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Abstract— The Iterative Learning Control (ILC) technique
is extended to distributed parameter systems governed by
parabolic partial differential equations (PDEs). ILC arises
as an effective method to approach constrained optimization
problems in PDE systems. We discuss both P-type and D-type
ILC schemes for a distributed parameter system formulated as
a general linear system Σ(A, B, C, D) on a Hilbert space, in
which the system operator A generates a strongly continuous
semigroup. Under the assumption of identical initialization
condition (IIC), conditions on the learning parameters are
obtained to guarantee convergence of the P-type and D-type
ILC schemes. Numerical simulations are presented for a 1D
heat conduction control problem solved using ILC based on
semigroup analysis. The numerical results show the effective-
ness of the proposed ILC schemes.

I. INTRODUCTION

Learning is one of the most defining characteristics of
human beings. Based on the acquisition of knowledge in
practice, new capacities and skills can be developed. Repeti-
tion and correction are commonly used by human beings as
learning mechanisms. It is not a surprise then to find these
mechanisms employed in control system design. When the
system dynamics is not well known, trial experiments are
usually implemented to learn about the system behavior or
response. Observations arising from the experimental results
can be compared with the desired behavior of the system
to adjust external inputs or tune parameters in subsequent
experiments until a satisfactory response is achieved. Itera-
tive Learning Control (ILC) is a relatively new control tech-
nique originally proposed for the operation of mechanical
robots carrying out repetitive trajectory tracking tasks (see,
e.g., [1]). Due to the repetitiveness of the operations, the
control and tracking error signals can be recorded during
each repetition cycle and used to update the input signals
to be applied during the following cycle. A successful ILC
scheme can improve the tracking accuracy by adjusting the
system inputs from one repetition cycle to another based
on the error observations in each cycle. The theoretical
framework of ILC is based on the contraction mapping and
fixed point theorems [2], which guarantee the convergence
of ILC schemes.

ILC has been widely investigated for finite dimensional
systems (see, e.g., [3], [4], [5], [6], [7] and references
therein). However, there are very limited studies on ILC for
distributed parameter systems governed by partial differential
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equations (PDEs). In [8], ILC is applied to a temporal-spatial
discretized first order hyperbolic partial PDE, guaranteeing
stability of the closed loop system and satisfying perfor-
mance requirements. In [9], ILC is applied to a distributed
parameter system which is governed by a second order
hyperbolic PDE. In this work, we extend the ILC frame-
work to distributed parameter systems governed by parabolic
PDEs. Many infinite-dimensional dynamical systems can be
described by parabolic PDEs, including processes such as
heat and mass transfer, convection, diffusion, and transport
(see, e.g., [10], [11] for more examples).

In the control of parabolic PDE systems, repetition and
correction mechanisms are as common as in lumped pa-
rameter systems modeled by ordinary differential equations
(ODEs). ILC arises as an effective method to approach
constrained optimization problems in PDE systems with
a repetitive behavior. One example is the control of den-
sity, temperature, current and momentum spatial profiles
in tokamak plasmas, whose dynamics are governed by a
set of coupled nonlinear parabolic PDEs (see, e.g., [12],
[13], [14]). The use of transformer action to produce the
toroidal plasma current means that present tokamaks operate
in a pulsed mode. Each one of these pulses is called a
discharge. One approach to plasma profile control focuses
on creating the desired profiles during the plasma current
ramp-up and early flattop phases of the discharge with the
aim of maintaining these target profiles during the subsequent
phases. Control actuators such as magnetic fields (magnetic
control) and particle/wave injection (kinetic control) can be
used to achieve the desired profiles. Since these actuators
are constrained, experiments have shown that some of the
desirable target profiles may not be achieved for all arbitrary
initial conditions. In practice, the objective is to achieve
the best possible approximate matching within a short time
window during the early flattop phase of the total plasma cur-
rent pulse. Thus, such matching problem can be formulated
as a finite-time, optimal, PDE control problem. ILC could
potentially be used to correct the control actuation discharge
after discharge in order to minimize the matching error.

Another example arises in inverse source seeking problems
where the central task is to find the system input that
generates an evolutionary trajectory which in turns matches
an observed output. Applications include heat transfer [15]
and option pricing of financial derivatives [16]. There are
two main approaches for inverse problems: numerical opti-
mization [17] and statistical inverse computation [18]. The
first approach formulates constrained optimization problems
in which the difference between observed and numerically
predicted evolutions must be minimized by properly choos-



ing the control input. Optimization constraints are usually
imposed by absolute and rate bounds for the control input
and by the dynamics of the evolutionary PDE system.
Nonlinear programming algorithms such as the sequential
quadratic programming (SQP) method are often used to
generate iterative computations. In each computational it-
eration, the optimization result from the previous iteration
is updated by the nonlinear programming searching result.
The computational iterations continue until a predefined error
tolerance criterion is satisfied. This is a typical repetitive
process that could be solved by an ILC scheme.

The organization of this paper is as follows. In Section II,
we extend the ILC scheme to a distributed parameter system
formulated as a general abstract linear system on a Hilbert
space. The effectiveness of the proposed method is illustrated
in Section III through numerical simulations. We finish the
paper in Section IV by stating conclusions and discussing
future research topics.

II. ILC ON INFINITE DIMENSIONAL SPACES

We consider a linear distributed parameter system which
can be formulated as the following general linear system
Σ(A,B,C,D) on a Hilbert space X [19]:{

ẋ(t) = Ax(t) +Bu(t), t ≥ 0, x(0) = x0,

y(t) = Cx(t) +Du(t),
(1)

where x ∈ X , u ∈ U and y ∈ Y (U and Y are also
Hilbert spaces). The system operator A is assumed to be the
infinitesimal generator of a strongly continuous semigroup
(also denoted by C0-semigroup) T(t) on the Hilbert space
X . The C0-semigroup T(t) plays in infinite dimensional
systems the same role that the transition matrix exp(At)
plays in finite dimensional systems. The input operator B
is a bounded linear operator from U to X , which is denoted
by B ∈ L(U ,X ). Similarly, we assume C ∈ L(X ,Y)
and D ∈ L(U ,Y). Given an initial value x0 ∈ X and
an admissible control function u ∈ U , the state of (1) can
be represented by the following formula (also called “mild
solution”)

x(t) = T(t)x0 +
∫ t

0

T(t− τ)Bu(τ)dτ, (2)

y(t) = CT(t)x0 +
∫ t

0

CT(t− τ)Bu(τ)dτ +Du(t). (3)

We first discuss the representation of a C0-semigroup. In the
scenario of finite dimensional systems, for a general matrix
A, we can compute its eigenvalue problem to obtain the pairs
(λn, φn) satisfying Aφn = λnφn. For any eigenvalue λn
with non-unique algebraic multiplicity (rn > 1), i.e., (A −
λnI)rnφn = 0, we can take advantage of the generalized
eigenvectors to form a complete eigenvector basis. Namely,
we obtain the rn generalized eigenvectors associated with λn
by solving a sequence of linear equations (A− λnI)φ̃n,j =
φ̃n,j−1, where j = 1, 2, . . . , rn and φn,0 = 0, and renumber-
ing the eigenvectors φ̃n,1, . . . , φ̃n,rn as φn, . . . , φn+rn−1. We
can then expand a general vector x in terms of the eigenvec-
tors {φn}Nn=1 with N = Dim(A), e.g., x =

∑N
n=1〈x, φn〉φn.

Thus, we can obtain a representation of the matrix operation
Ax, Ax = A

∑N
n=1〈x, φn〉φn =

∑N
n=1 λn〈x, φn〉φn and

also a representation of the transition matrix, exp(At)x =∑N
n=1 exp(λnt)〈x, φn〉φn. Analogously, for a general in-

finitesimal generator of a C0-semigroup, we have where
the representations of the semigroup generator A and the
semigroup T(t) are given by

Ax =
∞∑
n=1

λn〈x, φn〉φn, T(t)x =
∞∑
n=1

exp(λnt)〈x, φn〉φn.

The bound estimate is one of the most important results of
C0-semigroups: ∀ω > ω0 = supn λn, there exists a positive
constant Mω such that ∀t > 0 and the following estimate
holds:

‖T(t)‖L(X ,X ) ≤Mω exp(ωt), (4)

where ω0 = supn λn is called the growth bound of the
semigroup.

We are now ready to discuss iterative learning schemes
for infinite dimensional linear systems. Given an admissible
tracking task yd(t) defined over [0, tf ], we consider the
following ILC proportional (P) and differential (D) schemes
to handle the iterative error function ek(t) = yd(t)− yk(t):

uk+1(t) = uk(t) + Γek(t), (5)
uk+1(t) = uk(t) + Φėk(t), (6)

where k represents the iteration index, Γ and Φ are the learn-
ing factors (kernels) which are to be determined to generate
a sequence yk(t) converging to the desired trajectory yd(t).
Motivated by the ILC schemes for SISO systems in [6], we
study the convergence conditions of these iteration schemes
for infinite dimensional linear systems.

We consider an admissible tracking task yd(t) over [0, tf ]
and an infinite dimensional linear system (1), where A is an
infinitesimal generator of a C0-semigroup. We obtain three
convergence conditions in terms of both the P-type and D-
type ILC schemes in the rest of this section.

Theorem 1 (P-type): Under the identical initialization
condition (IIC) xk(0, ξ) = x(0, ξ), the proportional type
(P-type) ILC scheme (5) generates a convergent sequence
yk in Y in the sense of the following norm, ‖ · ‖Y,s =
supt∈[0,tf ] ‖ · ‖Y , if the learning parameter Γ satisfies

‖I −DΓ‖L(Y,Y) + ‖C‖L(X ,Y)w(‖Γ‖) < 1, (7)

where

w(‖Γ‖) = ‖BΓ‖L(Y,X )

∫ tf

0

Mω exp(ω(tf − τ))dτ

=

Mω‖BΓ‖L(Y,X )
exp(ωtf )− 1

ω
, ω 6= 0,

Mω‖BΓ‖L(Y,X )tf , ω = 0.
Proof: We first derive the tracking error at each

iteration,

yd − yk+1

= yd − Cxk+1 −Duk+1

= yd − Cxk −D (uk + Γek)− C (xk+1 − xk)
= (I −DΓ) ek − C (xk+1 − xk)

(8)



where I is an identity operator over Y . Based on (2), we can
obtain the term (xk+1 − xk) in (8),

xk+1 − xk =
∫ t

0

T(t− τ)B [uk+1(τ)− uk(τ)] dτ

=
∫ t

0

T(t− τ)BΓek(τ)dτ
(9)

where we have used the identical initialization condition.
Then, we estimate the bound of the ‖ · ‖X -norm

‖xk+1 − xk‖X

=
∥∥∥∥∫ tf

0

T(t− τ)BΓek(τ)dτ
∥∥∥∥
X

≤
∫ tf

0

‖T(t− τ)BΓek(τ)‖X dτ

≤ ‖BΓ‖L(Y,X )

∫ tf

0

‖T(t− τ)‖L(X ,X ) ‖ek(τ)‖Ydτ

≤ ‖BΓ‖L(Y,X )

∫ tf

0

Mω exp(ω(tf − τ))dτ‖ek‖Y,s,

(10)

where we have used the growth bound estimate (4). There-
fore, we compute ‖ · ‖Y,s of (8) and use the triangular
inequality to obtain

‖yd − yk+1‖Y,s
≤ ‖(I −DΓ) ek‖Y,s + ‖C‖L(X ,Y) ‖xk+1 − xk‖X ,s
≤ ‖I −DΓ‖L(Y,Y) ‖ek‖Y,s + ‖C‖L(X ,Y)w(‖Γ‖)‖ek‖Y,s.

(11)

If we choose the learning parameter Γ to satisfy
‖I −DΓ‖L(Y,Y) + ‖C‖L(X ,Y)w(‖Γ‖) < 1, we obtain the
contractive mapping condition ‖ek+1‖Y,s < ‖ek‖Y,s. Thus,
limk→∞ ek = 0, i.e., limk→∞ yk = yd.

Remark 1: In Theorem 1, condition (7) is a nonlin-
ear inequality, which is usually difficult to solve. Alter-
natively, we can choose the learning kernel Γ such that
‖I −DΓ‖L(Y,Y) < γ < 1. Then, there exists a positive
constant δ such that γ + δ < 1. It is easy to verify that over
a subinterval [0, t1] ⊂ [0, tf ], where t1 is given by

t1 ≤


1
ω

ln
[

δω

Mω‖BΓ‖L(Y,X )‖C‖L(X ,Y)
+ 1
]
, ω 6= 0,

δ

Mω‖BΓ‖L(Y,X )‖C‖L(X ,Y)
, ω = 0,

we obtain ‖ek+1‖Y,s ≤ (γ + δ)‖ek‖Y,s < ‖ek‖Y,s, which
guarantees a geometric convergence of the output tracking
error sequence.

Theorem 2 (D-type for bounded A): Assuming that D =
0 and A is bounded, under the identical initialization con-
ditions (IICs) xk(0, ξ) = x(0, ξ) and yk(0) = yd(0),
the differential type (D-type) ILC scheme (6) generates a
convergent sequence yk in Y in the sense of the following
norm ‖ · ‖Y,s = supt∈[0,tf ] ‖ · ‖Y , if the learning parameter
Φ satisfies

‖I − CBΦ‖L(Y,Y) + ‖CA‖L(X ,Y)w(‖Φ‖) < 1, (12)

where

w(‖Φ‖) = ‖BΦ‖L(Y,X )

∫ tf

0

Mω exp(ω(tf − τ))dτ

=

Mω‖BΦ‖L(Y,X )
exp(ωtf )− 1

ω
, ω 6= 0,

Mω‖BΦ‖L(Y,X )tf , ω = 0.
Proof: We compute the time derivative of the tracking

error at each iteration

ėk+1 = ẏd − Cẋk+1

= ẏd − CAxk+1 − CB(uk + Φėk)
= ẏd − Cẋk − CBΦėk − CA (xk+1 − xk)
= (I − CBΦ)ėk − CA (xk+1 − xk) ,

(13)

where the state difference between two adjacent iterations is
given by (we use the the IICs xk(0, ξ) = x(0, ξ)),

xk+1(t)− xk(t)

=
∫ t

0

T(t− τ)B [uk+1(τ)− uk(τ)] dτ

=
∫ t

0

T(t− τ)BΦėk(τ)dτ.

(14)

Then, we can obtain the bound estimate in terms of the ‖·‖X -
norm as

‖xk+1 − xk‖X

=
∥∥∥∥∫ tf

0

T(t− τ)BΦėk(τ)dτ
∥∥∥∥
X

≤
∫ tf

0

‖T(t− τ)BΦėk(τ)‖X dτ

≤
∫ tf

0

‖T(tf − τ)‖L(X ,X ) ‖BΦ‖L(Y,X ) dτ‖ėk‖Y,s

≤ ‖BΦ‖L(Y,X )

∫ tf

0

Mω exp(ω(tf − τ))dτ‖ėk‖Y,s

(15)

We compute the ‖ · ‖Y,s-norm of (13) and use the triangular
inequality to obtain

‖ėk+1‖Y,s ≤ ‖(I − CBΦ) ėk‖Y,s
+ ‖CA‖L(X ,Y) ‖xk+1 − xk‖X ,s
≤ ‖I − CBΦ‖L(Y,Y) ‖ėk‖Y,s

+ ‖CA‖L(X ,Y) w(‖Φ‖)‖ėk‖Y,s.

(16)

If we choose the learning parameter Φ to satisfy
‖I − CBΦ‖L(Y,Y) + ‖CA‖L(X ,Y) w(‖Φ‖) < 1, we obtain
the contractive mapping condition ‖ėk+1‖Y,s < ‖ėk‖Y,s.
Thus, limk→∞ ėk = 0. Since ek(0) = 0 by the IIC
assumption, we have 0 ≤ limk→∞ ‖ek‖Y,s ≤ ‖ek(0)‖Y +
limk→∞

∫ t
0
‖ėk(τ)‖ dτ = 0, ∀t ∈ [0, tf ], i.e., limk→∞ yk =

yd.

Remark 2: In Theorem 2, condition (12) is a nonlin-
ear inequality, which is usually difficult to solve. Alter-
natively, we can choose the learning kernel Φ such that
‖I − CBΦ‖L(Y,Y) < γ < 1. Then, there exists a positive



constant δ such that γ + δ < 1. It is easy to verify that over
the subinterval [0, t1] ⊂ [0, tf ], where t1 is given by

t1 ≤


1
ω

ln
[

δω

Mω‖BΦ‖L(Y,X )‖CA‖L(X ,Y)
+ 1
]
, ω 6= 0,

δ

Mω‖BΦ‖L(Y,X )‖CA‖L(X ,Y)
, ω = 0,

we obtain ‖ėk+1‖Y,s ≤ (γ + δ)‖ėk‖Y,s < ‖ėk‖Y,s, which
guarantees a geometric convergence of the output tracking
error sequence by taking into account the IIC assumptions.

Usually the operator A is unbounded. In this case, The-
orem 2 is not applicable since the convergence condition is
expressed in terms of the norm of the operator A.

Theorem 3 (D-type for unbounded A): Assuming that
D = 0 and A is unbounded, under the identical initialization
conditions (IICs) xk(0, ξ) = x(0, ξ) and yk(0) = yd(0),
the differential type (D-type) ILC scheme (6) generates a
convergent sequence yk in Y in the sense of the following
norm ‖ · ‖Y,s = supt∈[0,tf ] ‖ · ‖Y , if the learning parameter
Φ satisfies

‖I − CT(0)BΦ‖L(Y,Y)

+
∫ tf

0

∥∥∥∥C dT(tf − τ)
dt

BΦ
∥∥∥∥
L(Y,Y)

dτ < 1.
(17)

Proof: We compute the time derivative of the tracking
error at each iteration

ėk+1 = ẏd − Cẋk+1

= ẏd − C
d

dt

[
T(t)x0 +

∫ t

0

T(t− τ)Buk+1(τ)dτ
]

= ẏd − C
d

dt
T(t)x0 + T(0)Buk+1(t)

− C
∫ t

0

d

dt
T(t− τ)Buk+1(τ)dτ.

(18)

We substitute the D-type ILC scheme (6) into (18) to obtain

ėk+1(t) = ẏd(t)− C
d

dt
T(t)x0 + T(0)Buk(t)

− C
∫ t

0

d

dt
T(t− τ)Buk(τ)dτ

+ T(0)BΦėk(t)

− C
∫ t

0

d

dt
T(t− τ)BΦėk(τ)dτ

= [I − T(0)BΦ] ėk(t)

− C
∫ t

0

d

dt
T(t− τ)BΦėk(τ)dτ.

(19)

We compute the ‖ · ‖Y,s-norm of (19) to obtain

‖ėk+1‖Y,s ≤ ‖I − T(0)BΦ‖L(Y,Y) ‖ėk‖Y,s

+
∫ tf

0

∥∥∥∥C d

dt
T(tf − τ)BΦ

∥∥∥∥
L(Y,Y)

dτ‖ėk‖Y,s.
(20)

Therefore, if the learning parameter Φ satisfies the con-
dition (17), we obtain the contractive mapping condition

‖ėk+1‖Y,s < ‖ėk‖Y,s. Thus, by following the same ar-
guments presented in the proof of Theorem 2, we obtain
limk→∞ yk = yd.

III. NUMERICAL ILLUSTRATION

We consider a metal bar of length one 0 ≤ ξ ≤ 1 that can
be heated along its length by a given actuating distribution
function f(ξ). The governing equation is given by

∂x

∂t
=
∂2x

∂ξ2
+ f(ξ)u(t),

x(0, ξ) = x0(ξ),
∂x

∂ξ
(t, 0) =

∂x

∂ξ
(t, 1) = 0,

(21)

where x(t, ξ) represents the temperature at position ξ at time
t, x0(ξ) the initial temperature profile, f(ξ) = ξ(ξ − 1) the
actuating distribution function, and u(t) the scalar control.
By measuring the temperature at the right end, we define the
system output as

y(t) = x(t, 1) ≈
∫ 1

0

1[1−ε,1](ξ)x(t, ξ)dξ. (22)

where ε is a small positive constant and

1[ξ0−ε,ξ0+ε](ξ) =

{
1, ξ ∈ [ξ0 − ε, ξ0 + ε],
0, elsewhere.

To rewrite this PDE system as an abstract linear sys-
tem, we choose the state space as X = L2(0, 1) ={
x(t)|

∫ 1

0
x2(t, ξ)dξ <∞,∀t ∈ [0, tf ]

}
and the state as

x(t, ·) = {x(t, ξ), 0 ≤ ξ ≤ 1}. We introduce the sys-
tem operator A on X to be Ax = d2x

dξ2 with the do-
main given by dom(A) = {x ∈ H1(0, 1), ∂x∂ξ (t, 0) =
∂x
∂ξ (t, 1) = 0}, where H1(0, 1) is defined by H1(0, 1) ={
x|x ∈ L2(0, 1) and ∂x

∂ξ ∈ L
2(0, 1)

}
. The input matrix B

is defined as B = f(ξ) and the output operator as Cx =
x(t, 1).

We first use separation of variables [20] to write

x(t, ξ) = T (t)X(ξ) (23)

for the homogenous system (21) (with u(t) = 0) to obtain
the Sturm-Liouville equation which is a two boundary value
problem (TBVP)

AX + λX = 0⇒

{
X ′′(ξ) + λX(ξ) = 0,
X ′(0) = X ′(1) = 0.

(24)

The solution of (24) is

X0(ξ) = 1, λ0 = 0, (25)

Xn(ξ) =
√

2 cos(nπξ), λn = n2π2, n > 0. (26)

Then, based on (23), the solution representation becomes

x(t, ξ) = T0(t) +
∞∑
n=1

Tn(t)Xn(ξ), (27)



which satisfies

∞∑
n=0

(
dTn(t)
dt

+ λnTn(t)
)
Xn(ξ) = f(ξ)u(t),

∞∑
n=0

Tn(0)Xn(ξ) = x0(ξ)⇒ Tn(0) =
∫ 1

0

x0(ξ)Xn(ξ)dξ.

We can now expand f(ξ) in terms of {Xn}∞n=0 as f(ξ) =∑∞
n=0 fnXn(ξ), fn =

∫ 1

0
f(ξ)Xn(ξ)dξ, in order to obtain

dTn(t)
dt

+ λnTn(t) = fnu(t), Tn(0) =
∫ 1

0

x0(ξ)Xn(ξ)dξ.

The solutions for each component Tn(t) are readily obtained
as (n ≥ 0)

Tn(t) = exp(−λnt)
∫ 1

0

x0(ζ)Xn(ζ)dζ (28)

+
∫ t

0

exp(−λn(t− τ))u(τ)dτ
∫ 1

0

f(ζ)Xn(ζ)dζ.

Therefore, the solution of the PDE system (21) is given by

x(t, ξ)=
∫ 1

0

g(t, ξ, ζ)x0(ζ)dζ+
∫ t

0

∫ 1

0

g(t−τ, ξ, ζ)f(ζ)u(τ)dζdτ,

whereg(t, ξ, ζ)=1+
∑∞
n=12 exp(−n2π2t) cos(nπζ) cos(nπξ).

We consider the D-type iterative learning control scheme (6)
in this numerical study. The time derivative of the error is

ėk+1(t) =
[
1− Φ

∫ 1

0

g(0, 1, ζ)f(ζ)dζ
]
ėk(t)

−
∫ t

0

∫ 1

0

∂g

∂t
(t− τ, 1, ζ)f(ζ)Φėk(τ)dζdτ.

(29)

By using the convergence condition (17) in Theorem 3,
we can obtain an inequality condition for the learning gain
Φ. Recalling that f(ξ) = ξ(ξ − 1) and cos(nπξ)|ξ=1 =
cos(nπ) = (−1)n, g(0, 1, ζ) = 1 +

∑∞
n=1 2(−1)n cos(nπζ)

and
∫ 1

0
cos(nπζ)f(ζ)dζ = 1+(−1)n

n2π2 , n = 1, 2, . . ., we can
write the time derivative of ek+1(t) as

ėk+1(t) =

[
1− Φ

∫ 1

0

f(ζ)dζ − Φ
∞∑
n=1

2
1 + (−1)n

n2π2

]
ėk(t)

+ Φ
∞∑
n=1

[(−1)n + 1]
∫ t

0

2 exp(−n2π2(t− τ))ėk(τ)dτ.

We compute the norm | · |s of ėk+1 to obtain

|ėk+1|s ≤

∣∣∣∣∣1− Φ
∫ 1

0

f(ζ)dζ − Φ
∞∑
n=1

2
1 + (−1)n

n2π2

∣∣∣∣∣ |ėk|s
+

∣∣∣∣∣Φ
∞∑
n=1

4
∫ t

0

exp(−4n2π2(t− τ))dτ

∣∣∣∣∣
s

|ėk|s

=

∣∣∣∣∣1 +
Φ
6
− Φ

2π2

∞∑
n=1

1
n2

∣∣∣∣∣ |ėk|s
+

∣∣∣∣∣Φ
∞∑
n=1

1− exp(−4n2π2t)
n2π2

∣∣∣∣∣
s

|ėk|s .

By noting that 1
n(n+1) <

1
n2 <

1
n(n−1) , n ≥ 2, we can then

obtain
∞∑
n=1

(
1
n
− 1
n+ 1

)
<

∞∑
n=1

1
n2

< 1 +
∞∑
n=2

(
1
n
− 1
n− 1

)
,

i.e., 1 <
∑∞
n=1

1
n2 < 3

2 . Therefore, the the norm | · |s of
ėk+1 becomes

|ėk+1|s ≤
∣∣∣∣1 +

(
1
6
−
∑∞
n=1

1
n2

2π2

)
Φ
∣∣∣∣ |ėk|s

+

∣∣∣∣∣Φ
∞∑
n=1

1− exp(−4n2π2tf )
n2π2

∣∣∣∣∣ |ėk|s .
(30)

We note that 1
6 −

∑∞
n=1

1
n2

2π2 > 1
6 −

3
4π2 = 2π2−9

12π2 > 0, and

based on the inequality
∣∣∣1 +

(
1
6 −

∑∞
n=1

1
n2

2π2

)
Φ
∣∣∣ < 1, we

obtain(
12π2

3− π2
<

12π2

3
∑∞
n=1

1
n2 − π2

=
)

2∑∞
n=1

1
n2

2π2 − 1
6

< Φ < 0,

i.e., −17.2405 < Φ < 0. Finally, if we choose Φ = −5, then
there exists t1 < tf such that∣∣∣∣16 + 5

∑∞
n=1

1
n2

2π2

∣∣∣∣+ 5

∣∣∣∣∣
∞∑
n=1

1− exp(−4n2π2t1)
n2π2

∣∣∣∣∣ < 1. (31)

Thus, the sequence ėk(t) is convergent. By taking into
account the identical initialization condition, i.e., ek(0) =
yd(0) − yk(0) = 0, we can then conclude that the error
sequence ek(t) is also convergent. We numerically solve the
PDE system using the finite element method [21]. In Fig. 1,
the evolution of the PDE system is shown for a random input
signal labeled as “iteration 1” in Fig. 2. Then, we use the D-
type ILC scheme (6) with Φ = −5 to iterate the simulation
and update the control input. After four iterations, the control
input converges (shown in Fig. 2) and the output (right
boundary measurement) converges to the desired tracking
trajectory (shown in Fig. 3). With the input function obtained
at the fourth iteration, we simulate the PDE system and the
evolution is shown in Fig. 4.

IV. CONCLUSIONS

In this paper, we have extended the ILC scheme to
distributed parameter systems governed by parabolic PDEs.
We have proposed a general approach with the potential
of being applied to PDE-constrained optimization prob-
lems. We have discussed both the P-type and D-type ILC
schemes for a distributed parameter system formulated as
a general linear system on a Hilbert space, in which the
system operator generates a C0-semigroup. Three learning
parameter conditions have been obtained to guarantee the
convergence of the P-type and D-type ILC schemes. The
conditions do not require analytical solutions but bounds
in appropriate norm spaces for the system operators and
semigroups. Numerical simulations have been carried out for
ILC applied to a 1D heat conduction problem. The semigroup
analysis has been considered for the synthesis of the ILC
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Fig. 1. System evolution for random input (first iteration).
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Fig. 2. Iterations for the control input function.

parameters. The simulation results show the effectiveness of
the proposed ILC scheme. Future research topics include the
study of the potential of combining numerical discretization
and finite dimensional ILC to define a general ILC synthesis
framework for distributed parameter systems. Additionally,
technical challenges remain in extending the ILC approach
to infinite dimensional systems with boundary observations
and point controls that involve unbounded operators.

REFERENCES

[1] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operations of
robots by learning,” Journal of Robotic Systems, vol. 1, pp. 123–140,
1984.

[2] A. H. Siddiqi, Applied Functional Analysis: Numerical Methods,
Wavelet Methods, and Image Processing. New York: Marcel Dekker,
Inc., 2004.

[3] E. Rogers and D. Owens, Stability Analysis for Linear Repetitive
Processes. New York: Springer-Verlag, 1992.

[4] K. Moore, Iterative Learning Controol for Deterministic Systems.
New York: Springer-Verlag, 1993.

[5] Y. Chen and C. Wen, Iterative Learning Control: Robustness and
Applications. New York: Springer, 1999.

[6] J. Xu and Y. Tan, Linear and Nonlinear Iterative Learning Control.
New York: Springer, 2003.

[7] R. Longman, “Iterative learning control and repetitive control for
engineering practice,” Int. J. Control, vol. 73, pp. 930–954, 2000.

[8] B. S. J. Choi and K. Lee, “Constrained digital regulation of hyper-
bolic PDE systems: A learning control approach,” Korean Journal of
Chemical Engineering, vol. 18, pp. 606–611, 2001.

[9] Z. Qu, “An iterative learning algorithm for boundary control of a
stretched moving string,” Automatica, vol. 38, pp. 821–827, 2002.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

Time

O
ut

pu
t

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
−1

−0.5

0

0.5

1

1.5

Time

O
ut

pu
t

 

 

iteration1
iteration2
iteration3
iteration4
desired

Fig. 3. Iterations for the output function.

0
0.2

0.4
0.6

0.8
1

0

2

4

6
−1

−0.5

0

0.5

1

1.5

2

SpaceTime

T
em

pe
ra

tu
re

Fig. 4. System evolution for control input obtained after four iterations.

[10] P. Neittaanmaki and D. Tiba, Optimal Control of Nonlinear Parabolic
Systems: Theory, Algorithms, and Applications. New York: Marcel
Dekker, Inc., 1994.

[11] P. D. Christofides, Nonlinear and Robust Control of PDE Systems–
Methods and Applications to Transport-Reaction Processes. Boston:
Birkhauser, 2001.

[12] Y. Ou et al., “Towards model-based current profile control at DIII-D,”
Fusion Engineering and Design, vol. 82, pp. 1153–1160, 2007.

[13] C. Xu, J. N. Dalessio, Y. Ou, and E. Schuster, “POD-based optimal
control of current profile in tokamak plasmas via nonlinear program-
ming,” American Control Conference, 2008.

[14] Y. Ou et al., “Extremum-seeking open-loop control of plasma current
profile at the DIII-D tokamak,” Plasma Phys. Control. Fusion, vol. 50,
p. 115001, 2008.

[15] J. Wang and N. Zabaras, “Hierarchical bayesian models for inverse
problems in heat conduction,” Inverse Problems, vol. 21, pp. 183–206,
2005.

[16] B. Buring, A. Jungel, and S. Volkwein, “A sequential quadratic
programming method for volatility estimation in option pricing,” J.
Optim. Theory Appl., vol. 139, pp. 515–540, 2008.

[17] H. Banks and K. Kunisch, Estimation Techniques for Distributed
Parameter Systems. Boston: Birkhauser, 1989.

[18] J. Kaipio and E. Somersalo, Statistical and Computational Inverse
Problems. New York: Spriner, 2004.

[19] R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional
Linear Systems Theory (Texts in Applied Mathematics). New York:
Springer, 1995.

[20] A. Tveito and R. Winther, Introduction to Partial Differential Equa-
tions: A Computational Approach, (Texts in Applied Mathematics 29).
New York: Springer-Verlag, 1998.

[21] R. Skeel and A. Berzins, “A method for the spatial discretization of
parabolic equations in one space variable,” SIAM J. Sci. Stat. Comput.,
vol. 11, pp. 1–32, 1990.


