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Abstract— The stabilization of an unstable linear parabolic
partial differential equation (PDE) system with both Neumann
boundary control and interior control is considered in this
work. Point output measurement is available at one end of the
physical domain. The choice of a proportional output feedback
boundary control is justified by Lyapunov analysis while the
design of the interior control is carried out based on the Sturm-
Liouville theory. A proportional state feedback is proposed for
the interior control with a symmetric kernel function, and t he
pseudospectral method is used to solve the stability conditions
governed by the Sturm-Liouville systems. In addition, an
observer is designed using the point measurement at one end
of the physical domain, and used to propose an observer–based
feedback controller for the PDE system. Both controller and
observer gains are designed numerically to make the eigenvalues
of the associated Sturm-Liouville problems stable. Simulations
show the effectiveness of the proposed controller.

I. I NTRODUCTION

The stabilization of linear distributed parameter systems
has been an active area of research for more than one decade
now (e.g., [1], [2], [3], [4], [5] and references therein). In
this paper, simultaneous boundary and interior control are
employed for the the stabilization of an unstable linear par-
abolic partial differential equation (PDE) system described
by {

ψt = ψxx + f(x)v(t) + λψ,

ψx(0, t) = 0, ψx(1, t) = w(t),
(1)

y(t) = ψ(1, t), (2)

over the spatial–temporal domainQT = {(x, t) : x ∈ Ω =
[0, 1], t ∈ [0,∞)}; whereψ(x, t) is the system state,y(t) is
the system output,λ(> 0) is a sufficiently large number
to make the system unstable,f(x) is the input function
with respect to the interior controlv(t), and w(t) is the
Neumann boundary control. After justifying the choice of a
proportional output feedback boundary control by Lyapunov
analysis, the design of the interior control is carried out based
on the Sturm-Liouville theory.

Model reduction is commonly implemented via the
method of lines (MOL) ([6], [7], [8], [9], [10]) in order to
obtain finite dimensional lumped–parameter representations
of the original PDE systems. This is referred to as the reduce-
then-design approach in [11]. The control of the reduced-
order system can be carried out by applying different existing
finite dimensional control techniques. However, a drawback
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of the reduce-then-design method is the inherent loss of
information due to the truncation before control design.
Moreover, the order of the model truncation is a trade-off
between model accuracy and real time computation. A linear
approach based on the reduced order model is carried out
in [4] to study the problem of global stabilization of a semi-
linear dissipative evolution equation by the Lyapunov tech-
nique in finite dimensional controls. Bounds of the Lyapunov
energy with respect to the neglected higher order components
are obtained to avoid the spillover phenomenon due to
nonlinear couplings. Model reduction using the approximate
inertial manifold of dissipative systems [5] ensures global
stabilization by considering the higher-mode-componentsas
a singular perturbation to the finite dimensional lower-mode-
components.

Instead of implementing model reduction before control
design, we follow a reduce-then-design method [11] in this
work. We consider a proportional type interior control for
the unstable PDE system. An integral operation for the
product of the proportional feedback kernel gain and the
system state is used for the PDE stabilization in this paper,
e.g.,v(t) =

∫ 1

0
kvf(y)ψ(y, t)dy, wheref(y) is the control

actuation function andkv is the to-be-designed gain. By
substituting the proposed proportional control law into the
unstable PDE system, we use the variable separation method
to obtain a self-adjoint Sturm-Liouville problem associated
with the closed–loop system (i.e., the spectral conditions
of the closed-loopC0-semigroup), which includes the to-
be-designed feedback controller gain (e.g., kernel function).
The closed–loop Sturm-Liouville system is an integro–
differential-type two boundary value problem which does
not admit an analytical solution in general, and numerical
methods are necessary for its solution. Using the eigenfunc-
tions obtained from the uncontrolled Sturm-Liouville prob-
lem (relevant to the boundary feedback design), we apply
the pseudospectral method to rewrite the controlled Sturm-
Liouville problem as a finite dimensional matrix eigenvalue
problem, which can be equivalently considered as a pole
placement problem for PDE systems.

The spatial–temporal state information needed in the pro-
posed proportional control law makes it impractical since this
information is usually not available. Therefore, an observer
to estimate the spatial–temporal state information is designed
exploiting the availability of point measurement at one endof
the physical domain. Point measurement by locating sensors
at specific points of interests in the physical domain is
common and feasible in engineering practice. The estimation
error dynamics define a non-self-adjoint Sturm-Liouville



problem, which includes the to-be-designed observer gain.
Similarly to the controller case, Galerkin projection is used
to reduce the Sturm-Liouville problem to a pole placement
problem. In this case, the eigenfunctions obtained by solving
the Sturm-Liouville problem associated with the uncontrolled
error dynamics are used during the Galerkin projection.

Sano employed output feedback in [12] to stabilize the
first order heat exchanger PDEs using Huang’s result on the
spectrum determined growth assumption. More work along
this line can be found in [13], [14] and references therein.
However, the analytical study of the spectra associated with
the closed-loopC0-semigroup is complicated. The second-
order nature of the parabolic PDE under consideration in
this work makes the spectral analysis even more complex
when designing the state observer based on the boundary
measurement (by duality the feedback mechanism is similar
to that in [12]). The contribution of our work resides on
the development of numerical algorithms for the design of
an explicit control law with a proportional feedback kernel
function (infinite dimensional proportional control) which
stabilize the infinite dimensional system. The observer design
can be seen as the dual formulation of the stabilization prob-
lem. Both the controller and observer designs are formulated
as Sturm-Liouville problems that can be solved with the
pseudospectral-Galerkin method.

The paper is organized as follows. We present the bound-
ary control in Section II. An infinite-dimensional interior
control is presented in Section III. A simulation study for the
infinite-dimensional controller is carried out in Section IV,
where both the numerical scheme and a numerical example
are discussed. We close this paper by stating conclusions and
future research topics in Section V.

II. B OUNDARY CONTROL

We consider the control Lyapunov function

V (ψ) :=
1

2
‖ψ‖2 =

1

2

∫ 1

0

|ψ(x, t)|2dx :=
1

2
〈ψ, ψ〉, (3)

where‖ · ‖ is the usual norm inL2(0, 1), and 〈·, ·〉 is the
inner product. We compute the time derivative of the control
Lyapunov functionV to obtain

V̇ =

∫

Ω

ψψt =

∫

Ω

ψ [ψxx + f(x)v(t) + λψ]

= ψ(1)ψx(1) −
∫

Ω

ψ2
xdx+

∫

Ω

[
λψ2 + v(t)fψ

]
dx.

(4)

We can find thatV̇ can be positive to make the system
(1) unstable whenλ is sufficient large. To enhance the
negativeness oḟV , we can letw(t) = −kwψ(1, t), wherekw

is the feedback gain. Although it may be possible to stabilize
the unstable system (1) without using interior control by
carefully choosingkw high enough, in this paper we set
kw = 1 to avoid high boundary control action and follow
a combined boundary-interior control approach, i.e.,

w(t) = −ψ(1, t). (5)

Substituting the feedback law (5) into (1), the PDE system
becomes

{
ψt = ψxx + λψ + fv,

ψx(0, t) = ψx(1, t) + ψ(1, t) = 0.
(6)

This is an unstable system ifλ is sufficiently large, and we
will use the interior controlv to stabilize it in this work.

III. I NFINITE-DIMENSIONAL INTERIOR FEEDBACK

A. Control Design

We propose an interior feedback control with the following
proportional kernel form:

v(t) = −
∫

Ω

kvf(y)ψ(y, t)dy, (7)

where the feedback gainkv is to be determined. Then, the
closed–loop system takes the form of





ψt = ψxx −

∫

Ω

kvf(x)f(y)ψ(y, t)dy + λψ,

ψx(0) = ψx(1) + ψ(1) = 0.

(8)

Theorem 1:Given the unstable system (1) and the bound-
ary feedback law (5), the interior feedback (7) can stabilize
the system if the eigenvalues of the following system satisfies
µ < 0:





X ′′ −

∫

Ω

kvf(x)f(y)X(y)dy + λX = µX,

X ′(0) = X ′(1) +X(1) = 0.

(9)

Proof: Using the variable separation method(ψ(x, t) =
X(x)T (t)), we can rewrite the system (8) as

Ṫ (t)

T (t)
=

[
X ′′(x) −

∫
Ω
kvf(x)f(y)X(y)dy + λX(x)

]

X(x)
= µ,

with the boundary condition given byX ′(0)T (t) =
[X ′(1) +X(1)]T (t) = 0. Thus, we obtain the eigenvalue
problem (8) and the temporal equatioṅT (t) − µT (t) = 0
which has exponentially stable solution ifµ < 0.

Therefore, the stabilization problem becomes to solve
the integro-differential equation (9). Based on the feedback
kernel function chosen in (7), we can prove that all the
eigenvalues governed by (8) are real numbers.

Theorem 2:The eigenvalues of the Sturm-Liouville sys-
tem (9) are real numbers.

Proof: We introduce the operatorS1 associated with
(9) (S1g)(x) = d2g

dx2 −
∫
Ω kvf(x)f(y)g(y)dy + λg(x), with

the domainD(S1) = {g ∈ H2; g′(0) = g′(1) + g(1) =
0} andH2 = {g; g, g′ andg′′ ∈ L2(0, 1)}. We can show
that S1 is self-adjoint, i.e, giveng1, g2 ∈ D(S1), it satisfies



〈g2, S1g1〉 = 〈g1, S1g2〉:

〈g2, S1g1〉 =

∫ 1

0

d2g1

dx2
g2dx

−
∫ 1

0

∫ 1

0

kvf(x)f(y)g1(y)dyg2(x)dx +

∫ 1

0

λg1g2dx

= −g1(1)g2(1) −
∫ 1

0

g′1g
′
2dx

− kv

∫ 1

0

f(y)g1(y)dy

∫ 1

0

f(x)g2(x)dx +

∫ 1

0

λg1g2dx

=

∫ 1

0

g1g
′′
2dx

− kv

∫ 1

0

f(x)g1(x)dx

∫ 1

0

f(y)g2(y)dy +

∫ 1

0

λg2g1dx

= 〈g1, S1g2〉.
(10)

It is known that self-adjoint operators have real
eigenvalues.

Therefore, the stabilization problem is to find a feedback
gain kv such that all the eigenvalues of the operatorS1 are
negative. However, the associated Sturm-Liouville problem
for feedback design can not be solved explicitly for a general
control functionf(x) and numerical methods are necessary.
The Sturm–Liouville problem of (8), whenkv = 0, is

φ′′n = −γ2
nφn, φ

′
n(0) = φ′n(1) + φn(1) = 0, n ∈ N. (11)

We assume that the solution of (9) can be approximated as

X(x) ≈
Ic∑

i=1

aiφi(x), (12)

whereIc is a truncation number of the infinitely many basis
functions provided by (11), andai, (i = 1, 2, · · · , Ic) are
constants. Then, we can multiply both sides of (9) byφj

and integrate over[0, 1] to obtain

−
Ic∑

i=1

aiφi(1)φj(1) −
∫ 1

0

Ic∑

i=1

aiφ
′
i(x)φ

′
j(x)dx

− kv

Ic∑

i=1

ai

∫ 1

0

∫ 1

0

f(x)f(y)φi(y)φj(x)dydx

+ λ

Ic∑

i=1

ai

∫ 1

0

φi(x)φj(x)dx

= −
Ic∑

i=1

[φi(1)φj(1)] ai −
Ic∑

i=1

[∫ 1

0

φ′i(x)φ
′
j(x)dx

]
ai

− kv

Ic∑

i=1

[fifj] ai + λ

Ic∑

i=1

[∫ 1

0

φi(x)φj(x)dx

]
ai

= µ

Ic∑

i=1

[∫ 1

0

φi(x)φj(x)dx

]
ai.

(13)

We introduce the matrix notation

A1(i, j)=φi(1)φj(1), A2(i, j) =

∫ 1

0

φ′i(x)φ
′
j(x)dx (14)

A3(i, j)=fifj =

∫ 1

0

∫ 1

0

f(x)f(y)φi(y)φj(x)dydx, (15)

A4(i, j)=

∫ 1

0

φi(x)φj(x)dx, a = [a1, · · · , aIc
]T , (16)

and rewrite (13) to obtain the finite dimensional representa-
tion of (9):

(−A1 − A2 − kvA3 + λA4)a = µA4a. (17)

To make equation (17) have non-trivial solutions, we must
satisfy the following equation with respect toµ:

det((µ− λ)A4 + A1 + A2 + kvA3) = 0. (18)

Therefore, the stabilization problem is to find a control gain
kv to place the roots of (18) on the left half plane (ℜ(µ) < 0).

B. Observer Design

We can assume that the observer takes the following form




ψ̂t = ψ̂xx + f(x)v + λψ̂ + ko(x)

[
ψ(1) − ψ̂(1)

]

ψ̂x(0) = ψ̂x(1) + kwψ(1) = 0
(19)

whereko(x) is the observer gain to be designed. We define
e = ψ − ψ̂, which is governed by

{
et = exx + λe− ko(x)e(1),

ex(0) = ex(1) = 0.
(20)

We use the variable separation method(e(x, t) = Y (x)T (t))
to obtain the Sturm–Liouville problem of (20),

{
Y ′′ − ko(x)Y (1) + λY = νY,

Y ′(0) = Y ′(1) = 0,
(21)

where ν can be a complex number since the operator
S2ϕ = d2ϕ(x)

dx2 − ko(x)ϕ(1) + λϕ(x) over the domain
D(S2) = {ϕ ∈ H2;ϕ′(0) = ϕ′(1) = 0} is non self-adjoint,
i.e., 〈ϕ2, S2ϕ1〉 6= 〈ϕ1, S2ϕ2〉, ∀ϕ1, ϕ2 ∈ D(S2). We can
explicitly solve the eigenvalue problemS2ϕ = νϕ, ν ∈ C,
when ko(x) is a simple function, such as a constant or a
harmonic function as discussed below. However, a numerical
approach is needed in the general case.

1) Constant gain:If the feedback gain in the observer is
a constantko, the Sturm-Liouville problem (21) becomes

d2ϕ(x)

dx2
− koϕ(1) + λϕ(x) = νϕ(x), (22)

dϕ

dx
(0) =

dϕ

dx
(1) = 0. (23)

We first check thatν = λ is not the eigenvalue. Ifν =
λ, we have the solutionϕ(x) = C1x

2 + C2x + C3, where
C1, C2, C3 are constants determined byϕ′(0) = C2 = 0,
ϕ′(1) = 2C1 = 0, but ϕ′′(x) = 2C1 = 0 6= koϕ(1). Then
ν 6= λ and the general solution is given by

ϕ(x)=C1 cos(
√
ν − λx)+C2 sin(

√
ν − λx)+

koϕ(1)

ν − λ
, (24)



whereC1 andC2 are constants. WhenC1 = C2 = 0, we
have a constant solution,

ϕ(x) =
−koϕ(1)

ν − λ
=⇒ ν = −ko + λ. (25)

Then, we can find that a constant gainko can change the
eigenvalueλ. The general solution (24) satisfies the boundary
conditionsϕ′(0) = ϕ′(1) = 0 whereC1(6= 0) andC2(= 0)
are constants to be determined by the boundary conditions
(23), i.e.,
{
C1

√
ν − λ sin(0)−C2

√
ν − λ cos(0)=0,

C1

√
ν − λ sin(

√
ν − λ)−C2

√
ν − λ cos(

√
ν − λ)=0.

(26)

Then, the eigenvalueν is determined bysin(
√
ν − λ) = 0

which is independent ofko. This is an interesting result
that shows that a constant gainko can only change the
eigenvalue corresponding to the first constant eigenfunction.
Therefore, to design an effective observer based on the
point measurement output, a gain function including positive
frequency harmonics is required.

2) Harmonic function gain:We choose sine functions as
the feedback gain, i.e.,ko(x) = sin(nπx), n ∈ N, then (21)
becomes

d2ϕ(x)

dx2
− ko sin(nπx)ϕ(1) + λϕ(x) = νϕ(x), (27)

dϕ

dx
(0) =

dϕ

dx
(1) = 0, (28)

whose solution is given by

ϕ(x)

koϕ(1)
=

nπ sin
√
ν − λx√

ν − λ(ν − λ− n2π2)
− sin(nπx)

ν − λ− n2π2

+
nπ cos(

√
ν − λx)(cos

√
ν − λ− cos(nπ))√

ν − λ(ν − λ− n2π2) sin(
√
ν − λ)

, (29)

whenν 6= λ, ν−λ 6= n2π2 andν−λ 6= nπ. The other cases
are

ν = λ :
ϕ(x)

koϕ(1)
=

sin(nπx) − 1

n2π2
, (30)

ν = λ+ n2π2 :
ϕ(x)

koϕ(1)
=
enπ(1−x)[enπ − (−1)n]

2n2π2(−1 + e2nπ)

− enπx [(−1)nenπ − 1]

2n2π2(−1 + e2nπ)
+

sin(nπx)

2n2π2
, (31)

ν = λ+ nπ :
ϕ(x)

koϕ(1)
=

e
√

nπx
[
−1 + (−1)ne

√
nπ

]

(1 + nπ)
√
nπ

(
−1 + e2

√
nπ

)

− e
√

nπ(1−x)[(−1)n−e
√

nπ]

(1 + nπ)
√
nπ

(
−1 + e2

√
nπ

) +
sin(nπx)

nπ(1 + nπ)
. (32)

By makingx = 1 in (29), we can obtain the characteristic
equation forν (n ∈ N, ν 6= λ, ν−λ 6= n2π2 andν−λ 6= nπ):
√
ν−λ(ν−λ−n2π2) sin

√
ν−λ+konπ

[
(−1)ncos

√
ν−λ−1

]
=0.

(33)

We neglect the other three cases in (30)–(32), since the
eigenvalueν is positive and not of our interest. Therefore,

the eigenvalues of the operatorS2 is given by σ(S2) :=
{ν : equation(33)} ∩ {ν : ν 6= λ} ∩ {ν : ν − λ 6=
nπ} ∩ {ν : ν − λ 6= n2π2}. The stabilization problem is to
find a feedback gainko such that the roots of (33) inσ(S2)
reside on the left half plane. However, this is a transcendental
complex equation and not always able to be solved explicitly.
Therefore, numerical computation is necessary to solve the
Sturm-Liouville problem (21) associated with the observer
design problem.

3) General function gain - Numerical approach:The
Sturm–Liouville problem of (20), whenko(x) = 0, is

ϕ′′
n = −ω2

nϕn, ϕ
′
n(0) = ϕ′

n(1) = 0, n ∈ N. (34)

We assume the solution of (21) can be expressed as

Y (x) ≈
Io∑

i=1

biϕi(x), (35)

whereIo is a truncation number of the infinitely many basis
functions provided by (34), andbi, (i = 1, 2, · · · , Io) are
constants. Then, we can multiply both sides of (21) byϕj

and integrate over[0, 1] to obtain

−
∫ 1

0

Io∑

i=1

biϕ
′
i(x)ϕ

′
j(x)dx −

Io∑

i=1

biϕi(1)

∫ 1

0

ko(x)ϕj(x)dx

= (ν − λ)

∫ 1

0

Io∑

i=1

biϕi(x)ϕj(x). (36)

We introduce the matrix notation

B1(i, j) = 〈ϕi, ϕj〉, (37)

B2(i, j) = 〈ϕ′
i, ϕ

′
j〉, (38)

B3(i, j) = ϕi(1)ko,j , (39)

whereko,j =
∫ 1

0 ko(x)ϕj(x)dx, and rewrite (36) to obtain
the finite dimensional representation of (21):

(λB1 − B2 − B3)b = νB1b. (40)

To ensure that equation (40) has non-trivial solutionb :=
[b1, b2, · · · , bIo

]T , we require

det((λ − ν)B1 − B2 − B3) = 0. (41)

Therefore, the observer design problem is to findko,j such
that the roots of (41) reside on the left half plane, i.e.,ℜ(ν) <
0.

IV. SIMULATION STUDY

A. Numerical Approach

The closed–loop system is governed by the following
coupled PDEs:






ψt = ψxx − f(x)

∫ 1

0

kvf(y)ψ(y, t)dy + λψ,

+ f(x)

∫ 1

0

kvf(y)e(y, t)dy,

et = exx + λe− ko(x)e(1),

ψx(0) = ψx(1) + ψ(1) = 0,

ex(0) = ex(1) = 0.

(42)



Defining an operator

S0e := f(x)

∫ 1

0

kvf(y)e(y, t)dy, (43)

we can rewrite the closed–loop system (42) as

d

dt

(
ψ

e

)
=

(
S1 S0

0 S2

) (
ψ

e

)
(44)

where the separation principle holds (see, e.g., [1]) to ensure
closed–loop stability.

For the numerical simulation, we can use the Galerkin
method to solve the closed–loop system (42). We make the
following expansion

ψ(IN ) =

IN∑

i

zi(t)φi(x), e(IN ) =

IN∑

i

εi(t)ϕi(x), (45)

where the basis functions{φi}IN

i=1 and {ϕi}IN

i=1 solve (11)
and (34), respectively. We note that the index“IN” in
deriving the numerical scheme in this Section is always
chosen larger than or equal to“Ic” and“Io” in Section III.
Now we substitute (45) into the system (42) and use Galerkin
projection to obtain






IN∑

i=1

〈φi, φj〉żi = −
IN∑

i=1

φi(1)φj(1)zi −
IN∑

i=1

〈φ′i, φ′j〉zi

− kv

IN∑

i=1

fifjzi + λ

IN∑

i=1

〈φi, φj〉zi

+ kvfj

∫ 1

0

f(y)e(IN )(y, t)dy,

IN∑

i=1

〈ϕi, ϕj〉ε̇i = −
IN∑

i=1

〈ϕ′
i, ϕ

′
j〉εi + λ

IN∑

i=1

〈ϕi, ϕj〉εi

−
IN∑

i=1

ϕi(1)ko,jεi.

(46)
We first solve theε–equations in (46), then substitute
e(IN )(x, t) =

∑IN

i=1 εi(t)ϕi(x) into thez– equations in (46)
to solve the state equations. Defining

z = (z1, z2, · · · , zIN
)T , ε = (ε1, ε2, · · · , εIN

)T , (47)

A1(i, j) = φi(1)φj(1), A2(i, j) =

∫ 1

0

φ′i(x)φ
′
j(x)dx (48)

A3(i, j) = fifj =

∫ 1

0

∫ 1

0

f(x)f(y)φi(y)φj(x)dydx, (49)

A4(i, j) =

∫ 1

0

φi(x)φj(x)dx, (50)

B1(i, j) = 〈ϕi, ϕj〉, B2(i, j) = 〈ϕ′
i, ϕ

′
j〉, (51)

B3(i, j) = ϕi(1)ko,j, F(j) = fj

∫ 1

0

f(y)e(IN )(y, t)dy, (52)

we can rewrite system (46) as





A4
dz

dt
= −(A1 + A2 + kvA3 − λA4)z + F(ε),

B1
dε

dt
= −(B2 − λB1 + B3)ε.

(53)

Remark 1: It is interesting to note that the closed–loop
system (53) can be rewritten in the complex domain by using
the Laplace transform (assuming the initial values are zeros):

{
sA4ž = −(A1 + A2 + kvA3 − λA4)ž + F̌ ,
sB1ε̌ = −(B2 − λB1 + B3)ε̌,

(54)

wheref̌ is defined as the Laplace transform, i.e.,

f̌(s) =

∫ ∞

0

estf(t)dt, s ∈ C. (55)

Then, we can obtain the characteristic equations for both the
state and observer equations

|sA4 + (A1 + A2 + kvA3 − λA4)| = 0, (56)

|sB1 + B2 − λB1 + B3)| = 0, (57)

which become the design conditions obtained in (18) (ifIc =
IN ) and (41) (ifIo = IN ), respectively.

B. Numerical Examples

In this subsection, we assume the input functionf(x) =
cos(0.86x) + fh cos(9.53x) and λ = 10, where fh is a
constant. We solve the Sturm–Liouville problem (11) to
obtain the first four eigenvaluesγ1 = 0.86, γ2 = 3.43, γ3 =
6.44, γ4 = 9.53 and associated eigenfunctions

φ1(x) = cos(.86x), φ2(x) = cos(3.43x),

φ3(x) = cos(6.44x), φ4(x) = cos(9.53x).

We solve the Sturm-Liouville problem (34) forn = 0 and
n ∈ N: νn = nπ, ϕn(x) = cos(νnx).

The stabilization and observer design problems are to find
kv ∈ R, and ko(x) such that (18) and (41) have all the
roots on the left half plane, i.e.,ℜ(µ) < 0, ℜ(ν) < 0. For
the feedback gain design, we chooseIc = 3 and compute
the matrices defined in (14)–(16). The characteristic equation
(18) becomes

c0µ
3 + c1µ

2 + c2µ+ c3 = 0, (58)

where the coefficientsci, (i = 0, 1, 2, 3) are given by

c0 = 0.2176, (59)

c1 = 0.2763kv + 5.2039, (60)

c2 = 9.1672kv − 54.9763, (61)

c3 = 15.0723kv − 109.9055. (62)

By using the Hurwitz stability criterion, we can obtain the
stability condition with respect to the feedback gainkv:

ci > 0, (i = 2, 3), andc1c2 > c0c3 ⇒ kv > 5.9256. (63)

We choose that the observer gain function takes the form
of ko(x) = a + b cos(πx). Let Ic = 3, then we compute
the matrices defined in (37)–(39). The characteristic equation
(41) becomes

d0ν
3 + d1ν

2 + d2ν + d3 = 0, (64)
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Fig. 1. Simulation of the controlled system without observer (kv = 12).
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Fig. 2. Simulation of the observer equation (a = 12, b = 0.8).

where the coefficientsdi, (i = 0, 1, 2, 3) are given by

d0 = 0.25, (65)

d1 = 0.25a− 0.50b+ 4.84, (66)

d2 = 7.34a− 9.74b− 74.33, (67)

d3 = −.96a+ 147.39b+ 9.61. (68)

By using the Hurwitz stability criterion, we can obtain the
stability condition with respect to(a, b):

di > 0, (i = 1, 2, 3), andd1d2 > d0d3. (69)

For the numerical simulation, we chooseIN = 4 and
compute the matrices defined in (48)–(52). We choosekv =
12, a = 12, b = 0.8 to satisfy the stability conditions (63)–
(69). Whenfh = 0, i.e., there is no truncation error for
the input functionf(x) involved in the control design, the
closed–loop dynamics is shown in Fig. 1, and the observer
dynamics is shown in Fig. 2. The observer–based feedback
system dynamics is shown in Fig. 3.

V. CONCLUSIONS

Sturm–Liouville theory and numerical spectral analysis
of differential operators are used in this work to approach
the stabilization problem of an unstable parabolic PDE
with constant diffusion coefficient. This method reduces the
control synthesis for linear PDE systems to a parametric
stabilization problem for a Sturm-Liouville system, whichis
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Fig. 3. Simulation of the controlled system with observer.

solved using the finite dimensional truncation approach based
on the pseudo-spectral method. The design of a state observer
based on a boundary measurement is also approached in
this work. Analytical and numerical work is carried out for
the solution of the Sturm-Liouville system arising during
the observer design in terms of three different scenarios
for the observer gain: constant, harmonic and general gains.
The analysis concludes that it is required to have harmonic
components in the observer gains instead of pure constants.
A numerical algorithm using the pseudo-spectral method is
proposed for the observer design with general gain.
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