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Abstract— Extensive studies have shown that the toroidal
current density profile, which is closely related to the poloidal
magnetic flux profile, is a key factor to achieving advanced
tokamak operating scenarios characterized by improved con-
finement and possible steady-state operation. In this work, a
first-principles-driven, control-oriented model of the poloidal
magnetic flux profile evolution is used to design a feedback
controller via model predictive control (MPC). The aim of
the feedback controller is to track a desired profile for the
gradient of the poloidal magnetic flux by solving an optimal
control problem in the presence of disturbances, non-modeled
dynamics, and arbitrary initial conditions. The simulation
results illustrate the capability of the proposed controller in
dealing with perturbed initial conditions and disturbances.

I. INTRODUCTION

Nuclear fusion is the process by which two light nuclei
fuse together to form one heavier nucleus. There is a mass
fraction ∆m that is converted into energy according to the
mass-energy equivalence ∆E = ∆mc2, where c is the speed
of light in vacuum. In order for the fusion reaction to occur
frequently enough, the nuclei must be heated to temperatures
of about one hundred million degrees. At these temperatures,
the reactants are in the plasma state and have enough kinetic
energy to overcome the repelling electrostatic forces and
to fuse. One of the most promising approaches to nuclear
fusion is magnetic confinement, where magnetic fields are
used to confine the plasma. A common solution is to close
the magnetic field lines in on themselves, forming a torus as
shown in Fig. 1. When the magnetic field is configured such
that the field lines follow a helical path through the torus,
i.e. they curve around in the poloidal direction (Bθ) as well
as in the toroidal direction (Bφ), the confinement device is
called a tokamak. Following any magnetic field line a number
of times around the torus a closed flux tube is mapped, a so
called magnetic-flux surface, which marks points of constant
poloidal magnetic flux, Ψ [1].

Extensive research has been conducted to find high per-
formance operating scenarios that are characterized by high
fusion gain, good plasma confinement, plasma stability, and
noninductively driven plasma current [2] with the goal of
developing candidate scenarios for ITER [3], the next gener-
ation burning-plasma tokamak currently under construction.
A key property that is related to both the stability and
performance of the plasma is the magnetic poloidal flux
profile (Ψ-profile), as well as its gradient and the inverse
of its gradient. The design of control algorithms for the
regulation of these profiles has recently attracted a great deal
of attention [4]–[15]. Control approaches applied in this field
are classified according to the use of a model. Non-model-
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Fig. 1. Section view of the magnetic flux surfaces in a tokamak. The
helical magnetic field B is composed by the poloidal (Bθ) and toroidal
(Bφ) components. The limiting flux surface at the center of the plasma
is called the magnetic axis. The coordinates (R,Z) define the radial and
vertical dimensions in the poloidal plane of the tokamak. The coordinate ρ
is used to index the magnetic flux surfaces.

based control mainly focuses on scalar parameters, such as
feedback control of q0(t), the safety factor profile at the
magnetic axis, qmin(t), the minimum value of the safety
factor profile, or the internal inductance, li(t), a measure
of the q-profile shape. The safety factor profile, q(ρ̂, t), is
a measure of the pitch angle of the helical magnetic field
lines and is a function of the inverse of the gradient of
the poloidal flux profile. On the contrary, a model-based
approach is needed to control the entire profile in order to
achieve certain advanced tokamak operating scenarios.

In this work, a q-profile controller is designed for the
EAST tokamak in China. The design is based on a first-
principles-driven dynamic model of the poloidal magnetic
profile evolution, which is governed by the magnetic diffu-
sion equation (MDE). A finite difference method is applied
to reduce the order of this partial differential equation (PDE).
The goal of the feedback controller is to track a desired tra-
jectory in presence of arbitrary initial conditions and injected
disturbances. In this paper, the controller is designed by using
the model predictive control (MPC) method, which is essen-
tially a receding-horizon linear quadratic regulator (LQR)
with constrained inputs. The control inputs are nonlinear
combinations of the total plasma current, the non-inductive
current-drive power, and the line-average plasma density. The
advantage of MPC is that it takes into account the constraints
on the control inputs during the design process, which saves
the work of designing an anti-windup compensator to deal
with the input constraints. On the other hand, in order
to balance computational demand and control performance,
efforts to tune design parameters such as horizon length, step
size, and weights in the objective function are needed.



This paper is organized as follows. In Section II, a control-
oriented physics-based model of the poloidal magnetic flux
evolution is introduced. In Section III, a finite difference
method is then applied to reduce the order of the infinite-
dimensional model. In Section IV, the profile tracking prob-
lem is rewritten into an optimization problem for MPC
design and an offset-free MPC is presented. Testing results
for the proposed MPC are given in Section V. The results
illustrate the capability of the offset-free MPC to handle
arbitrary initial perturbations and injected disturbances. In
Section VI, conclusions and future work are stated.

II. POLOIDAL MAGNETIC FLUX MODEL

A. Magnetic Diffusion Equation

The dynamics of the poloidal magnetic flux is governed
by the magnetic diffusion equation (MDE) [16],
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The poloidal stream function ψ is closely related to the
poloidal flux (Ψ = 2πψ). The spatial coordinate ρ̂ is
the normalized effective minor radius, which is denoted as
ρ̂ = ρ/ρb, where ρ is the mean effective minor radius
of the flux surface, i.e., πBφ,0ρ2 = Φ. The quantity Φ
is the toroidal magnetic flux and ρb is the mean effective
minor radius of the outermost closed magnetic flux surface.
The quantity η is the plasma resistivity, Te is the electron
temperature, µ0 is the vacuum permeability, R0 is the major
radius of the tokamak,

〈
j̄NI · B̄

〉
/Bφ,0 is the noninductive

current-drive, Ip(t) is the total plasma current, F̂ , Ĥ, Ĝ are
geometric factors related to the magnetic configuration of
a specified plasma equilibrium and particle collisionality
within the plasma. The safety factor q, which is related to
the toroidal current density, is written as

q = −dΦ
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2
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Since the safety factor is inversely proportional to the spatial
derivative of the poloidal magnetic flux, we define θ , ∂ψ

∂ρ̂ ,
and choose θ as controlled variable.

In addition, the volume-averaged plasma stored energy is
modeled by a zero-dimensional balance equation

dE

dt
= − E

τE
+ Ptot, (5)

where τE is the global energy confinement time. In this work,
an L-mode (low confinement) energy confinement scaling

law is used (τE ∝ I0.96
p P−0.73

tot n̄0.4
e ) [17], where n̄e is the

line-average electron density (n̄e(t) =
∫ 1

0
ne(ρ̂, t)dρ̂). The

quantity Ptot is the total power injected into the plasma and
is modeled as Ptot = Pohm+Paux−Prad, where Pohm is the
ohmic power, Paux is the total auxiliary heating and current-
drive power, and Prad is the radiation power. The auxiliary
heating and current-drive power in the EAST tokamak is
represented as

Paux =

4∑
i=1

PNBIi +

2∑
i=1

PLHi
+ PIC , (6)

where PNBIi is the power of four individual neutral beam
injectors (NBI), PLHi is the power of two individual lower
hybrid launchers (LH), and PIC is the power of an ion
cyclotron source. The current generated by the ion cyclotron
is negligible, i.e. IC is considered as a heating source only.

B. Electron Density
In this work, the electron density ne(ρ̂, t) is modeled as

ne(ρ̂, t) = nprofe (ρ̂)n̄e(t), (7)

where nprofe is a reference electron density profile.

C. Electron Temperature
The electron temperature is modeled as

Te(ρ̂, t) = T profe (ρ̂)Ip(t)
αPtot(t)

γ n̄e(t)
κ, (8)

where T profe is a reference temperature profile. The charac-
teristic thermal diffusion time in the plasma is much faster
than the characteristic resistive diffusion time. Therefore the
temperature is always in quasi-equilibrium on the timescale
of the current evolution. Based on (5), in quasi-equilibrium
the volume-averaged plasma stored energy satisfies,
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where 〈·〉V denotes the volume-average operation

∫
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,

V is the volume enclosed by a magnetic flux surface,
and Vp is the total plasma volume. We have assumed, as
an approximation, equal electron and ion temperatures and
densities, i.e. Te(ρ̂, t) = Ti(ρ̂, t) and ne(ρ̂, t) = ni(ρ̂, t),
where Ti(ρ̂, t) and ni(ρ̂, t) are the ion temperature and
density profiles, respectively. By substituting (8) into (9), we
have

τE ∝ Ip(t)αPtot(t)(γ−1)n̄e(t)
(1+κ). (10)

Therefore, the constants α, γ, κ in (8) are chosen to make
(10) consistent with the energy confinement scaling law used
in (5), which results in α = 0.96, γ = 0.27, and κ = −0.6.

D. Plasma Resistivity
Following Spitzer resistivity model, the plasma resistivity

η(Te) scales with the electron temperature as

η(ρ̂, t) =
ksp(ρ̂)Zeff
Te(ρ̂, t)3/2

, (11)

where ksp is a constant and Zeff is the effective atomic
number of the ion species in the plasma.



E. Noninductive Current-drive

The total noninductive current-drive in this work is pro-
duced by the neutral beam injectors, the lower hybrid launch-
ers, and the bootstrap current. It is expressed as
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=
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,

(12)
where j̄NBIi is the noninductive current generated by four
individual neutral beam injectors, j̄LHi

is the noninductive
current generated by two individual lower hybrid launchers,
and j̄BS is the noninductive current generated by the boot-
strap effect (modeled as in [18]).

1) Auxiliary Current-drive: We model each auxiliary non-
inductive current-source as

〈j̄i · B̄〉
Bφ,0

(ρ̂, t) = jdepi (ρ̂)
Te(ρ̂, t)

δPi(t)

n̄e(t)
. (13)

The quantity jdepi (ρ̂) is a reference deposition profile for each
current-drive source, δ represents a current-drive efficiency
factor, where δ is 0.5 for NBI and 1 for LH in this work
to minimize the difference between the model prediction
and experimental data from a reference shot, and Pi, i ∈
{NBI1, NBI2, NBI3, NBI4, LH1, LH2} denotes the time
varying power of each current-drive source.

2) Bootstrap Current-drive: This source is modeled as
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where L31(ρ̂),L32(ρ̂),L34(ρ̂) and α(ρ̂) depend on the mag-
netic configuration of a particular plasma equilibrium.

III. CONTROL-ORIENTED MODEL

Eight physical actuators are considered in this work, i.e.

uphy =[Ip, PNBI1 , PNBI2 , PNBI3 ,

PNBI4 , PLH1 , PLH2 , PIC ].

Control of the electron density is challenging in practice, so
we consider the line-average electron density as a measurable
quantity instead of as an actuator. By substituting the resis-
tivity model from (11) and the noninductive current-drive
models from (13)–(14) into the MDE equation (1), we can
write the MDE equation as
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Similarly, the plasma energy equation can be written as
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= CEEuE + Ptot , fE , (23)
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where CE is a constant. The overall control input is

u = [Ptot, udiff , ujNBI1
, ujNBI2
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From the definition of Ptot and equations (18), (20), (22)
and (24), it is possible to write the control inputs as a
nonlinear function of the physical inputs, i.e., u = g(uphy).
By differentiating equation (15) with respect to ρ̂, we obtain
a PDE that describes the dynamics of θ , ∂ψ/∂ρ̂,
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with (i ∈ {NBI1−4, LH1,2}).

A. Model Reduction via Finite Difference
The infinite dimensional equation (26) is approximated by

discretizing it spatially on a uniform grid that is defined as

∆ρ̂ =
1

n− 1
, ρ̂i = (i− 1) ·∆ρ̂, i ∈ {1, · · · , n}. (27)

The variable θ at ρ̂i can be represented as θi = θ(ρ̂i, t).
By defining Z = [θ2, · · · , θn−1, E], and F = [fθ, fE ], the
discretized dynamics is modeled by Ż = F (Z, u).

B. Error Modeling
To better facilitate control design, we further reduce the

model by linearizing the plant F around a given trajectory
(ZFF , uFF ) satisfying ŻFF = F (ZFF , uFF ), i.e.,
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Fig. 2. Simulation testing of offset-free MPC: physical actuator trajectory comparison. FB1 represents a common MPC and FB2 is the proposed offset-
free MPC. The shaded gray area denotes when the input disturbance is injected into the system. (a) Ip(t). (b) n̄e(t). (c) PNBI1 (t). (d) PNBI2 (t). (e)
PNBI3 (t). (f) PNBI4 (t). (g) PLH1

(t). (h) PLH2
(t). (i) PIC(t).

By defining ∆Z = Z−ZFF ,∆u = u−uFF , and discretizing
the model (28) on a temporal grid which is chosen as tj =
j∆t, with j ∈ {0, 1, · · · }, we can write the error model as

∆j+1
Z −∆j

Z

∆t
= A∆j+1

Z +B∆j
u, (29)

where A and B are the Jacobians ∂F/∂Z and ∂F/∂u
evaluated at (ZFF (tj), uFF (tj)). Finally, we have

∆j+1
Z = A1∆j

Z +B1∆j
u, (30)

where A1 = (I −A∆t)
−1 and B1 = (I −A∆t)

−1B∆t.

IV. MODEL PREDICTIVE CONTROL

A. Principles of MPC

At every time t, the system model is used to predict the
states up to time t + hl, where hl is the horizon length,
based on measurements of the states at time t and a designed
control sequence. A cost function weighting the feedback
control effort and the tracking error between predicted states
and desired states is minimized with respect to the control
sequence. This defines an optimization problem in which
input constraints can be added. The optimal control sequence
is applied to the plant only until time t+∆t, when new state
measurements are obtained and the optimization problem is
solved again by moving the prediction horizon up to time
t+ ∆t + hl [19] and a new control sequence is obtained.

B. Control Input Constraints

Feedback control inputs ∆u need to satisfy the actuator
limits, which are

Iminp − uFF (1) ≤∆u(1) ≤ Imaxp − uFF (1), (31)

PminNBI1 − uFF (2) ≤∆u(2) ≤ PmaxNBI1 − uFF (2), (32)

PminNBI2 − uFF (3) ≤∆u(3) ≤ PmaxNBI2 − uFF (3), (33)

PminNBI3 − uFF (4) ≤∆u(4) ≤ PmaxNBI3 − uFF (4), (34)

PminNBI4 − uFF (5) ≤∆u(5) ≤ PmaxNBI4 − uFF (5), (35)

PminLH1 − uFF (6) ≤∆u(6) ≤ PmaxLH1 − uFF (6), (36)

PminLH2 − uFF (7) ≤∆u(7) ≤ PmaxLH2 − uFF (7), (37)

PminIC − uFF (8) ≤∆u(8) ≤ PmaxIC − uFF (8), (38)

−Idp,max−
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dt
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dt
≤Iup,max−

duFF (1)

dt
. (39)

where (·)min indicates the minimum value of the corre-
sponding inputs and (·)max denotes the maximum value of
the corresponding inputs. Idp,max and Iup,max represent the
maximum Ip ramp-down and ramp-up rates, respectively.
Additionally, ∆u should satisfy

∆u = H∆uphy
, H =

∂g

∂uphy

∣∣∣∣∣
uphyFF

. (40)
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Fig. 3. Simulation testing of offset-free MPC: (a) plasma energy comparison, (b)-(e) q profile at t = 1, 2, 3 and 4.5s, (f)-(i) q evolution at ρ̂ =
0.05, 0.25, 0.55 and 0.85. FB1 represents a common MPC and FB2 is the proposed offset-free MPC. The shaded gray area denotes when the input
disturbance is injected into the system.

C. Offset-free MPC

MPC cannot guarantee offset-free tracking whenever there
is a mismatch between the system model and the real plant or
constant disturbances are present [20]. Two main approaches
can be followed to tackle this problem. One is to estimate
the disturbances by using an observer, the other is to write
the system model in velocity form in order to incorporate
integral action. In this work, the latter method is employed.
By defining d∆j

Z = ∆j
Z − ∆j−1

Z and d∆j
u = ∆j

u − ∆j−1
u ,

the system in velocity form is given as

d∆j+k
Z = A1d∆j+k−1

Z +B1d∆j+k−1
u , (41)

∆j+k
Z = ∆j+k−1

Z + d∆j+k
Z . (42)

Similarly, the input constraints (40) can be shown as

Hd∆j+k−1
uphy

− d∆j+k−1
u = ∆j+k−2

u −H∆j+k−2
uphy

. (43)

D. Formulation of Optimization Problem

By augmenting the state error increments shown in
model (41), we define

Xj =
[
d∆j

uphy
, d∆j

u, d∆j
Z

]
∈ R(n+17). (44)

Since we want to minimize the tracking error and the
feedback control effort over a receding horizon, we choose
the variables for the optimization problem at t = tj as

XQP=[Xj , Xj+1,· · ·, Xj+hl−2, Xj+hl−1]T∈R(n+17)hl. (45)

Let Zjtar be the desired state at t = tj and ∆j
Ztar

= Zjtar −
ZjFF . The tracking error from t = tj to t = tj+k is

∆j+k
Z −∆j+k

Ztar
= ∆j−1

Z +

j+k∑
i=j

d∆i
Z −∆j+k

Ztar
. (46)

We can write the discrete model of (41), (42), and
(43) as PXQP = N. At each time step, we have n-1
equations for d∆Z and 10 equations for d∆u, which gives
P ∈ R(n+9)hl×(n+17)hl, N ∈ R(n+9)hl. Each one of the
inequalities (31) - (39) has an upper bound and a lower
bound, thus we have altogether 18 inequalities at each
time step. They can be written as PIXQP ≤ NI , where
PI ∈ R18hl×(n+17)hl, NI ∈ R18hl.

The tracking problem is then written as

min
XQP

1

2
XT
QPT

TQTXQP +MTXQP (47)

s.t. PXQP = N and PIXQP ≤ NI . T is a matrix that is
used to convert d∆Z to ∆Z and is written as

T =


In+17 0 0 · · · 0
G In+17 0 · · · 0

G G In+17
. . .

...
...

...
. . . . . . 0

G G · · · G In+17




hl, (48)



where the square matrix G is expressed as

G =

[
0 0
0 In−1

]
, (49)

Q is a diagonal weighting matrix, and M is written as

M = ([0, J1,n−1, · · · ,0, J1,n−1]∆j−1
Z −

[0,∆j
tar, · · · ,0,∆

j+hl−1
tar ])Q, (50)

where J is an all-ones matrix.

V. SIMULATION TESTING OF OFFSET-FREE MPC

In this section, the proposed offset-free MPC is tested
through simulations based on the physics-based model of
the plasma poloidal magnetic flux profile and plasma stored
energy described in section II. Two feedforward-only sim-
ulations starting at t = 1s with different sets of control
inputs and different initial conditions are executed. The first
feedforward-only simulation is used to generate target q-
profile and E evolutions, while the second feedforward-
only simulation is used to provide a trajectory for the error
model. Closed-loop simulations are then carried out to track
the target q-profile and E evolutions provided by the first
feedforward-only simulation, with the initial conditions and
feedforward control inputs used for the second feedforward-
only simulation. An input disturbance ud is injected at t =

2.5s, where uIpd = 0.08[MA], u
PNBI1−4

d = 0.5[MW ], un̄e

d =

0.5[1019/m3], u
PLH1−2

d = 0.5[MW ], uPIC

d = 0.5[MW ].
A common MPC and an offset-free MPC are tested for a
comparison purpose. The test results are shown in Fig. 2 and
Fig. 3. It can be seen from the figures, both the common MPC
and the offset-free MPC are able to recover the desired q
profile from a perturbed initial condition during the first two
and half seconds. After the input disturbance is injected at
t = 2.5s, the common MPC starts deviating from the target.
On the contrary, the offset-free MPC is able to gradually
reject the disturbance and maintain offset-free tracking. The
offset-free MPC tends to have a larger overshoot compare
to the common MPC. Both MPC controllers reduce the total
plasma current to counteract the disturbance and to better
match the q profile towards the plasma edge. Also, both MPC
controllers manage to increase the power of NBI1, which
is the main on-axis current-drive, when q profile at ρ̂ = 0.05
are above the target value around t = 2.75s. However, due
to the lack of integral action, the common MPC does not
provide an overall offset-free tracking.

VI. CONCLUSION

In this paper, we present a model-based controller design
for the gradient of the poloidal magnetic flux profile and the
plasma stored energy on EAST. The controller is designed
to track any set of target trajectories in presence of an
initial state perturbation and input disturbances. A physics-
based model is developed and linearized around a given
trajectory. A reduced order system is then obtained through
spatial discretization. The control problem is rewritten into
an optimization problem with an augmented state composed

of the tracking error and the feedback control signal. The
proposed controller successfully tracks the given target tra-
jectory. Plasma quantities related to magnetohydrodynamics
(MHD) stabilities, such as the plasma β and Greenwald
density limit, could be added to the set of state constrains
for the formulated optimization problem. These constraint
additions may play a critical role when testing the proposed
MPC in real experiments on the EAST tokamak. A dedicated
quadratic program solver, which exploits the structure of the
inequality matrix PI , is under development for upcoming
experimental tests.
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