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a b s t r a c t

A nonlinear Lyapunov-based boundary feedback control law is proposed for mixing enhancement in
a 2D magnetohydrodynamic (MHD) channel flow, also known as Hartmann flow, which is electrically
conducting, incompressible, and subject to an external transverse magnetic field. The MHD model is
a combination of the Navier–Stokes PDE and the Magnetic Induction PDE, which is derived from the
Maxwell equations. Pressure sensors, magnetic field sensors, and micro-jets embedded into the walls of
the flow domain are employed for mixing enhancement feedback. The proposed control law, designed
using passivity ideas, is optimal in the sense that it maximizes a measure related to mixing (which
incorporates stretching and folding of material elements), while at the same timeminimizing the control
and sensing efforts. A DNS code is developed, based on a hybrid Fourier pseudospectral-finite difference
discretization and the fractional step technique, to numerically assess the controller.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Recent years have been marked by dramatic advances in
active flow control (see Aamo and Krstic (2002) and the
references therein), which, if implemented throughmicro-electro-
mechanical sensors and actuators, can become effective in
reducing drag and separation over aircraft wings, eliminating in-
stabilities in various sections of jet engines (inlet, compressor
rotating stall, combustion thermoacoustic oscillations, etc.), reduc-
ing jet noise, reducing thermal signature of jet exhaust through
actively controlled mixing, and steering the overall vehicle.

Up until now active feedback flow control developments have
had little impact on electrically conducting fluids moving in elec-
tromagnetic fields. Active feedback control in electrically con-
ducting flows, implemented through micro-electro-mechanical or
micro-electro-magnetic actuators and sensors, can be used to op-
timally achieve the desired level of stability (when suppression of
turbulence is desired) or instability (when enhancement of mix-
ing is desired). As a result, a small amount of active control ap-
plied tomagnetohydrodynamic (MHD) flows,magnetogasdynamic
(MGD) flows, and plasma flows can dramatically change their equi-
librium profiles and stability (turbulent fluctuation) properties.

I This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Denis Dochain
under the direction of Editor Frank Allgöwer. Supported by the Pennsylvania
Infrastructure Technology Alliance and the NSF CAREER program (ECCS-0645086).
∗ Corresponding author. Tel.: +1 610 758 5253.

E-mail address: schuster@lehigh.edu (E. Schuster).

These changes influence heat transfer, hydrodynamic drag, pres-
sure drop, and the pumping power required to drive the fluid.

Prior work in the area of active control of electrically-
conducting-fluid flows focuses mainly on electro-magneto-hydro-
dynamic (EMHD) flow control for hydrodynamic drag reduction,
through turbulence control, in weak electrically conducting fluids
such as saltwater. Traditionally two types of actuator designs
have been used: one type generates a Lorentz field parallel to the
wall in the streamwise direction, while the other type generates
a Lorentz field normal to the wall in the spanwise direction.
EMHD flow control has been dominated by open-loop strategies
that either permanently activate the actuators or pulse them at
arbitrary frequencies. However, it has been shown that feedback
control schemes can improve the efficiency, by reducing control
power, for both streamwise (Spong, Reizes, & Leonardi, 2005)
and spanwise (Berger, Kim, Lee, & Lim, 2000; Choi, Moin, & Kim,
1994) approaches. Model-based designs for electromagnetically
actuated control for drag reduction have been proposed, using
distributed control techniques based on linearization and model
reduction, in Baker, Armaou, and Christofides (2002); Singh and
Bandyopadhyay (1997).

We consider a novel flow control problem that arises when
an electrically conducting fluid interacts with a magnetic field
in applications that range from liquid metals to plasmas. When
an electrically conducting fluid moves in the presence of a
transversemagnetic field, it produces an electric field due to charge
separation and subsequently an electric current. The interaction
between this created electric current and the imposed magnetic
field produces a body force, called the Lorentz force, which acts on
the fluid itself. Since this force acts in the opposite direction of the
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fluid motion, a high increase of power becomes necessary to drive
the fluid. In addition, this force tends to suppress turbulence and
laminarize the flow, which is undesirable in applications where
a high rate of heat transfer is needed. The heat transfer decrease
due to the laminarization may prevent electrically-conducting-
fluid-based cooling systems from producing the heat transfer
improvements expected based on the high thermal conductivity
of the coolant. Active control can be used to enhance turbulence,
mixing, and therefore heat transfer.

We focus in this paper on mixing enhancement by feedback
in MHD flows. We consider the Hartmann flow, an electrically
conducting, incompressible fluid moving between parallel plates
through an imposed transverse magnetic field, and extend
boundary control design ideas for Navier–Stokes equations (Aamo,
Krstić, & Bewley, 2003; Balogh, Aamo, & Krstic, 2005) to MHD
flows. Micro-jets, pressure sensors, and magnetic field sensors
embedded into the walls of the flow domain would be employed
to implement our feedback control law. We develop a direct
numerical simulation (DNS) code based on a hybrid Fourier
pseudospectral-finite difference discretization scheme and the
fractional step technique, and employ it to assess the effectiveness
of the proposed controller in a 2D MHD channel flow. The global
mathematical well posedness of MHD equations was established
in Chen and Wang (2002) for a free boundary problem. The local
exact controllability was studied in Barbu, Havarneanu, Popa, and
Sritharan (2005).

The paper is organized as follows. Section 2 and 3 introduces
the governing equations and their equilibrium solution. The
perturbation equations are introduced in Section 4. The Lyapunov
analysis and the statement of optimality for the boundary control
law is presented in Section 5. In Section 6 the numerical method
used to simulate the MHD channel flow is described. Results of an
extensive simulation study are presented in Section 7. Section 8
states the conclusions.

2. Governing equations

Let us consider the flow of an incompressible, conducting
fluid between parallel plates where a magnetic field Bo = Boŷ
perpendicular to the channel axis is externally applied. In addition,
let us assume the presence of a uniformpressure gradient in the−x̂
direction. Fig. 1 illustrates the configuration; x̂ and ŷ denote the
unit vectors in the x and y directions respectively. This flow was
first investigated experimentally and theoretically by Hartmann
(1937). The governing equations for the stated problem are the
transport equation of linear momentum

ρ

[
∂v
∂t

+ (v · ∇)v
]

= −∇P + ρν∇
2v + j × B, (1)

and the transport equation of magnetic induction

∂B
∂t

+ (v · ∇)B =
1

µσ
∇

2B + (B · ∇)v. (2)

The flow velocity is denoted by v, the magnetic field by B and
the current density by j, while P denotes the pressure, ρ the
fluid mass density, ν the kinematic viscosity, µ the magnetic
permeability and σ the electrical conductivity. The j × B term
represents the Lorentz forces. The Lorentz forces couple the
mechanical and electrodynamic states of the system and act in
planes perpendicular to both current density and magnetic field
vectors. Coulomb forces qE, where q is the electrical charge and
E the electrical field, are negligible in comparison to the Lorentz
forces. Themagnetic induction equation is derived fromOhm’s law
j = σ(E + v × B), Faraday’s law ∂B

∂t = −∇ × E, Ampere’s law
µj = ∇ × B, and the fact that B and v are solenoidal ∇ · B = 0,
∇ · v = 0.

Fig. 1. Flow between parallel plates in the presence of a transverse magnetic field
(Hartmann flow).

Fig. 2. 2D Hartmann flow.

In this work we consider the 2D Hartmann flow. Fig. 2 shows
the geometrical arrangement, where −L ≤ y ≤ L, −∞ < x < ∞.
The imposed magnetic field Bo is perpendicular to both planes. In
this case we can write x = xx̂ + yŷ, v = v(x, y, t) = U(x, y, t)x̂ +

V (x, y, t)ŷ, B = B(x, y, t) = Bu(x, y, t)x̂ + Bv(x, y, t)ŷ and P =

P(x, y, t).

3. Equilibrium solution

For channels with constant cross section, as the one depicted
in Fig. 2, a fully developed equilibrium flow is established. In
this case, the flow velocity v̄ = Ū(y)x̂ has only one component,
which depends on the coordinate y (the upper bar denotes
equilibrium variables). The magnetic field is decomposed into two
contributions, one due to the external imposed magnetic field and
the other caused by the magnetic field induced by the flow B̄ =

Bo + b̄ = Boŷ+ b̄. Substituting this expression for the equilibrium
magnetic field B̄ into Eq. (2), and forcing the temporal derivative to
zero, shows that the only component of the inducedmagnetic field
is b̄ = b̄(y)x̂. The induction equation reduces then to

0 = µσBo
dŪ
dy

+
d2b̄
dy2

. (3)

Using Ampere’s law it is possible to write the current density j̄,
and consequently the Lorentz force j̄ × B̄, in terms of b̄. Then the
momentum equation can be written as

0 = −
dP̄
dx

+
Bo

µ

db̄
dy

+ ρν
d2Ū
dy2

. (4)

We consider viscous fluids with no slip at the fluid-wall interface
Γ . Therefore the hydrodynamic boundary condition is

v̄ = 0 at Γ , (5)

which means that all the velocity components vanish at the wall.
For walls with finite electrical conductivity σw , magnetic perme-
ability µw and normal n, the condition that the tangential compo-
nent of the electrical field is continuous across the wall interface
can be expressed in terms of b̄ as Müller and Bühler (2001)

∂ b̄
∂n

−
1
c
b̄ = 0 at Γ , (6)



Author's personal copy

2500 E. Schuster et al. / Automatica 44 (2008) 2498–2507

Fig. 3. Velocity and induced magnetic field profiles for Hartmann flow at Hartmann numbers Ha = 0, 2, 5, 10, 100 for perfectly insulating walls (c = 0).

with the wall conductance ratio defined as c =
µwσw tw

µσ L where the
wall thickness tw is often small compared to the dimension of the
cross section L. Two limiting cases can be considered: i- b̄ = 0 at
Γ as c → 0 (perfectly insulating walls), ii- ∂ b̄

∂n = 0 at Γ as c → ∞

(perfectly conducting walls).
Defining the dimensionless variables y∗

=
y
xo
, Ū∗

=
Ū
vo
, b̄∗

=

b̄
bo
, where xo = L, vo =

L2
ρν

(− ∂ P̄
∂x ), and bo = µL2

√
σ
ρν

(− ∂ P̄
∂x ), we can

rewrite Eqs. (3) and (4) as

Ha
dŪ∗

dy∗
+

d2b̄∗

dy∗2
= 0, Ha

db̄∗

dy∗
+

d2Ū∗

dy∗2
= −1, (7)

with boundary conditions (5) and (6) now expressed as

Ū∗
= 0 at y∗

= ±1

∓
db̄∗

dy∗
−

b̄∗

c
= 0 at y∗

= ±1,
(8)

where Ha = BoL
√

σ
ρν

is the Hartmann number. The solution for

system (7) with boundary conditions (8) is given by

Ū∗(y∗) =
1
Ha

c + 1
cHa + tanh(Ha)

[
1 −

cosh(Ha y∗)

cosh(Ha)

]
, (9)

b̄∗(y∗) = −
y∗

Ha
+

1
Ha

c + 1
cHa + tanh(Ha)

sinh(Ha y∗)

cosh(Ha)
. (10)

Fig. 3 shows the velocity and induced magnetic field profiles for
different values of theHartmannnumberHa in the case of perfectly
insulating walls, c = 0.

4. Perturbation equations

Defining the dimensionless variables x∗
=

x
xo
, v∗

=
v
vo
, t∗ =

vot
xo

, B∗
=

B
bo
, j∗ =

j
σvobo

, with xo, vo, and bo defined in the previous
section, we can rewrite Eqs. (1) and (2) as

∂v
∂t

+ (v · ∇)v = −∇P +
1
R
∇

2v +
N
Rm

[(∇ × B) × B] , (11)

∂B
∂t

+ (v · ∇)B =
1
Rm

∇
2B + (B · ∇)v, (12)

where R =
voL
ν

is the Reynolds number, N =
σ Lb2o
ρvo

is the Stuart
number, and Rm = µσvoL is the magnetic Reynolds number. The
star notation has been dropped for simplicity.

Defining the deviation variables as u = U − Ū , v = V − V̄ = V ,
bu = Bu

− B̄u
= Bu

− b̄, bv
= Bv

− B̄v
= Bv

− Bo, p = P − P̄ , we
can write the dimensionless perturbation equations as

∂u
∂t

+ (Ū + u)
∂u
∂x

+ v
∂(Ū + u)

∂y
= −

∂p
∂x

+
1
R

(
∂2u
∂x2

+
∂2u
∂y2

)
−

N
Rm

(Bo + bv)

(
∂bv

∂x
−

∂bu

∂y

)
+

N
Rm

bv ∂ b̄
∂y

, (13)

∂v

∂t
+ (Ū + u)

∂v

∂x
+ v

∂v

∂y
= −

∂p
∂y

+
1
R

(
∂2v

∂x2
+

∂2v

∂y2

)
+

N
Rm

(b̄ + bu)
(

∂bv

∂x
−

∂bu

∂y

)
−

N
Rm

bu
∂ b̄
∂y

, (14)

∂u
∂x

+
∂v

∂y
= 0, (15)

∂bu

∂t
+ (Ū + u)

∂bu

∂x
+ v

∂(b̄ + bu)
∂y

=
1
Rm

(
∂2bu

∂x2
+

∂2bu

∂y2

)
+ (b̄ + bu)

∂u
∂x

+ (Bo + bv)
∂u
∂y

+ bv ∂U
∂y

, (16)

∂bv

∂t
+ (Ū + u)

∂bv

∂x
+ v

∂bv

∂y
=

1
Rm

(
∂2bv

∂x2
+

∂2bv

∂y2

)
+ (b̄ + bu)

∂v

∂x
+ (Bo + bv)

∂v

∂y
, (17)

∂bu

∂x
+

∂bv

∂y
= 0, (18)

with initial conditions u(x, y, 0) = uo(x, y), v(x, y, 0) = vo(x, y),
bu(x, y, 0) = buo(x, y), b

v(x, y, 0) = bv
o(x, y) for −∞ < x < ∞,

−1 < y < 1 and t > 0.

5. Energy analysis, control design, and its inverse optimality

Choosing the energy function as the combination of the
perturbed kinetic and magnetic energies of the flow,

E(v, B) =
1
2

∫ 1

−1

∫ d

0
k1(u2

+ v2) + k2(bu
2
+ bv2)dxdy, (19)

we can compute

Ė(v, B) =

∫ 1

−1

∫ d

0
(k1uut + k1vvt + k2bubut + k2bvbv

t )dxdy
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= k1

∫ 1

−1

∫ d

0
−u

[
Ūux + uux + vŪ ′

+ vuy −
1
R

(
uxx + uyy

)
+ px

]
dxdy

+ k1

∫ 1

−1

∫ d

0
−u

[
N
Rm

Bo
(
bv
x − buy

)
+

N
Rm

bv
(
bv
x − buy

)
−

N
Rm

bv b̄′

]
dxdy

+ k1

∫ 1

−1

∫ d

0
−v

[
Ūvx + uvx + vvy −

1
R

(
vxx + vyy

)
+ py

]
dxdy

+ k1

∫ 1

−1

∫ d

0
−v

[
−

N
Rm

b̄
(
bv
x − buy

)
−

N
Rm

bu
(
bv
x − buy

)
+

N
Rm

bub̄′

]
dxdy

+ k2

∫ 1

−1

∫ d

0
−bu

[
Ūbux + ubux + vb̄′

+ vbuy −
1
Rm

(
buxx + buyy

)]
dxdy

+ k2

∫ 1

−1

∫ d

0
−bu

[
−b̄ux − buux − Bouy − bvuy − bvŪ ′

]
dxdy

+ k2

∫ 1

−1

∫ d

0
−bv

[
Ūbv

x + ubv
x + vbv

y −
1
Rm

(
bv
xx + bv

yy

)]
dxdy

+ k2

∫ 1

−1

∫ d

0
−bv

[
−b̄vx − buvx − Bovy − bvvy

]
dxdy, (20)

where Ū ′ and b̄′ denote Ūy and b̄y respectively.We assumeperiodic
boundary conditions in the streamwise direction, i.e., v(x = 0) =

v(x = d), B(x = 0) = B(x = d) and p(x = 0) = p(x = d). We
apply control only in the wall normal direction, i.e.,

u(x, −1, t) = u(x, 1, t) = 0, (21)
v(x, −1, t) = v(x, 1, t) = vwall(x, t), (22)

where the control vwall(x, t), to be employed on both the top and
the bottom walls, is to be designed. Note that (22) ensures that
the net mass flux through the walls be zero. We measure the wall
normal component of the induced magnetic field,

bu(x, −1, t) = bu(x, 1, t) = 0, (23)

bv(x, −1, t) = bv
bot_wall(x, t), b

v(x, 1, t) = bv
top_wall(x, t), (24)

where bv
bot_wall(x, t) and bv

bot_wall(x, t) are measured on the bottom
and top wall, respectively, and (23) follows from assuming
perfectly insulating walls.

Lemma 1. Taking into account boundary conditions (21)–(24) the
time derivative of E(v, B) along the trajectories can be written as

Ė(v, B) = −
1
R
m(v, B) −

∫ d

0
vwall

k1∆p + k2
∆

(
bv2

)
2

 dx

+ g(v, B), (25)

where

m(v, B) = k1

∫ 1

−1

∫ d

0
(u2

x + u2
y + v2

x + v2
y )dxdy

+ k2
R
Rm

∫ 1

−1

∫ d

0

(
(bux)

2
+ (buy)

2
+ (bv

x )
2
+ (bv

y)
2) dxdy, (26)

g(v, B) = −k1

∫ 1

−1

∫ d

0
Ū ′uvdxdy (27)

− k2

∫ 1

−1

∫ d

0
b̄′buvdxdy (28)

+ k2

∫ 1

−1

∫ d

0
Ū ′bubvdxdy (29)

+ k1

∫ 1

−1

∫ d

0

N
Rm

b̄′
(
ubv

− vbu
)
dxdy (30)

+ k1

∫ 1

−1

∫ d

0

N
Rm

b̄
(
bv
x − buy

)
vdxdy (31)

− k1

∫ 1

−1

∫ d

0

N
Rm

Bo
(
bv
x − buy

)
udxdy (32)

+ k2

∫ 1

−1

∫ d

0
b̄
(
buux + bvvx

)
dxdy (33)

+ k2

∫ 1

−1

∫ d

0
Bo

(
buuy + bvvy

)
dxdy (34)

+ k1

∫ 1

−1

∫ d

0

N
Rm

bu
(
bv
x − buy

)
vdxdy (35)

− k1

∫ 1

−1

∫ d

0

N
Rm

bv
(
bv
x − buy

)
udxdy (36)

+ k2

∫ 1

−1

∫ d

0
bubuuxdxdy (37)

+ k2

∫ 1

−1

∫ d

0
bubvvxdxdy (38)

+ k2

∫ 1

−1

∫ d

0
bvbuuydxdy (39)

+ k2

∫ 1

−1

∫ d

0
bvbvvydxdy, (40)

∆p = P(x, 1, t) − P(x, −1, t), (41)

∆

(
bv2

)
= (bv(x, 1, t))2 − (bv(x, −1, t))2. (42)

This lemma, proved in Appendix A, provides a relationship
between the time derivative of E(v, B) and the function m(v, B),
which appears to be connected to mixing. A number of inherently
different processes is called mixing. Ottino (1989) distinguishes
sub-problems of mixing: (i) mixing of a single fluid (or similar
fluids) governed by the stretching and folding of material
elements; (ii) mixing governed by diffusion or chemical reactions;
and (iii) mixing of different fluids governed by the breakup and
coalescence of material elements. Of course, all processes may be
present simultaneously. In this work, we are interested in the first
sub-problem. The measure (26) is related to mixing due to the
direct correspondence between stretching of material elements
and the spatial gradients of the flow field. Folding is present
implicitly in (26) due to the boundedness of the flow domain
and the fact that v satisfies the Navier–Stokes equation. In this
first sub-problem, the interfaces between the fluids are passive
(Aref & Tryggvason, 1984), and the mixing may be determined
by studying the movement of a passive tracer, or dye, in a
homogeneous fluid flow. The intuitive correspondence between
stretching of material elements and the spatial gradients of the
flow field will be further reinforced with our dye simulations.
The presence of the spatial derivatives of the induced magnetic
field b in (26) is motivated by the direct relationship between
the perturbed induced magnetic field and the perturbed velocity
field. The incorporation of the spatial derivatives of the induced
magnetic field in (26) is also consistent with the incorporation of
the perturbedmagnetic energy in (19), and allows for the existence
of an elegant solution to the optimal control problem as stated in
Theorem 1.

Lemma 2. The function g(v, B) satisfies

|g(v, B)| ≤ g1m(v, B) + g2m2(v, B) + g3

∫ d

0
v2
walldx +

1
2
q(v, B),

where q(v, B) = g4n+g5n2, n(v, B) =
∫ d
0 (bv

top_wall)
2
+(bv

bot_wall)
2dx

and g1, g2, g3, g4 and g5 are nonnegative constants which depend only
on the flow parameters.



Author's personal copy

2502 E. Schuster et al. / Automatica 44 (2008) 2498–2507

This lemma, proved in Appendix B, provides a bound on
the crossterm, involving both the perturbation and equilibrium
variables, that originates from the nonlinear terms in the MHD
equations. This term is similar to the so-called instantaneous
production term in the fluid mechanics literature.

Our goal is to design a feedback control law, in terms of suction
and blowing of fluid normally to the channel wall (achievable by
micro-electro-mechanical (MEM) jets (Lofdahl & el Hak, 1999)),
that is optimal with respect to some meaningful cost functional
related to m(v, B). The control solution is presented in the
following theorem.

Theorem 1. The cost functional

J(vwall) = lim
t→∞

[
2βE(v(t), B(t)) +

∫ t

0
h(v(τ ), B(τ ))dτ

]
, (43)

where β > g3 is a positive constant and

h(v, B) =
2β
R

m(v, B) − 2βg(v, B) − β

∫ d

0
v2
walldx

− β

∫ d

0

k1∆p + k2
∆

(
bv2

)
2

2

dx, (44)

is maximized by the control

vwall = −

k1∆p + k2
∆

(
bv2

)
2

 . (45)

Moreover, for arbitrary values of control vwall, solutions of system
(13)–(18) satisfy

h(v, B) ≤ l1m(v, B) + l2m2(v, B) + βq(v, B)

− l3

∫ d

0
v2
walldx − β

∫ d

0

k1∆p + k2
∆

(
bv2

)
2

2

dx, (46)

l1 = 2β
(
1
R

+ g1

)
, l2 = 2βg2, l3 = β − g3. (47)

Proof. By Lemma 1, we can write Eq. (44) as

h(v, B) = −2βĖ(v, B) − β

∫ d

0

k1∆p + k2
∆

(
bv2

)
2

2

dx

− 2β
∫ d

0
vwall

k1∆p + k2
∆

(
bv2

)
2

 dx − β

∫ d

0
v2
walldx

= −2βĖ(v, B) − β

∫ d

0

vwall +

k1∆p + k2
∆

(
bv2

)
2

2

dx,

(48)

and the cost functional can be written as

J(vwall) = lim
t→∞

2βE(v(t), B(t)) − 2β
∫ t

0
Ė(v(τ ), B(τ ))dτ

−β

∫ t

0

∫ d

0

vwall +

∆p +

∆

(
bv2

)
2

2

dxdτ



= 2βE(v(0), B(0))

− β lim
t→∞

∫ t

0

∫ d

0

vwall +

k1∆p + k2
∆

(
bv2

)
2

2

dxdτ .

(49)

The cost functional (43) is maximized when the last integral in
(49) is zero. Therefore the control (45) is optimal. In addition, by
Lemma 2 we can write

h(v, B) ≤
2β
R

m(v, B) + βq(v, B) − β

∫ d

0
v2
walldx

−β

∫ d

0

k1∆p + k2
∆

(
bv2

)
2

2

dx

+ 2β
(
g1m(v, B) + g2m2(v, B) + g3

∫ d

0
v2
walldx

)
≤ l1m(v, B) + l2m2(v, B) + βq(v, B)

− l3

∫ d

0
v2
walldx − β

∫ d

0

k1∆p + k2
∆

(
bv2

)
2

2

dx. �

The goal of the control law (45) is to increase the value of
m(v, B). It is clear from inequality (46),which gives anupper bound
on h(v, B) in terms of m(v, B), that this goal is targeted in the cost
functional (43). Inequality (46) implies that h(v, B) cannot bemade
large without making the mixing measure m(v, B) large, so the
cost functional (43) is meaningful with respect to our goal. Noting
that β > g3 implies that l3 is positive (which is not a design
choice because β is just an analysis constant in the cost functional,
whereas the gains k1 and k2 can have arbitrary positive values), we
observe that the control law (45) maximizes J(vwall), and therefore
h(v, B), and consequently mixing, with minimal control (vwall)

and sensing (∆p, ∆(bv2)) effort (the cost function (43) also puts
penalty on the control and sensing effort through h(v, B)). The only
term whose role in (46) is not obvious is q(v, B). This term is not
related tomixing in an obviousway but it is a perturbation variable
and, as such, its growth indicates a growth of instability, which
contributes to mixing.

The feedback (45) is independent of the parameters of the flow,
and thus robust to parameter uncertainties. It requires sensing (of
pressure and induced magnetic field) only at the boundary and is
decentralized.

6. Numerical method

A direct numerical simulation is performed based on the
full MHD equations, to allow the measurement of the induced
magnetic field at the boundary, as required by the control
law (45). Although past research exists on the simulation of
the MHD equations for compressible flows, results for unsteady
incompressible flows are scarce, due to inherent challenges. The
first difficulty is in the multiple time scales—while the momentum
equation has R � 1, the induction equation has Rm � 1.
Secondly, the MHD equations become stiffer as the magnetic
Reynolds number decreases. Based on the similar structures of
the Navier–Stokes and Magnetic Induction equations, our first
approach to the problem was to integrate the equations with
different integration steps on a staggered grid within a periodic
channel flow geometry using a hybrid Fourier pseudospectral—
finite difference discretization and the fractional step technique.
Taking advantage of the periodic boundary conditions in the
streamwise (x) direction, this direction is discretized using Fourier
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pseudospectral methods (Canuto, 1998), while the wall-normal
(y) direction is discretized using central finite differences on a
non-uniform staggered grid (Morinishi, Lund, Vasilyev, & Moin,
1998). The equations are integrated in time using a fractional
step method (Dukowicz & Dvinsky, 1992), designed to ensure the
fulfillment of the divergence-free conditions, based on a hybrid
Runge–Kutta/Crank–Nicolson time discretization (Bewley, 1999).
Nonlinear terms are integrated explicitly using a fourth-order,
low-storage Runge–Kutta method, while linear terms are treated
implicitly using the Crank–Nicolson method.

7. Simulation results

In this section, the laminarization property of the imposed
magnetic field and the effectiveness of the proposed control law
(45) for mixing enhancement are studied numerically on the flow
domain −1 < y < 1, 0 < x < 4π , with NX = 150 grid points
in the x direction and NY = 128 grid points in the y direction, and
with fixed flow-rateQ = 1.5. The tests follow a specific procedure:
first, a fully established hydrodynamic flow (no magnetic field)
is calculated; second, a magnetic field is imposed on the fully
established flow, which leads to another fully established MHD
flow with lower perturbation energy or even to a linearly stable
MHD flow; finally, boundary feedback is applied to the MHD flow
and an increase in the flow complexity is observed and confirmed
by the evolution of dye blobs in the flow.

7.1. Hydrodynamic channel flow

When Bo = 0, the momentum equation (11) reduces to the
well-known Navier–Stokes equation. The two-dimensional chan-
nel flow, also known as the Poiseuille flow, is frequently cited
as a paradigm for transition to turbulence, and has drawn exten-
sive attention through the history of fluid dynamics. This is a clas-
sical flow control problem that has been studied in Aamo and
Krstic (2002) and the references therein assuming the availability
of an array of pressure sensors on the walls and an array of MEMS
micro-jet actuators (also distributed along the walls) capable of
blowing/suction in thewall-normal direction. Incompressible con-
ventional flows in 2D channels can be stable for lowReynolds num-
bers, as infinitesimal perturbations in the flow field are damped
out. The flows turn linearly unstable for high Reynolds numbers
R > 5772 (Panton, 1996). Such flows usually reach statistically
steady states, which we call fully established flows. The full MHD
code is capable of simulating 2D pure hydrodynamic channel flows
by simply setting B0 = 0, which means that no magnetic field is
imposed. Simulation results are presented in Fig. 4 to show how
a channel flow (R = 7500) develops to a fully established flow.
The initial velocity profile is the parabolic equilibrium solution
of the Navier–Stokes equation, which is linearly unstable for this
Reynolds number. Fig. 4 shows how the vorticity map evolves in
time until reaching a fully established flow when the initial equi-
librium velocity profile is infinitesimally perturbed at t = 0.

7.2. Stabilization effect of the imposed magnetic field in MHD channel
flows

When Bo 6= 0, Fig. 3 shows that the equilibrium profile
is flattened in the center of the channel. In addition, Fig. 5(a)
shows the effect of the imposed transverse magnetic field on the
stability properties of the flow. Vorticity maps obtained through
direct numerical simulation studies show the stabilizing effect of
the imposed magnetic field on the 2D Hartmann flow at t =

140, 285, 374. The magnetic field is imposed at t = 0 with
the fully established flow (R = 7500) achieved in Fig. 4 for
the pure hydrodynamic channel (Section 7.1). Magnetic fields

Fig. 4. Vorticity maps for R = 7500 at t = 0, 1262, 1682, 4485, for a pure
hydrodynamic channel flow (Bo = 0).

of three different levels of strength (B0 = 0.1, 0.2, 0.3) are
imposed on the fully established flow at time t = 0. The
magnetic Reynolds number is Rm = 0.1 and the Stuart number
is N = 0.01 in all cases. Observing the vorticity maps, it is
interesting to note that weak magnetic fields (Ha < 3) have
significant stabilization effects on the fully established flows. Flows
with lower Reynolds numbers, with a stronger tendency towards
stability, are more easily stabilized by the magnetic fields. The
perturbation energy of the velocity field, E(v) =

1
2d

∫ 1
−1

∫ d
0 (u2

+

v2)dxdy, is used to quantify the level of stability/instability of the
flow. The time evolutions of perturbation energy are shown in
Fig. 5(b). In all cases, the perturbation energy is reduced by the
imposed magnetic field, and another fully established flow profile
with lower perturbation energy is reached.

7.3. Simulations of controlled MHD flow

The controller is started at t = 0with the fully establishedMHD
flow (R = 7500, Rm = 0.1, N = 0.01) shown in Fig. 5(a). The
gains of the control are the same for all cases (kv = 0.1, kb =

10,000). The time evolution of the vorticity map is shown for
B0 = 0.3 in Fig. 6(a). Fig. 6(b) shows the perturbation energy E(v)

and the control effort C(v) =
1
d

∫ d
0 v(x, −1, t)2 + v(x, 1, t)2dx,

for magnetic fields of different strength. The ratio between the
kinetic energy of the boundary control flow and the perturbation
kinetic energy, C(v)/E(v), is less than 1%, which suggests that
small control can result in considerable mixing effect. Fig. 7 shows
the evolution in time ofm(v, B), ourmixingmeasurement. In Fig. 7,
the magnetic field is imposed at t = 0 with the fully established
flow (R = 7500) achieved in Fig. 4 for the pure hydrodynamic
channel. The controller is started at around t = 6000 with the
fully established flow (R = 7500, Rm = 0.1, N = 0.01) achieved
in Fig. 5(a). We can observe once again the negative and positive
effect on mixing produced by the magnetic field and the boundary
control respectively. An intuitive representation of the control
mechanism in this case can be seen from the boundary zoom-in
(Fig. 8). The velocity vectors show that boundary control is pushing,
by blowing, the nearby vortex into the center of the flow.

The mixing governed by the stretching and folding of material
elements, as the one considered in this work, can be determined
by studying the movement of a passive tracer, or dye, in a
homogeneous fluid flow. The location of the dye as a function of
time completely describes the mixing. A particle tracking analysis
is carried out to further visualize the mixing effectiveness of the
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(a) Flow being stabilized by magnetic field (B0 = 0.3, t = 140, 285, 374). (b) Perturbation energy as function of time (B0 = 0.1, 0.2, 0.3).

Fig. 5. Uncontrolled flow at R = 7500, Rm = 0.1, N = 0.01.

(a) Flow being destabilized by boundary control (B0 = 0.3, t = 47, 140, 327). (b) Perturbation energy and control effort as functions of time (B0 = 0.3).

Fig. 6. Controlled flow at R = 7500, Rm = 0.1, N = 0.01.

Fig. 7. Evolution ofm(v, B) (R = 7500, Rm = 0.1, N = 0.01, B0 = 0.3).

control law. At t = 0 several blobs are distributed along the
centerline of the channel, concentrated on several circular regions,
as shown in Fig. 9(a). The 100,000 particles used in this simulation
study are assumed to exactly follow the fluid motion. Fig. 9(b)
shows the evolution in time of the dye blobs in the uncontrolled
case, whereas Fig. 9(c) shows the particle map evolution for the
controlled flow. In both cases, the tracking starts with the fully
established MHD flow (R = 7500, Rm = 0.1, N = 0.01, B0 =

0.3) shown in Fig. 5(a). The difference in complexity between the
uncontrolled and controlled cases is manifested.

Fig. 8. Controlled flow at R = 7500, Rm = 0.1, N = 0.01. Pressure and velocity
zoom at the boundary (B0 = 0.3).

8. Conclusions

Using the L2-norm of first-order spatial derivatives of the
velocity and magnetic field perturbations as a measure of mixing
(that incorporates stretching and folding of material elements),
a feedback law that maximizes this measure and minimizes the
control and sensing efforts was designed for a 2D Hartman flow.
The controller does not drive the states (or the control inputs)
unbounded but it does locally destabilize the system, leading
to bounded unsteadiness, and, indirectly, to enhanced mixing.
The controller effectiveness is demonstrated in a full MHD code,
showing flow patterns considerably more complex than in the
fully established uncontrolled flow, despite a small control effort,
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Fig. 9. (a) Initial particle distribution (t = 0), (b) Particle distribution for
uncontrolled flow (R = 7500, Rm = 0.1, N = 0.01, B0 = 0.3, t = 55), (c) Particle
distribution for controlled flow (R = 7500, Rm = 0.1, N = 0.01, B0 = 0.3,
t = 47, 140, 327).

compared to the reference flow velocity. Improved mixing is
confirmed with dye blob simulations in the flow. Considering
the plant dimension, it is remarkable that the control is a
static output feedback (i.e., proportional, decentralized), yielding
implementability in MEMS hardware (Balogh, Liu, & Krstic, 2001).
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Appendix A. Proof of Lemma 1

Integrating by parts the first integral in expression (20), and
recalling the boundary conditions (21)–(24), we have∫ 1

−1

∫ d

0

[
−Ū

1
2
(u2)x −

1
2
u(u2)x − uvŪ ′

−
1
2
v(u2)y

×
1
R
u

(
uxx + uyy

)
− upx

]
dxdy

= −

∫ 1

−1
Ū
1
2
u2

|
d
0 dy︸ ︷︷ ︸
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1
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∫ 1

−1
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u2uxdxdy

−
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0
Ū ′uvdxdy −
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0
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vu2

|
1
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+

∫ 1
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∫ d

0

1
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u2vydxdy

+
1
R
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−1
uux |

d
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−
1
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∫ 1
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∫ d

0
(ux)

2dxdy +
1
R
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0
uuy |

1
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=0

−
1
R

∫ 1

−1

∫ d

0
(uy)

2dxdy −

∫ 1

−1
up |

d
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+
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0
uxpdxdy

= −

∫ 1

−1

∫ d

0
Ū ′uvdxdy −

1
R

∫ 1

−1

∫ d

0
((ux)

2
+ (uy)

2)dxdy

+

∫ 1

−1

∫ d

0
uxpdxdy. (A.1)

Following identical approach we can rewrite the third integral in
(20) as

−
1
R

∫ 1

−1

∫ d

0
(v2

x + v2
y )dxdy +

∫ 1

−1

∫ d

0
vypdxdy −

∫ d

0
vwall∆pdx,

(A.2)

wherewe have taken into account that vy|y=±1 = ux+vy|y=±1 = 0
(u|y=±1 = 0 ⇒ ux|y=±1 = 0). Similarly, we can rewrite the fifth
integral in (20) as

−

∫ 1

−1

∫ d

0
b̄′vbudxdy −

1
Rm

∫ 1

−1

∫ d

0

[
(bux)

2
+ (buy)

2] dxdy, (A.3)

and the seventh integral in (20) as

−

∫ d

0

1
2
vwall∆

(
bv2

)
dx −

1
Rm

∫ 1

−1

∫ d

0

[
(bv

x )
2
+ (bv

y)
2] dxdy, (A.4)

wherewe have taken into account that bv
y |y=±1 = bux+bv

y |y=±1 = 0
(bu|y=±1 = 0 ⇒ bux |y=±1 = 0).

Adding the first, third, fifth, and seventh integrals in (20), and
taking into account (A.1)–(A.4) and (15) we obtain

−
1
R
m(v, B) −

∫ d

0
vwall

k1∆p + k2
∆

(
bv2

)
2

 dx

−k1

∫ 1

−1

∫ d

0
Ū ′uvdxdy − k2

∫ 1

−1

∫ d

0
b̄′buvdxdy.

Adding the second, fourth, sixth, and eighth integrals in (20) we
obtain (29)–(40). Consequently, we can write the time derivative
of E(v, B) as (25). �

Appendix B. Proof of Lemma 2

Following Balogh et al. (2001), we can write

v(x, y, t) = v(x, 1, t) −

∫ 1

y
vy(x, y, t)dy

= vwall(x, t) −

∫ 1

y
vy(x, y, t)dy, (B.1)

and therefore

v2(x, y, t) ≤ (1 + 2b)v2
wall +

(
1 +

2
b

) (∫ 1

y
vydy

)2

, (B.2)

where we use Young’s inequality (b > 0) to write

vwall

∫ 1

y
vydy ≤ bv2
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1
b

(∫ 1

y
vydy

)2

.

By Schwartz inequality we can write(∫ 1

y
vydy

)2

=
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y
1vydy
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y
12dy
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y
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−1
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and conclude that∫ 1
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Similar derivations for u, bv , and bu provide∫ 1
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Considering that, given w(x, y),∫ 1
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With these preliminary results, and by applying Young’s
inequality, we can now find bounds for each one of the terms (27)–
(40) of g(v, B) to obtain
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Defining g1 = max(h1, h2, h3, h4, h5, h6, h7), g2 = 6max(h8,
h9, h10, h11, h12, h13), g3 = h14, g4 = h15, g5 = h16, we finally
arrive at the inequality in Lemma 2. �
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