fixed and equal to the so-called reference
profiles, which are identified from DIII-D discharges associated
with the experiment of interest (Ou et al., 2007). The responses to
the actuators are simply scalar multiples of the reference profiles.

The temperature Te is assumed to follow IðtÞ
ffiffiffiffiffiffiffiffi
Ptot

p
=nðtÞ, and can

be written as

Teðr̂,tÞ ¼ kTeT
profile
e ðr̂Þ IðtÞ

ffiffiffiffiffiffiffiffi
Ptot

p

nðtÞ
, ð3Þ

where Te
profile is given in Fig. 4, kTe ¼ 1:7295& 1010 m"3 A"1 W"1=2,

and Ptot is the total power of the non-inductive current sources
(electron cyclotron heating (ECH), neutral beam heating (NBH),
etc.). The line-averaged plasma density is denoted by n.
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The non-inductive toroidal current density /jNI % BS=Bf,0 is
assumed to follow:

/jNI % BS
Bf,0

¼ kNIparj
profile
NIpar ðr̂Þ

IðtÞ1=2PtotðtÞ5=4

nðtÞ3=2
, ð4Þ

where jNIpar
profile is given in Fig. 4, and kNIpar ¼ 1:2139& 1018 m"9=2

A"1=2 W"5=4.
The resistivity Z scales with the temperature Te as

Zðr̂,tÞ ¼
keff Zeff

T3=2
e ðr̂,tÞ

, ð5Þ

where Zeff¼1.5, and keff ¼ 4:2702& 10"8Omkev3=2.
The current density that flows toroidally around the tokamak,

/j % B=Bf,0S, and whose profile must be controlled, is related to
spatial derivative of the poloidal magnetic flux,

/j % BS
Bf,0

¼
1

m0r2
bF̂

2
Ĥr̂

@
@r̂ r̂F̂ ĜĤ 1

R0

@c
@r̂

! "
: ð6Þ

3. Control problem description

The control objective, as well as the dynamic models for
current profile evolution, depend on the phases of the discharge
(Fig. 2). During ‘‘Phase I’’ the control goal is to drive the current
profile from any arbitrary initial condition to a prescribed target
or desirable profile at some time TA ½T1,T2( in the flat-top phase of
the total current I(t) evolution. However, since the available
actuators during ‘‘Phase I’’ differ from those used during ‘‘Phase
II’’, and are constrained, the prescribed target profile is not an
equilibrium profile during ‘‘Phase I’’. During ‘‘Phase II’’ the control
goal is to regulate the current profile using as little control effort
as possible because the actuators are not only limited in power
but also in energy. For this reason, the goal during ‘‘Phase I’’ is to
set up an initial profile for ‘‘Phase II’’ as close as possible to its
desirable profile.

This paper focuses on ‘‘Phase I’’. It is important to note that
although T1 and T2 can be adjusted as functions of the properties
of the system, such as time scale and efficiency of the actuators,
due to the nonlinearities of the system and the constraint of the
actuators there is no guarantee that the target profile can indeed
be reached within the time window [T1, T2]. Therefore, an optimal

control problem must be solved, where control laws I(t), Ptot(t),
and nðtÞ are sought to minimize the cost functional

J¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min
tj

ðJ)ðtjÞÞ
r

, ð7Þ

where tj are discrete points in time equally spaced within the
interval [T1, T2], e.g., t(j)¼T1¼1.2 s, 1.3 s, 1.4 s,y,T2¼2.4 s for
j¼1,2,3, y,13, and J*(tj) is given by

J)ðtjÞ ¼
1
N

XN

i ¼ 1

ðiðr̂ i,tjÞ"idesðr̂ iÞÞ
2, ð8Þ

where N is the number of discrete points in space within the
interval [0,1] for the normalized radius, iðr̂,tÞ denotes the
rotational transform, and idesðr̂Þ represents its desired value.

The safety factor q is a measure of the pitch of the helicoidal
magnetic field lines lying on the magnetic surfaces, i.e., of the
relation between the toroidal and poloidal components of the
helicoidal magnetic field lines, q¼ dF=dc. In a tokamak discharge,
the toroidal field (TF) coils are operated so as to produce an
approximately constant toroidal field. Thus, the q profile is
considered in most cases to be a function of the variable poloidal
field, or equivalently of the poloidal flux, i.e., q¼ qðcÞ. When the
plasma shape is controlled at steady-state equilibrium, the
poloidal field (PF) coil currents are nearly constant. Therefore,
changes in the poloidal field, and therefore in the poloidal flux
c, are dominated by changes in the spatial distribution of the
plasma toroidal current density (the current profile). Through this
chain of dependencies, it can be seen that the safety factor q
profile depends on the current profile (and vice versa). Thus, many
physicists speak interchangeably of the current profile and the
q-profile. Another quantity related to q is its inverse, known as the
rotational transform iðcÞ ¼ 1=qðcÞ. It can be shown that iðcÞ is
proportional to the total current inside the flux surface repre-
sented by the poloidal flux value c. For this reason, the cost
functional (7) has been defined in terms of this variable. The
safety factor q and the rotational transform i are related and
defined as

iðr,tÞ ¼ 1
qðr,tÞ ¼

@cðr,tÞ
@F

: ð9Þ

The constant relationship between F and r, r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F=pBf,0

q
, and

the definition of the normalized radius allow us to rewrite (9) as

iðr̂,tÞ ¼ @c
@r̂

1

Bf,0r2
br̂

: ð10Þ

‘‘Phase I’’ can be roughly divided into two phases, the ramp-up
phase and the flattop phase. During the ramp-up phase, the three
actuators I(t), nðtÞ and Ptot(t) are assumed available for current
profile control, whereas during part of the flattop phase ðt4T1Þ
I(t) and nðtÞ are chosen to be fixed although modulation of these
variables is possible. In addition to these specific constraints
during the flattop phase, the absolute values, and sometimes the
derivatives in time, of the control variables must be within some
specific limits during the whole ‘‘Phase I’’. The physical ranges for
I(t), nðtÞ and Ptot(t) are given by

0r IðtÞr Imax,
dIðtÞ
dt

####

####rdImax,

8
><

>:
ð11Þ

IðMAÞr nðtÞ
1019

r5IðMAÞ,

dnminrdnðtÞ=dtrdnmax,

8
><

>:
ð12Þ

PminrPtotðtÞrPmax: ð13Þ
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The lower and upper limits for the line average density in (12) are
set to prevent density instabilities and disruptions. The upper
limit is approximately half of the Greenwald limit (Wesson, 2004).
To accurately reproduce experimental discharges, constraints for
I(t) and nðtÞ are added at the initial time of ‘‘Phase I’’, i.e.,

Iðt¼ 0 sÞ ¼ I0,

nðt¼ 0 sÞ ¼ n0:

(
ð14Þ

In addition, a value of the total current I(t) is prescribed for the
flattop phase, i.e.,

IðtZT1Þ ¼ Itarget : ð15Þ

In summary, the optimal control problem (7) must be solved
taking into account that (i) during the ramp-up phase ð0rtrT1Þ
the three actuators can be manipulated while obeying the
physical constraints (11)–(14), (ii) during the flattop phase I(t) is
constrained by (15), and nðtÞ must be equal to nðT1Þ. Control laws
for I(t), nðtÞ and Ptot(t) for tA ½0,T( are sought to make iðr̂,TÞ as
close as possible to the prescribed target profile idesðr̂Þ at some
time TA ½T1,T2(.

4. Closed-loop optimal control

In this section, a closed-loop, receding-horizon, optimal
controller based on extremum-seeking or nonlinear-program-
ming optimization frameworks is presented.

4.1. Receding horizon control (RHC)

The optimal control problem defined in Section 3 is assumed to
be solved at time t¼0 by determining the actuator trajectory for
tZ0 that minimizes the cost function (7). The situation at time
t¼ti illustrated in Fig. 5 is considered. If there were no
disturbances and no model-plant mismatch, the actual profile
would be identical to the profile predicted by the dynamic model.
In this case, the application of the actuator trajectory found at
time t¼0 for all time tZti would drive the actual profile to its
target value (dashed curve) at time T. However, this is not a
realistic assumption. The actual profile at time ti will be in general
different from the predicted value. In this case, the continuous
application of the actuator trajectory found at time t¼0 will drive
the actual profile to a final value that is different from the target

value (dotted curve). In order to incorporate some feedback
mechanism, a receding horizon control strategy could be
implemented, where a finite-horizon open-loop optimal control
problem subject to system dynamics and actuator constraints is
solved on-line at each time ti and a new actuator trajectory
resulting from the optimization process is implemented. The
optimal control problem solved at each time ti uses a direct
measurement of the actual profile as initial condition, which
provides indeed the desired feedback mechanism. This implies
that the actuator trajectory computed at time ti, for tirtrT , is
implemented only until time ti+1 when the next measurement
becomes available. This receding horizon control strategy will
drive the actual profile to its target value at time T even in the
presence of disturbances and plant-model mismatch (solid curve).

Fig. 6 shows the structure of the receding horizon control
algorithm proposed in this work to address the current profile
optimal control problem. Provided a measurement of cðr̂,tiÞ, the
PDE model (1) and (2) uses it as its initial condition and predicts
the output cðr̂,tÞ for tirtrT , which can be in turn employed to
compute iðr̂,TÞ using (9). By minimizing the cost function (7)
using an extremum seeking (Ou et al., 2008) or a nonlinear
programming (Xu et al., 2010) approach, the optimal control
inputs are obtained for tirtrT. Since the optimization proce-
dure is carried out in the interval [ti,ti+1] to provide enough
computational time, the control inputs actually implemented on
the system during this time interval are considered as actuator
constraints during the optimization. The calculated optimal
control inputs are implemented on the actual system only for
tiþ1rtrtiþ2, while a new optimization is carried out based on
the measurement of cðr̂,tiþ1Þ.

4.2. Open-loop optimization

Extremum-seeking (Ou et al., 2008) and nonlinear-program-
ming (Xu et al., 2010) algorithms are considered in this work for
the solution of the optimal control problem (7) at each sampling
time ti, for i¼1,y,N. As illustrated in Fig. 7, by parameterizing the
control laws for I(t), Ptot(t) and nðtÞ in terms of a set of discrete-
time values denoted by y, y is iteratively tuned to make the
quadratic error between iðr̂,TÞ and the prescribed target profile
idesðr̂Þ as small as possible at some time TA ½T1,T2(, i.e., to solve the
optimization problem defined by

min
y

JðyÞ, ð16Þ

with J defined in (7). The number of parameters used to represent
the control laws is indeed a choice of the designer, and at the
same time a tradeoff between the accuracy of the parameteriza-
tion and the convergence speed of the optimization algorithm.

The control parameters y are changed or tuned after each
simulated plasma ‘‘discharge’’. In a simulation environment,
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a ‘‘discharge’’ is represented by the integration of the PDE Eqs. (1)
and (2) in the interval [ti,T2] by using numerical methods such as
finite differences, finite elements or pseudo-spectrum. In each
iteration of the optimization procedure, yðkÞ is used to reconstruct
the time evolution of the three physical actuators I(t), nðtÞ and
Ptot(t) in this time interval. At each sampling time ti, the vector
parameter y has 10 components given by

y¼ ½IðtI1i Þ,IðtI2i Þ,PtotðtiÞ,PtotðtP1i Þ,PtotðtP2i Þ,

PtotðT1Þ,nðtn1i Þ,nðtn2i Þ,nðtn3i Þ,nðT1Þ(, ð17Þ

where tiotI1i ,tI2i ,tP1i ,tP2i ,tn1i ,tn2i ,tn3i oT1. As an example, the optimal
polynomial interpolation problem defined for the reconstruction
of the plasma current I(t) is stated below. Similar optimization
problems are defined for the other control laws. By taking into
account that I(ti)¼ Ii is fixed by the outcome of the optimization at
t¼ti"1, or by the initial condition (I(0s)¼ I0), and I(T1)¼ Itarget, and
using polynomial curve fitting for the points I(ti), I(tI 1i), I(t

I 2
i ),I(T1),

the profile for I(t) for tA ½ti,T1( can be reconstructed. In addition,
I(t)¼ Itarget for tAðT1,T2(. The plasma current is written as a
polynomial in time t, i.e.,

IðtÞ ¼
Xn

I
fit

j ¼ 0

xjt
nI
fit
"j, ð18Þ

where nIfit denotes the order of the fitting polynomial and xj, for
j¼0,y,nIfit, are its coefficients. Recalling that y1 and y2 represent
the value of plasma current determined by the optimization
algorithm at t¼tI 1i and t¼tI 2i , respectively, the coefficient vector
is denoted as x¼ ½x0 % % % xnI

fit
( and the cost functional is defined as

JIfitðxÞ ¼ ðIðt¼ tI1i Þ"y1Þ2þðIðt¼ tI2i Þ"y2Þ2: ð19Þ

The optimal polynomial interpolation problem can be written
then as

min
x

JIfitðxÞ, ð20Þ

subject to the following constraints:

Iðt¼ tiÞ ¼ Ii,

Iðt¼ T1Þ ¼ Itarget ,

jdIðtkÞ=dtjrdImax,

0o IðtkÞo Imax,

8
>>>><

>>>>:

ð21Þ

where tk¼ti,(ti+(T1"ti)/10),(ti+2(T1"ti)/10),y,(ti+9(T1"ti)/10),T1.
After reconstructing the control laws for I(t), Ptot(t) and nðtÞ, the

PDE Eqs. (1) and (2) is integrated and the simulated profile iðr̂,tÞ

is obtained. The output of the nonlinear static map, JðkÞ ¼ JðyðkÞÞ, is
then calculated by evaluating (7) and used to compute yðkþ1Þ
according to the optimization procedure illustrated in Fig. 7.

4.3. Receding horizon algorithm

The combination of the receding horizon control framework
and the extremum seeking or nonlinear programming optimiza-
tion techniques can be summarized as follows.

Select the tolerance e40 and the maximum number of
iterations for the extremum-seeking or nonlinear-programming
optimal control algorithm, load the desirable idesðr̂Þ profile data,
and perform the following steps:

1. Define ti¼t0. Implement off-line-computed actuator trajec-
tories u(t), for tZti ¼ t0. Provide the actual poloidal magnetic
flux profile cðr̂,ti ¼ t0Þ as initial condition for the PDE model.

2. Compute the predicted iðr̂,TÞ from the output cðr̂,tÞ, for tZti,
obtained from the PDE model.

3. Compute cost function (7). If it is less than e, go to step 5.
4. Adjust the parameters y (i.e, u(t)) in the optimization

algorithm until the cost function is less that e or the maximum
number of iterations is reached. Use the actuator trajectories
implemented for ½ti,tiþDt( as constraints.

5. Implement the calculated actuator trajectories on the actual
system for ½tiþDt,tiþ2Dt(, move the control horizon one
sampling interval Dt ahead, measure the output of the actual
system cðr̂,tiþDtÞ, make ti ¼ tiþDt, and go to step 2.

5. Simulation results

In this section, simulation results showing the effectiveness of
the closed-loop, receding-horizon control scheme in a disturbance
rejection problem are presented for three different cases. In the
simulation study, the magnetic flux diffusion PDE is reduced to a
set of ODEs by carrying out a second-order-accurate spatial
discretization based on a fixed set of nodes (Skeel & Berzins,
1990). In the first case, the optimization problem (7) is solved in
open loop for a nominal initial profile. The limitations of the open-
loop controller to cope with disturbances in the initial profile is
manifested in the second case, where a disturbed initial profile is
considered. Finally, in the third case, the performance of the
closed-loop controller is analyzed when the same disturbed initial
profile is considered. All the open-loop optimizations carried out
in the simulation study presented in this section are based on
extremum-seeking (Ou et al., 2008).

In these simulations, the time interval [0, T2¼2.4 s] is
considered. The current I(t) is reconstructed in the interval
[ti, T1¼1.2 s] using polynomial interpolation to fit the discrete
points I(t¼ti)¼ IiMA, Iðt¼ tI1i Þ ¼ y1, Iðt¼ tI2i Þ ¼ y2, IðtZT1 ¼ 1:2 sÞ ¼
1:18774MA. The value of Ii is fixed by the outcome of the
optimization at t¼ti"1, or by the initial condition I(0s)¼ I0, where
I0¼0.7092MA. The constraints for I(t) are as follows:

0r IðtÞr1:19141MA,
dIðtÞ
dt

####

####r2MA=s:

8
><

>:
ð22Þ

In each interval [ti,T1¼1.2 s], the total power Ptot(t) is
reconstructed using polynomial interpolation to fit the discrete
points Ptotðt¼ tiÞ ¼ y3, Ptotðt¼ tP1i Þ ¼ y4, Ptotðt¼ tP2i Þ ¼ y5, Ptotðt¼
T1 ¼ 1:2 sÞ ¼ y6. For t4T1 ¼ 1:2 s, Ptot(t)¼Ptot(T1). The additional
constraint for Ptot(t) is given by

0rPtotðtÞr20MW: ð23Þ

Fig. 7. Optimization approach.
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The average density nðtÞ is obtained by similar procedure in
each interval [ti,T1¼1.2 s], given the discrete points nðt¼ tiÞ ¼ ni,
nðt¼ tn11 Þ ¼ y7, nðt¼ tn21 Þ ¼ y8, nðt¼ tn31 Þ ¼ y9, nðt¼ T1 ¼ 1:2 sÞ ¼ y10.
For t4T1 ¼ 1:2 s, nðtÞ ¼ nðT1Þ. The value of ni is fixed by the
outcome of the optimization at t¼ti"1, or by the initial condition
nð0 sÞ ¼ n0, where n0 ¼ 2:0& 1019 m"3. The constraints for nðtÞ are
written as

IðtÞðMAÞr nðtÞ
1019

ðm"3Þr5IðtÞðMAÞ,

"1:7& 1019 m"3 s"1rdnðtÞ=dtr3& 1019 m"3 s"1:

8
><

>:
ð24Þ

The initial values for y are arbitrarily chosen as

yint ¼ ½0:938721MA,1:15723MA,1:15723MW,
0:860596MW,1:09253MW,1:09253& 2MW,

1& 1019 m"3,2& 1019 m"3,3& 1019 m"3,4& 1019 m"3(:

5.1. Open-loop control

The nominal initial poloidal flux c considered in this simula-
tion case is shown in Fig. 8 (solid blue line). The target or desirable
i profile is shown in Fig. 10 (solid green line). The optimal control
problem is solved in open loop. After less than 100 iterations, a
minimum is achieved. The corresponding normalized cost func-
tion is J¼0.0285. Fig. 10 shows the resulting matching (blue
dashed-dotted line). The corresponding time evolutions for the
three actuators are shown in Fig. 9.

The initial poloidal flux profile is now changed while the open-
loop controller shown in Fig. 9 is still used. Fig. 8 shows the
disturbed initial poloidal flux profile considered in this case
(green dashed-dotted line), and compares it with the nominal
initial poloidal flux profile. The cost function results now J
¼0.0404. Fig. 10 shows the difference between the obtained i
profile (dotted black line) and the desirable i profile. As expected,
the matching is worsen due to the disturbance in the initial
poloidal flux profile.

5.2. Closed-loop control (disturbance rejection)

In the third simulation case, the closed-loop, receding-horizon
control strategy is implemented. At t¼t0¼0, the ‘‘measured’’c profile
is the disturbed initial poloidal flux profile, shown in Fig. 8, and the
open-loop actuator trajectories are used for control. After Dt¼ 0:1 s,
the control input is updated with the result of the optimizer. The
procedure is repeated until t¼T1¼1.2s. From that instant the control
input is kept unmodified until the end of the considered time interval
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at T2¼2.4. For each optimization started at t¼ ðk"1Þ & 0:1 s for k¼1,
y, 11, the c profile is measured and incorporated into the
optimization procedure. At time t¼ k& 0:1 s for k¼1, y, 11, the
actuator trajectories are updated using the solution to the stated
optimal control problem provided by the optimizer.

For the closed-loop controller, the achieved matching shown in
Fig. 10 (dashed red line) gives a cost function J¼0.0246. Fig. 11
shows the closed-loop control actuator trajectories. Fig. 10
compares the matching of the target i by open- and closed-loop
controllers. The closed-loop approach provides a better matching
as it is illustrated by the results in Table 1.

5.3. Implementation issues

For a practical implementation of a receding horizon con-
troller, the computational burden is as critical as the optimization

quality. These two competing objectives show a clear tradeoff; by
reducing the optimization iterations the computational burden is
decreased at the price of a lower optimization quality. A study is
carried out in this subsection to assess how these two factors
depend on a few critical implementation variables such as: (i) the
number of iterations in each optimization; (ii) the time interval Dt
in the receding horizon control algorithm, and (iii) the spatial
interval Dr̂ in the numerical integration of the PDE system.

A series of simulations is presented in Tables 2 and 3. The label
‘‘number of iterations’’ refers to the number of iterations in a
single optimization process, the label ‘‘cost function’’ denotes the
value defined in Eq. (7), and the label ‘‘run-time’’ represents
the time required to carry out the complete optimization over the
0–2.4 s interval.

Table 2 compares cost-function values and run-times as a
function of the number of iterations when Dt¼ 0:1 s is kept fixed.
Results for both Dr̂ ¼ 0:01 and 0.02 are presented. By looking at
the results for the Dr̂ ¼ 0:01 case it is possible to conclude first
that the run-time is directly proportional to the number of
iterations, and second that the cost-function value decreases as
the number of iterations increases. However, this last relationship
is not linear (see how small is the improvement in the cost-
function value when the number of iterations is increased from 20
to 50), indicating the existence of an optimal value for the cost-
function value vs. number of iterations tradeoff. By comparing the
Dr̂ ¼ 0:01 and 0.02 cases it is possible to note that while the cost-
function value is kept approximately constant, i.e., the quality of
the optimization is preserved, the run-time is inversely propor-
tional to the spatial discretization step Dr̂ used for the simulation
of the PDE system. This suggests that the implementation of
model reduction techniques for the approximation of the infinite-
dimensional PDE model by a low-order finite-dimensional ODE
(ordinary differential equation) model has the potential of
dramatically reducing the computational burden of the proposed
receding horizon control scheme.

Table 3 compares cost-function values and run-times as a
function of the number of iterations when Dr̂ ¼ 0:02 is kept fixed.
Results are presented for three values of the receding-horizon-
control time interval Dt. The study of the behavior of the
cost-function value when Dt is increased keeping the ratio niter=Dt
constant (niter denotes the number of iterations) is of interest. The
increase of the number of iterations niter proportionally to
the time interval Dt ensures that the computational burden is
kept approximately constant. The cases Dt¼ 0:1 s=niter ¼ 10,
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Fig. 11. Closed-loop, extremum-seeking, receding-horizon optimal control.

Table 1
Comparison of open-loop and closed-loop control results.

Cost function

Undisturbed open-loop Disturbed open-loop Disturbed closed-loop

J 0.0285 0.0404 0.0246

Table 2
Comparison of cost-function value and run-time as a function of the number of
iterations and Dr̂ when Dt ¼ 0:1 s.

Number of
iterations

Dr̂ ¼ 0:01 Dr̂ ¼ 0:02

Cost
function

Run-time (s) Cost
function

Run-time
(s)

1 0.0407 T1 0.0471 0.49T1
10 0.0298 T2¼08.08T1 0.0319 0.50T2
20 0.0254 T3¼16.40T1 0.0260 0.51T3
50 0.0246 T4¼41.67T1 0.0258 0.51T4
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Dt¼ 0:2 s=niter ¼ 20, and Dt¼ 0:4 s=niter ¼ 40 are considered.
While the run-time is kept very similar, the cost-function values
indicate that there may be an optimal Dt=niter pair for a given
constant ratio niter=Dt. Too much feedback with little optimization
or little feedback with to much optimization represent the
limiting cases, which are clearly not optimal.

6. Conclusions and future work

A simplified dynamic model describing the evolution of the
poloidal flux, and therefore the i profile, during the inductive
phase of the discharge has been introduced. Using this model, a
closed-loop, receding-horizon, optimal controller based on ex-
tremum-seeking and nonlinear-programming techniques has
been proposed to match a desired i profile within a predefined
time window during the flattop phase of the tokamak discharge.
The extremum-seeking and nonlinear-programming procedures
have shown in previous work to be effective in dealing with an
optimal control problem defined for a PDE system subject to
many actuator constraints, and where not only interior and
boundary control but also diffusivity control are considered. The
proposed controller satisfactorily rejects disturbances due to its
feedback nature.

The proposed closed-loop receding-horizon scheme shows
potential for implementation in long-discharge tokamaks such as
ITER. Future work towards reducing the computation time
includes strategies such as: (i) implementation of model reduc-
tion techniques to approximate the infinite-dimensional PDE
model by a low-order finite-dimensional ODE model, (ii)
approximation of the solution of the nonlinear optimal control
problem by successive computation of linear optimal control
problems, and (iii) combination of off-line feedforward and on-
line feedback control strategies, where the feedback controller is
intended to track an off-line-computed trajectory in the presence
of disturbances and plant-model mismatches. Finally, the experi-
mental validation of this type of controller in long-discharge
superconducting tokamaks (Tore Supra, EAST, KSTAR) is also part
of the future work in this area.
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