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ABSTRACT: In this work, we propose the incremental proper orthogonal decomposition (POD) method and the recursive
Galerkin projection to achieve model order reduction (MOR) for high-dimensional dynamical systems arising in the processes
of heat transfer for green buildings. For MOR of high-dimensional dynamical systems, we use a batch of historic data to initially
extract a sequence of POD modes and derive a low-dimensional system to approximate the high-dimensional heat transfer
system. Then, we check the prediction error at every subsequent sampling moment by using the obtained POD modes. If the
approximation error is larger than the pre-given threshold value, we then add the new snapshot into the collected sampling
ensemble. Instead of recalculating the POD-oriented eigenvalue decomposition problem at each ensemble augmentation
(which is time-consuming), the incremental POD method applies the updated singular value decomposition approach to increase
the number of POD modes and adjust the shape of POD modes, and also change corresponding POD eigenvalues through a
matrix rotation transformation. © 2012 Curtin University of Technology and John Wiley & Sons, Ltd.
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INTRODUCTION

Today, with 80–90% of total worldwide energy
consumption being derived from the combustion of
fossil fuels,* the world is facing myriad global threats to
our unique ecosystem, such as climate changes (e.g.
because of carbon dioxide emissions) and environmental
pollution. In the long term, an energy shortfall might
become another worldwide issue within the next 50 years
or so if no effort is taken to change the current energy
consumption rate of fossil fuels.† The improvement of
energy efficiency, especially developing the state-of-art
of smart buildings, is a critical research tendency for
researchers in different areas. More specifically, how to
simulate heat transfer processes and improve the utility
efficiency in buildings are quite important. It is well
known that dynamics of the indoor climate is quite

complicated, including heat transfer, air flow dynamics
and moisture distribution, which can only be described
by partial differential equations (PDEs).[1] The discretiza-
tion of PDEs using various numerical methods (e.g.[2,3])
usually results in large sets of ordinary differential equa-
tions (ODEs). However, these high-dimensional dynami-
cal models derived from the spatial, and eventually
temporal, discretization procedures are often inappropriate
for control synthesis because they are computationally
costly in solving controller synthesis-related equations
(e.g. Riccati equation, Lyapunov equation, etc.). One
may think to tackle the high-dimensionality challenge
by using coarse meshes for the domain discretization.
However, lower-order models obtained by using coarse
meshes may not be accurate enough to capture the
essential dynamics. Therefore, model order reduction
(MOR) using observational/simulation data becomes an
alternative procedure to provide reduced-order models
for controller synthesis. This is a typical data-driven
model-reduction approach using both physical structures
and observational data.
There are several MOR approaches, including the

balanced truncationmethod, the Krylow subspacemethod
and the proper orthogonal decomposition (POD) method.
The balanced truncation is an important tool originated in
the control systems community.[4] When this method is
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used to derive reduced-order models for high-dimensional
systems, Lyapunov equations with the same order of
the original systems must be solved numerically. This is
a computational challenge, and it finally led to the birth
of the balanced POD method, which combines both the
POD and the balanced truncation method but without
solving high-dimensional Lyapunov equations.[5,6] The
Krylov subspace method has been used widely in fast
simulations of large-scale linear systems (e.g. discretized
PDEs, large-scale integrated circuits, etc.). For a detailed
introduction of both the balanced truncation method
and the Krylov subspace method for MOR, the reader is
referred to introductory books (e.g.[7,8]).
The PODmethod is also known as the principal compo-

nent analysis or the Karhunen–Loeve decomposition. The
original concept of the PODmethod goes back to Pearson’s
work published in 1833.[9] The POD method has been
widely used in understanding complex behaviors produced
by many high-dimensional dynamical systems, such as
fluid flows,[10–12] heat flow,[13,14] nature convection,[15]

fusion plasmas,[16] microelectromechanical systems
(MEMS),[17] aero-elasticity,[18] model predictive control
(MPC),[19] missing point estimation (MPE),[20] and so
on. However, most work concerning POD focuses on
what is called the batch POD method, where modes are
extracted from given historic observations without
having the capability to incorporate new observations
when they become available. A new method, called
incremental eigenanalysis (e.g.[21]), has been proposed
to enable dimension increase, and mode deformations if
necessary, when new observations are available. This
method has been applied successfully to the multi-media
research areas, such as, pattern recognition (e.g.[22]) and
visual tracking (e.g.[23]).
In addition to adaptive MOR techniques, an obvious

increase of research can be observed from very recent
literature. Motivated by the increasing interests in cyber-
physical systems, a novel incremental POD (iPOD)
method has been proposed in the work of Xu et al.[24]

using the operator perturbation theory. In the work of
Singer and Green[25] to solve the reaction–diffusion
equation, adaptive POD projections are constructed from
snapshots in different regions of the computational
domain due to varying reaction activities. In the work of
Varshney et al.[26], and Pitchaiah andArmaou[27] adaptive
MOR approaches have been used to tackle control and
optimization problems of distributed parameter systems
arising in chemical engineering. More recent work in
terms of adaptive MOR approaches and applications
include polycrystalline materials design using statistical
learning based POD,[28] particle image velocimetry
data reconstruction using adaptive gappy POD,[29] and
high-dimensional nonlinear mechanical systems,[30]

aeronautic design using adaptive POD/singular value
decomposition surrogate model.[31]

The main contribution of this paper is to construct a
modified iPOD method for MOR of high-dimensional

dynamical systems using the updated singular value
decomposition method. A detailed computational
complexity is analyzed for the proposal approach, which
demonstrates a computational improvement than the
standard batch POD method. Without using the mean
value of the observations in this work, the proposed iPOD
problem has a simpler form than that in the work of Hall
and Martin,[21] and it can be extended to multi-snapshot-
based iPOD schemes (i.e. rank q(q> 1) iPOD). Because
of this new definition, the proposed approach in this paper
is straightforward to construct updates for POD modes.
The proposed iPOD method is much more technically
accessible than introducing more advanced techniques,
such as statistical learning,[28] gappy POD[29] tools and
so on. To match the iPOD method, an incremental
Galerkin projection scheme is developed. This scheme
computes system projection matrices recursively based
on the existing matrices obtained in the previous mode
extraction step. A detailed analysis of the computational
complexity is carried out to illustrate the computational
efficiency of the iPOD-based MOR approach.
The paper is organized as follows. In Proper

Orthogonal Decomposition section, the mathematical
derivations of the POD method and the snapshots
method are summarized. In Rank-1 Incremental
section, the formulation and numerical schemes of the
iPOD method are discussed. In Model Order Reduction
section, an incremental Galerkin projection method for
MOR is proposed. In Arithmetic Complexity Analysis
section, the computational complexity of the iPOD
method is studied. In Numerical Example section,
numerical simulations that validate the effectiveness
of the proposed method are provided. The paper is
closed by stating conclusions and future research topics
in Conclusions section.

PROPER ORTHOGONAL DECOMPOSITION

We have N training samples (snapshots) xi 2
Rn i ¼ 1; 2; . . . ;Nð Þ , and we use Y ¼ x1; . . . ; xNð Þ 2
Rn�N to denote the observations (snapshot matrix).
Usually, n (the number of spatial discretization nodes)
is much larger than N (the number of samples at
different time instants). We introduce the covariance
matrix of Y,

C ¼ 1
N

XN
i¼1

xixTi (1)

The POD problem can be stated as the search of
a sequence of orthogonal basis functions

fkf gpk¼1 p≤N;fT
i fj ¼ dij

� �
to represent each snapshot

in the observation set Y, i.e.
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xi � ~xi ¼
Xp
k¼1

Xikfk; 8xi 2 Y ; i ¼ 1; 2; . . . ;N (2)

where the coefficient Xik can be determined byXik ¼ fT
k xi.

Then, the basis functions can be determined by the
following approximation-error minimization problem:

min
f1;...;fp

1
N

XN
i¼1

xi �
Xp
k¼1

Xikfk

�����
�����
2

2

subject to : fT
kfl ¼ dkl ¼ 1; if k ¼ l;

0; otherwise

�
(3)

where the constraint implies the orthonormality property
of the basis vectors.

Lemma 1 [32] Given the observation data set Y ¼
x1; . . . ; xNð Þ 2 Rn�N with rank d≤min{n,N}, then the
optimal solution to the minimization problem in Eqn (3)
is given by the first p(p≤ n) eigenvectors of the following
eigenvalue decomposition problem:

1
N
YYTfl ¼ llfl; l ¼ 1; . . . ; n (4)

The approximation error can be bounded by

e2 pð Þ ¼ min
f1;...;fp

1
N

XN
i¼1

xi �
Xp
k¼1

Xikfk

�����
�����
2

2

≤
Xn
k¼pþ1

lk (5)

Remark 1 (Method of snapshots[33]) If n≫N, then it is
impractical to solve the eigenvalue decomposition
problem in Eqn (4). However, one can solve the follow-
ing symmetric eigenvalue decomposition 1

N Y
TYcl ¼

llcl; l ¼ 1; . . . ; n . The POD modes are given by
fl¼ 1ffiffiffi

ll
p Ycl; l ¼ 1; 2; . . . ; p.

RANK-1 IPOD

Given a new observation x 2 Rn, we can use the eigen-
space model Φ= (f1, . . .,fp) to give an approximation
x � ~x ¼

Xp

i¼1gifi; gi ¼ fT
i x , where the approxima-

tion error is given by

h ¼ x# �~x# ¼ x# �Φg; g ¼ g1; . . . ; gp
� �T

(6)

If the error norm ‖h‖ is large, then the observation x# is
not well represented by eigenspace model (f1, . . .,fp).
We need to include this new observation x# and update
the eigenspace model.

Remark 2 Shift-window PODThe most straightforward
way to achieve this is by adding the latest sample to
the end of the snapshot ensemble and dropping the
sample at the beginning to retain a fixed length window.
Then, the POD problem is solved again for the new data
ensemble to update both the eigenvalues and eigenvec-
tors. The shift-window POD process would neglect
important formation carried by the data segments in
the window removed. However, those features may
appear after certain period. Thus, we need to explore
the iPOD method.
It is not computationally efficient to carry out repeat-

edly POD computations at each ensemble update. We
present an iPOD method in this section. We consider the
eigenvalue decomposition of the updated observation set
Y
0  Y ; xð Þ 2 Rn� Nþ1ð Þ . First, the covariance matrix

becomes

C
0 ¼ N

N þ 1
C þ 1

N þ 1
x#x#T (7)

Remark 3 With the use of the residues xi��x0
i ¼ 1; 2; . . . ;N þ 1ð Þ , where �x

0
≜ 1

Nþ1 Nx� þ x#ð Þ , to
replace the snapshots in Eqn (7), we have

~C
0
¼ 1

N þ 1

�XN
i¼1

xi ��x0ð Þ xi ��x0ð ÞT

þ x# � �x
0� �

x# � �x
0

� �T
Þ noting xNþ1 ¼ x#ð Þ

¼ N

N þ 1
~C þ N

N þ 1ð Þ2 x# � �xð Þ x# � �xð ÞT
(8)

where ~C≜ 1
N

XN

i¼1 xi � x�ð Þ xi � x�ð ÞT and the cross

terms involving
XN

i¼1 xi � xð Þ x� x#ð ÞT and its trans-

pose are zero. We note that the recursive form of Eqn
(8) has the same structure of Eqn (7) where the average
value is not used in computing the covariance matrix.

Remark 4 Given a data sequence xi(i=1, 2, . . .,N) and
the newly collected data sequence x#,j(j=1, 2, . . .,ΔN),
where the integer ΔN> 1, we derive the covariance
matrix using the following definition:

~C
0
≜

1
N þ ΔN

XNþΔN
i¼1

xi � x�
0

� �
xi � x�

0
� �T

¼ 1
N þ ΔN

XN
i¼1

xi � �x
0

� �
xi � �x

0
� �T

þ 1
N þ ΔN

XΔN
j¼1

x#; j � �x
0

� �
x#; j � �x

0
� �T

(9)
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Noting that�x
0 ¼ 1

NþΔN N�xþ
XΔN

k¼1x#;k

� �
, thenwehave

~C
0
¼ 1

N þ ΔN

XN
i¼1

xi � �xð Þ xi � �xð ÞT þ N

N þ ΔNð Þ3

� ΔN�x�
XΔN
k¼1

x#; j

 !
ΔN�x�

XΔN
k¼1

x#; j

 !T

þ 1
N þ ΔN

XΔN
j¼1

x#;j � N�x
N þ ΔN

�
XΔN

k¼1x#;k

N þ ΔN

0
@

1
A

� x#;j � N�x
N þ ΔN

�
XΔN

k¼1x#;k

N þ ΔN

0
@

1
A

T

(10)

where we have noted that the terms involving the factor

XN
i¼1

xi � �xð Þ ΔN�x�
XΔN
k¼1

x#;k

 !T

and its transpose are zero. We note that the recursive form
in Eqn (10) cannot be formulated as the one in Eqn (7).
However, with the use of the definition in Eqn (1)
proposed in this paper, the recursive form corresponding
to Eqn (7) for block update (ΔN> 1) becomes

C
0 ¼ N

N þ ΔN
C þ 1

N þ ΔN

XΔN
j¼1

x#;jxT#;j (11)

It is much neater than the recursive form in Eqn (10)
and still retain the same structure of Eqn (7) if we intro-
duce a new update black matrixX ¼ x#;1; . . . ; x#;ΔN

� �T
.

The normalized residue vector ĥ is a candidate to
expand the original eigenspace generated from the
observation set Y 2 Rn�N :

ĥ ¼
h
hk k2

; if hk k2 > �;

0; otherwise

8<
: (12)

where � is a small threshold value. A rotation matrix R
is used to change the subspace ðf1; . . . ;fp; ĥÞ into a
solution of the eigenvalue decomposition problem of
C 0 based on the new observation set Y0:

C
0

Φ; ĥ
� �

R
	 
 ¼ Φ; ĥ

� �
R

	 

Λ
0

(13)

We note that this is an n� n eigenvalue decomposition

problem, andwe canmultiply Φ; ĥ
� �T

from the left to obtain

Φ; ĥ
� �T

C
0
Φ; ĥ
� �

R ¼ RΛ
0
, which is another eigenvalue

decomposition problem, but it is (p+1)-dimensional. By
noting the expression of C0 in Eqn (7), we have

Φ; ĥ
� �T N

N þ 1
C þ 1

N þ 1
x#x#T

� �
Φ; ĥ
� �

R ¼ RΛ
0

(14)
We define

Φ; ĥ
� �T

C Φ; ĥ
� � ¼ ΦTCΦ ΦTC ĥ

ĥ
T
CΦ ĥ

T
C ĥ


 �
� Λ 0

0 0


 �

Φ; ĥ
� �T

xxT Φ; ĥ
� � ¼ ΦTxxTΦ ΦxxT ĥ

ĥ
T
xxTΦ ĥ

T
xxT ĥ

 !

¼ ggT gg
ggT g2


 �
; g≜ĥ

T
x

to rewrite Eqn (14) as the following eigenvalue problem:

N

N þ 1
Λ 0
0 0


 �
þ 1
N þ 1

ggT gg
ggT g2


 �� �
R ¼ RΛ

0

(15)

Remark 5 When N!1, the incremental eigenvalue
decomposition problem in Eqn (15) becomes conver-
gent, and the newly added part can be considered as a
small perturbation. Instead of introducing the error vector
ĥ (i.e. ĥ ¼ 0) to form the new subspace Φ; ĥ

� �
, a nonsin-

gular rotation operation of the PODmodesΦ, i.e.Φ~R can
give an alternative solution. The rotation transformation
matrix ~R can be provided by the eigenvalue problem of
the matrix N

Nþ1Λþ 1
Nþ1 gg

T , which is a degenerate case
of Eqn (15). Then the matrix perturbation theory[24] can
be used to provide a fast (approximate) update.

MODEL ORDER REDUCTION

Let us assume that a high-dimensional linear time-
invariant dynamical model

dX tð Þ
dt
¼ AX tð Þ þ BU tð Þ; Y tð Þ ¼ CX tð Þ (16)

is obtained by discretizing linearized PDEs spatially (such
as the heat conduction process) using standard numerical
methods over a physical domain, where X 2 Rn;U 2
Rm;Y 2 Rr and the initial conditions are stated as X
(t0) =X0. A, B and C are system matrices obtained from
a standard spatial discretization procedure, and X 2 Rn

is the state vector representing the values at the discrete
nodes. Usually, the number of discrete nodes (state
dimension) is much larger than the number of sensors,
i.e. n≫ r. This is a general case while using various stan-
dard numerical methods [such as, finite difference
method, finite element method (FEM), etc.] on distributed
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parameter systems to obtain discrete lumped parameter
systems. For PDEs, it is technically equivalent of both
the PDE-discretize-POD and the PDE-POD frameworks.
Thus, starting from high-dimensional ODEs derived from
PDEs using standard numerical methods in commercial
software is more practical and requires less mathematics
knowledge of numerical methods but just matrix
operations.
We generalize the snapshot expansion in Eqn (2) to a

time continuous case x tð Þ � ~x tð Þ ¼
Xp

k¼1Xk tð Þfp .
The reduced-order model is

dX tð Þ
dt
¼ AX tð Þ þ BU tð Þ; Y tð Þ ¼ CX tð Þ (17)

where X ¼ X1 tð Þ; . . . ;Xp tð Þ� �T 2 Rp;U ¼ U 2 Rm;
Y2 Rr and A ¼ ΦTAΦ , B ¼ ΦTB and C ¼ CΦ .
Now, we consider the transformation with Φ

0 ¼
Φ; ĥ
	 


R, then

A0 ¼ RT Φ
ĥ


 �
A Φ ĥ
� �

R

¼ RT ΦTAΦ ΦTAĥ
ĥ
T
AΦ ĥ

T
Aĥ


 �
R

¼ RT A ΦTAĥ
ĥ
T
AΦ ĥ

T
Aĥ


 �
R

(18)

B0 ¼ RT ΦT

ĥ
T


 �
B ¼ RT ΦTB

ĥ
T
B


 �
¼ RT B

ĥ
T
B


 �
(19)

C0 ¼ C Φ ĥ
� �

R ¼ CΦ C ĥ
� �

R
¼ C C ĥ
� �

R (20)

We summarize different POD–MOR procedures as
the following algorithms:

Algorithm 1: Shift-window POD–MOR
1. New observation x# is available, and compute the

approximation error h on the basis of Eqn (6);
2. If ‖h‖>�, the snapshot matrix Y= (x1, . . ., xN)

becomes Y0 = (x2, . . .,xN,x#) with the new covariance
matrix denoted by C0 =Var{Y0};

3. We solve the Nth-order eigenvalue problem
C 0Q=QΛ, where Q= (q1, . . ., qN) and Λ= diag
(l1, . . ., lN);

4. Extract the first q columns q1, . . .,qq (according to
l1≥ . . .≥lq) to form Φ

0 ¼ ð 1l1 Y
0
q1; . . . ;

1ffiffiffiffi
lq
p Y

0
qqÞ

andΛ0 =diag(l1, . . ., lq). The truncation order q is cho-

sen as q ¼ minfq0 j
Xq

0

k¼1lkXN

k¼1lk
≥1� eÞ;

5. Compute the matrix transformations

A0 ¼ Φ
0� �T

AΦ
0
; B0 ¼ Φ

0� �T
B; C0 ¼ CΦ

0 (21)

Algorithm 2: iPOD–MOR
1. New observation x# is available, and compute the

approximation error h on the basis of Eqn (6);
2. If ‖h‖>�, the snapshot matrix Y= (x1, . . ., xN)

becomes Y0 = (x1, x2, . . ., xN, x#) with the covariance
matrix C0 determined by Eqn (7);

3. We solve the (p+ 1)-order eigenvalue problem in
Eqn (15);

4. Compute the matrix transformations on the basis of
Eqns (18)–(20) or A0 ¼ ΦTAΦ

0
, B0 ¼ Φ

0� �T
B and

C0 ¼ CΦ
0
:

ARITHMETIC COMPLEXITY ANALYSIS

Now, we study the arithmetic complexity of both the
shift-window POD–MOR and the iPOD–MOR
approaches.We have to compare the arithmetic flops from
two aspects: (i) the flops in computing the transformed
matrices; (ii) the flops in computing the POD modes.

Lemma 2 Matrixmultiplication flopsGiven twomatrices
M1 2 Rd1�d2 andM2 2 Rd2�d3 , then the complexity of
the matrix multiplicationM1M2 is 2d1d2d3 flops (a flop
is a floating point operation[34]).
We first give the algorithm for the matrix multiplication
M1M2:
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For the most deeply nested statement of this algorithm,

M i; jð Þ ¼ M1 i; kð ÞM2 k; jð Þ þM i; jð Þ
there are two flops involved in the operation. In addition,
the statement is executed d1d2d3 times. Therefore,
the matrix multiplication M1M2 requires 2d1d2d3
flops, which is denoted by F Mð Þ ¼ F M1 �M2ð Þ ¼
2d1d2d3, where ‘*’ is used to denote the operation whose
computational-complexity flops are to be counted.
We multiply matrices from left to right. For example,

when we compute ĥ
T
AΦ, we first calculateAΦ and later

ĥ
T
AΦð Þ. Now, we estimate the computational complex-

ity in calculating Eqns (18)–(20). On the basis of Lemma
2, we know that the computational-complexity
flops of AΦ are 2n� n� p, i.e. F(A *Φ) = 2pn2, where
A 2 Rn� and Φ 2 Rn�p . Similarly, the computational-
complexity flops of Aĥ are F A � ĥ� � ¼ 2n2. Thus, we
can obtain the complexity of computing Eqn (18) as

FðA0 18ð Þ
�� � ¼ F A �Φð Þ þF A � ĥ� �

þF ĥ
T � AΦð Þ

h i
þF ĥ

T � Aĥ
� �h i

þF ΦT � Aĥ
� �	 
þF A ΦTAĥ

ĥ
T
AΦ ĥ

T
Aĥ


 �
� R

� �

þF RT � A ΦTAĥ
ĥ
T
AΦ ĥ

T
Aĥ


 �� �� �

¼2n2pþ 2n2 þ 2npþ 2nþ 2pnþ 2 pþ 1ð Þ3
þ2 pþ 1ð Þ3

¼ 2 pþ 1ð Þn2 þ 2 2pþ 1ð Þnþ 4 pþ 1ð Þ3 (22)

Similarly, we have

FðB0 19ð Þ
�� � ¼ F ĥ

T � B
� �

þF RT � B
ĥ
T
B


 �� �
¼ 2nmþ 2 pþ 1ð Þ2m (23)

and

FðC0 20ð Þ
�� � ¼ F C � ĥ� �þF C C ĥ

� � � R	 

¼ 2rnþ 2r pþ 1ð Þ2 (24)

Therefore, we have the order of the complexity:

F A0 18ð Þ
�� �þF B 19ð Þ

�� �þF C0 20ð Þ
� �

� O n2
� ���

(25)

We can compare the complexity of Eqns (18)–(20)
with that of Eqn (21)

FðA0 21ð Þ
�� � ¼ F A �Φ0

� �
þF Φ

0
� �T

� AΦ
0

� �� �
¼ 2 pþ 1ð Þn2 þ 2 pþ 1ð Þ2n (26)

F B0 21ð Þ
�� � ¼ F Φ

0
� �T

� B

 �

¼ 2 pþ 1ð Þnr



(27)

F C0 21ð Þ
�� � ¼ F C �Φ0

� �
¼ 2rn pþ 1ð Þ

�
(28)

and

F A 21ð Þ
�� �þF B0 21ð Þ

�� �þF A 21ð Þ
�� � � O n2

� ����
(29)

Therefore, we can see that the recursive transforma-
tions in Eqns (18)–(20) can reduce computational
complexity.
Let us now focus on the computation of the POD

modes. Given a matrix M2 Rn�n , the eigenvalue
problem is Mv ¼ lv . There are various methods (e.g.
Chapters 7 and 8 in the work of Golub and Loan[34] that
numerically provide the eigenvalue pair (li, vi), i=1, 2,
. . ., n. The computational complexity of the Matlab func-
tion eig is O(n3). Thus, we can note that the eigenvalue
decomposition in Eqn (15) of the incremental method
has much lower computational complexity (O((p+1)3))
than the eigenvalue decomposition in Eqn (4) of the
shift-window method (O(N3)).

Figure 1. Schematic of a container with a heat source and
two thermostats. This figure is available in colour online at
www.apjChemEng.com.
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Figure 2. Outside temperature evolution. This figure is
available in colour online at www.apjChemEng.com.
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NUMERICAL EXAMPLE

As shown in Model Order Reduction section, we do not
follow a classical integral-type Galerkin approach to
derive finite-dimensional models from the projections
of the PDEs onto chosen subspaces. We take advantage
of the availability of high-dimensional discrete numerical
models used for simulations and the generation of data
employed for POD mode extraction. As shown earlier,
we can obtain low-dimensional models by implementing
matrix transformations directly on the discrete numerical
models. The projection matrices carry the subspace
information extracted from the simulation data. The
computation of the integrals in the Galerkin projection
has been embedded in various commercial software
packages for the derivation of the simulation-oriented
highly dimensional discrete models. Instead of obtaining
the discrete model directly from weak form integrals, the
combination of computational software andMORmatrix
operations can save much computational burden for
control engineers while dealing with complex physical
systems.
This idea motivates one to create a general MOR

package to connect with various PDE numerical codes
(e.g. Matlab, Fluent, COMSOL Multiphysics, etc.). For
the development of such a package, it is necessary to
know how the various numerical codes save the discrete

Figure 4. Simulation of the ordinary differential equations extracted from COMSOL
Multiphysics using FEM. The red-shaded finite element method (FEM)-based COMSOL
Multiphysics Subsystem block is exported using the COMSOL Multiphysics Simulink
Model Export, whereas the green-shaded FEM-based State-space block is extracted by
the COMSOL Multiphysics State-Space Model Export. This figure is available in colour
online at www.apjChemEng.com.

Figure 3. Simulation snapshot at T=2400 s generated by
COMSOL Multiphysics. The surface at the top is the
three-dimensional plot of the temperature field while the
figure at the bottom is the temperature contours within
the physical domain. This figure is available in colour
online at www.apjChemEng.com.
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models after implementing the spatial domain decompo-
sition/discretization. In this work, we choose the power-
ful COMSOL Multiphysics numerical software to
connect with our POD–MOR algorithms.
We consider a two-dimensional heat transfer problem

in a container with a glass gate on the left side (as shown
in Fig. 1). Only heat conduction takes place. Air flows
and ventilation are not considered. Then, we can use
the heat equation to model the system dynamics, i.e.

rC
@T

@t
�r� krTð Þ ¼ Q (30)

The boundary conditions depend on the level of
insulation around the system. On well-insulated sides,
the heat flux is zero, which gives the Neumann boundary
condition n � (kr T) = 0. On poorly insulated sides,
the Neumann condition is modified as n� krTð Þ ¼
kg
lg

Tout � Tð Þ, where kg and lg are the thermal conductivity

and the thickness of the glass sheet that separates the
container and the exterior. We use the same parameters
defined in the Model Library of COMSOL Multiphysics
3.5 (pages 348–359 of[35]). We assume that the heat
source is kept open, but the outside temperature is time-
varying. We consider an outside temperature evolution,
shown in Fig. 2, of the following form

Tout tð Þ ¼
15; t 2 0; 500½ �;
15þ 5sin

p
60

t
� �

; t 2 500; 1000½ �;
15þ 5sin

p
60

t
� �

þ 5sin
p
30

t
� �

; t≥1000

8>><
>>:

Using the FEM implemented by the numerical soft-
ware package COMSOL Multiphysics, we can gener-
ate the temporal-spatial evolution of this process. The
snapshot at t= 2400 s is shown in Fig. 3. The high-
dimensional FEM-based state space representation in
Eqn (16) can be exported from COMSOL Multiphysics.
Figure 4 compares the FEM-based model and the state
space model. The FEM-based COMSOL Multiphysics
Subsystem block is extracted using ‘COMSOL Multi-
physics Simulink Model Export’. The FEM-based
State-Space block is made up of the matrices A, B and
C, which are obtained by using ‘COMSOLMultiphysics
State-Space Export’.
For the POD mode extraction, we first use the historic

sparse data generated from the numerical simulation over
the time interval [0,500 s], which is evenly spaced in time
of the total simulation time range [0,2400 s]. The first
POD mode carries a dominant portion (greater than 90%
according to the error estimate criterion in Eqn (5)) of the
information in the generated simulation data. It is not
surprising to have only one mode to carry a dominant
portion of energy because dynamics over [0,500 s] of this
simulation is comparably simple. For further prediction
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Figure 5. Temperature measured at the left thermostat. This
figure is available in colour online at www.apjChemEng.com.
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Figure 6. Temperaturemeasured at the right thermostat. This
figure is available in colour online at www.apjChemEng.com.
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Figure 7. Temperature measured at the left thermostat. This
figure is available in colour online atwww.apjChemEng.com.
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with a more complex dynamics, only one mode
cannot do a good job. We either need more modes or
deform the mode to incorporate new features. Then, this
mode is used to generate a one-dimensional model to
approximate the heat conduction process. However, the
error between the dynamics of both the original high-
dimensional model and the reduced one-dimensional
model, which is shown in Figs 5 and 6 for both thermo-
stat temperatures, is larger than what is desired.

Because of the unsatisfactory approximation
accuracy (shown in Figs 5 and 6), we need to use new
simulation data to update the PODmodes in an incremen-
tal way. By setting an appropriate error threshold value �,
the proposed iPOD scheme can pick the poorest approxi-
mated snapshots to supplement the snapshot ensemble
collected over the time interval [0, 500 s] evenly spaced
in time of total simulation time range [0, 2400 s]. Two
poorly approximated snapshots are chosen on the basis
of the criterion in Eqn (12) and added one after another.
In each update of the ensemble, an eigenvalue decompo-
sition problem is solved to provide a rotation matrix trans-
formation. After two subsequent iPOD computation
procedures, the approximation accuracy is improved,
and the output signals at the two measurement points are
shown in Figs 7 and 8. The differences between the pre-
dictions by the FEM-based high-dimensional model and
the iPOD-based low-dimensional model for the tempera-
tures at the two measurement points are reduced to accep-
table levels, which are much smaller than those in Figs 5
and 6. This shows the effectiveness of the MOR approach
proposed in this paper. The comparisons (Figs 5 and 6 and
Figs 7 and 8) are carried out using the Matlab/Simulink
block diagram shown in Fig. 9 where the POD/MOR
State-Space block and the iPOD/MOR State-Space block
represent low-dimensional models obtained by the classic
POD method and the iPOD method, respectively. In the
sense of extraction accuracy of POD modes, the incre-
mental approach converges to the batch POD one, as
mentioned in Remark 5. However, the incremental
approach can improve the computational efficiency, espe-
cially for a large data size.

Figure 9. Simulation comparisons of reduced-order models using both the classic proper
orthogonal decomposition (POD) method and the incremental POD method. This figure
is available in colour online at www.apjChemEng.com.
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Figure 8. Temperature measured at the right thermostat.
This figure is available in colour online at www.apjChem-
Eng.com.
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CONCLUSIONS

An iPOD method is proposed in this paper to provide
online POD mode subspace updates when new obser-
vation or simulation data become available. Instead of
using the weak form of the PDEs, which requires
spatial integrations over the whole physical domain, we
use high-dimensional ODE models generated by simula-
tion software through spatial discretization. Matrix trans-
formations are used to obtain low-dimensional models.
We propose a recursive matrix transformation computa-
tion method that can save significant computational effort.
We provide a detailed computational analysis in this paper
for the calculation of both the POD modes and the matrix
transformations. A numerical simulation study based on a
two-dimensional heat conduction process in a container
has been used to illustrate the effectiveness of the pro-
posed method. For the future work, we would like to
extend this method to more complex cases including
coupled linear PDEs for the heating, ventilation and air
conditioning toward energy buildings.
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