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Abstract— The stabilization of an unstable linear parabolic of the reduce-then-design method is the inherent loss of
partial differential equation (PDE) system with both Neumann  information due to the truncation before control design.

boundary control and interior control is considered in this Moreover. the order of the model truncation is a trade-off
work. Point output measurement is available at one end of the ’

physical domain. The choice of a proportional output feedbak between model accuracy and real time computa_uon. A_Imear
boundary control is justified by Lyapunov analysis while the ~approach based on the reduced order model is carried out
design of the interior control is carried out based on the Stum-  in [4] to study the problem of global stabilization of a semi-
Liouville theory. A proportional state feedback is proposel for  |inear dissipative evolution equation by the Lyapunov tech

the interior control with a symmetric kernel function, and t he ; g ; ;
i o . nique in finite dimensional controls. Bounds of the Lyapunov
pseudospectral method is used to solve the stability condihs d yap

governed by the Sturm-Liouville systems. In addition, an SNer9Yy W?th respect to the negle_Cted higher order compsnent
observer is designed using the point measurement at one end &reé obtained to avoid the spillover phenomenon due to
of the physical domain, and used to propose an observer-base nonlinear couplings. Model reduction using the approxenat

feedback controller for the PDE system. Both controller and inertial manifold of dissipative systems [5] ensures globa

observer gains are designed numerically to make the eigenkees oAt Sdar ; _ _
of the associated Sturm-Liouville problems stable. Simuldons stabilization by considering the higher-mode-componasts

show the effectiveness of the proposed controller, a singular perturbation to the finite dimensional lower-mod
components.
|. INTRODUCTION Instead of implementing model reduction before control

The stabilization of linear distributed parameter systemdesign, we follow a reduce-then-design method [11] in this
has been an active area of research for more than one decak. We consider a proportional type interior control for
now (e.g., [1], [2], [3], [4], [5] and references thereinh | the unstable PDE system. An integral operation for the
this paper, simultaneous boundary and interior control agyoduct of the proportional feedback kernel gain and the
employed for the the stabilization of an unstable linear pasystem state is used for the PDE stabilization in this paper,
abolic partial differential equation (PDE) system desedib €.9.,v(t) = fol kv f(y)¥(y,t)dy, where f(y) is the control

by actuation function and:, is the to-be-designed gain. By
Yy = Y + f(2)0(E) + M), substituting the proposed proportional control law inte th
{ $u(0,8) = 0, (1, 1) = w(t), (1) unstable PDE system, we use the variable separation method
to obtain a self-adjoint Sturm-Liouville problem assoetht
y(t) = (1, 1), (2) with the closed—loop system (i.e., the spectral conditions

of the closed-loopCy-semigroup), which includes the to-
be-designed feedback controller gain (e.g., kernel fongti
The closed—loop Sturm-Liouville system is an integro—
differential-type two boundary value problem which does
not admit an analytical solution in general, and numerical

with respect to the interior contral(t), and w(t) is the X : . X
Neumann boundary control. After justifying the choice of amethods are necessary for its solution. Using the eigenfunc
tions obtained from the uncontrolled Sturm-Liouville prob

proportional output feedback boundary control by LyapunO\) .
analysis, the design of the interior control is carried cagdil lem (relevant to the boundary feed_back design), we apply
on the Sturm-Liouville theory. the pseudospectral method to rewrite the controlled Sturm-

Model reduction is commonly implemented via theLiouville problem as a finite dimensional matrix eigenvalue
method of lines (MOL) ([6], [7], [8], [9], [10]) in order to problem, which can be equivalently considered as a pole

obtain finite dimensional lumped—parameter represemi‘:z;ttioplacement problem for PDE systems.

of the original PDE systems. This is referred to as the reduce The spatial-temporal state information needed in the pro-

then-design approach in [11]. The control of the reduce bosed proportional control law makes it impractical sirfds t

order system can be carried out by applying different exgsti information is usually not available. Therefore, an observ

finite dimensional control techniques. However, a drawbactl? est!r_nate the SPat"'%'.‘tempofa' state information isghesd
exploiting the availability of point measurement at one efd
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over the spatial-temporal domaipy = {(z,t) : z € Q =
[0,1],¢ € [0, 00)}; where(z, t) is the system state(t) is
the system outputp(> 0) is a sufficiently large number
to make the system unstabl¢(x) is the input function



problem, which includes the to-be-designed observer gaiBubstituting the feedback law (5) into (1), the PDE system
Similarly to the controller case, Galerkin projection ids becomes

to reduce the Sturm-Liouville problem to a pole placement

problem. In this case, the eigenfunctions obtained by sglvi Yy = Yoo + A + fo,

the Sturm-Liouville problem associated with the uncoréal Ve (0,8) = 1y (1,) + (1, 1) = 0.
error dynamics are used during the Galerkin projection.

~ Sano employed output feedback in [12] to stabilize g j5 an unstable system & is sufficiently large, and we
first order heat exchanger PDEs using Huang's result on they \,se the interior controb to stabilize it in this work.
spectrum determined growth assumption. More work along

this line can be found in [13], [14] and references therein.
However, the analytical study of the spectra associateld wit Ill. | NFINITE-DIMENSIONAL INTERIOR FEEDBACK
the closed-loopCy-semigroup is complicated. The second-
order nature of the parabolic PDE under consideration in. Control Design
this work makes the spectral analysis even more complex
when designing the state observer based on the boundaryVe propose an interior feedback control with the following
measurement (by duality the feedback mechanism is simil@foportional kernel form:
to that in [12]). The contribution of our work resides on
the development of numerical algorithms for the design of o(t) = _/ ko f (1) (y, t)dy, @)
an explicit control law with a proportional feedback kernel Q
function (infinite dimensional proportional control) whic o )
stabilize the infinite dimensional system. The observeiges Where the feedback gaib, is to be determined. Then, the
can be seen as the dual formulation of the stabilization-proslosed—loop system takes the form of
lem. Both the controller and observer designs are formdlate
as Sturm-Liouville pro_blems that can be solved with the {d)t = Yy _/ ko f(2) f () (y, )dy + M,
pseudospectral-Galerkin method. Q

The paper is organized as follows. We present the bound- V2 (0) = 92 (1) + (1) = 0.
ary control in Section Il. An infinite-dimensional interior
control is presented in Section IIl. A simulation study foet ~ Theorem 1:Given the unstable system (1) and the bound-
infinite-dimensional controller is carried out in Sectiow, | ary feedback law (5), the interior feedback (7) can stadiliz
where both the numerical scheme and a numerical examplee system if the eigenvalues of the following system sasisfi
are discussed. We close this paper by stating conclusiahs gn < 0:
future research topics in Section V.

Il. BOUNDARY CONTROL { X"~ /Q ko f(z)f(y) X (y)dy +AX = pX, ©)

X'(0)=X'"(1)+X(1)=0.
Proof: Using the variable separation meth@tlz, ) =
1, o 1 [1 ) 1 ite th
V() = 2”% - 5/0 p(z, )| 2da = 5@,’@, (3) X(x)T'(t)), we can rewrite the system (8) as

(6)

(8)

We consider the control Lyapunov function

where || - || is the usual norm inz?(0,1), and (-, ) is the ~ 1(t) _ [X" (@) — Jo ko f(2)f ()X (y)dy + AX (x)]

inner product. We compute the time derivative of the controll’(t) X (z) o
Lyapunov functionV to obtain
with the boundary condition given byX'(0)T(t) =
V= / Yy = / Y e + f(z)0(t) + M) [X'(1) + X (1)]T(t) = 0. Thus, we obtain the eigenvalue
Q Q (4) problem (8) and the temporal equatid@i{t) — pT(t) = 0
= (1), (1) — / V2dx +/ (A% + 0(t) f] da. which has exponentially stable solutiongif< 0. u
Q Q Therefore, the stabilization problem becomes to solve

We can find that/” can be positive to make the Systemthe integro-differential equation (9). Based on the feellba

(1) unstable when\ is sufficient large. To enhance thek_ernel function chosen in (7), we can prove that all the
negativeness of, we can letw(t) = ko (1, ), wherek, eigenvalues governed by (8) are real numbers.
is the feedback gain. Although it may be possible to stabiliz Theorem 2:The eigenvalues of the Sturm-Liouville sys-
the unstable system (1) without using interior control byem (9) are real numbers.
carefully choosingk,, high enough, in this paper we set ~ Proof: We introduce the operatdf; associated with
k, = 1 to avoid high boundary control action and follow (9) (S1g)(z) = % — Jo ko f (@) f(y)g(y)dy + Ag(z), with
a combined boundary-interior control approach, i.e., the domainD(S1) = {g € H?¢'(0) = ¢'(1) + g(1) =
0} and H? = {g;9, ¢’ andg” € L?(0,1)}. We can show
w(t) = =¢(1,1). () thats; is self-adjoint, i.e, givery:, g» € D(S1), it satisfies



(g2, 5191) = (g1, 5192): We introduce the matrix notation

1
5190 = [ B Ml =006 (). M) = [ el (@t (14)

1 1
11 1 i, j)=fifj = . ()65 (x ..
[ [ rs@iwawan@as [gga A0 || r@tmes @ds. as)

1
! Ai,':/ J(2)d;(x)dx, a=la, - ,ar]", 16
0 and rewrite (13) to obtain the finite dimensional representa

1 1 1 .

—ky / fW)g1(y)dy / f(@)g2(x)dr + / A\g1godx  tion of (9):
0 0 0

1 (—A1 —As — ky,Az + /\A4) a = uA,a. (17)

1
= d . . .
/0 919247 To make equation (17) have non-trivial solutions, we must
) /1 o (@) /1 F)ar(y)d 1 \ p satisfy the following equation with respect to
— kv x)g1(x)dx ¥)92(y y+/ g2g1dx
0 0 0 det((u — A)A4 + A1 + A2 + kvAg) =0. (18)

= (o1, S1g2). Therefore, the stabilization problem is to find a controingai

k, to place the roots of (18) on the left half plad&(f:) < 0).
It is known that self-adjoint operators have realg Qpserver Design

(10)

eigenvalues. [ ] .
W that the ob takes the foll f
Therefore, the stabilization problem is to find a feedback © can assume fhat the observer taxes the Tollowing form
gain k, such that all the eigenvalues of the operagprare Uy = o + f(2)0 + A + ko() [¢(1) — @(1)]

negative. However, the associated Sturm-Liouville proble (19)

for feedback design can not be solved explicitly for a genera | ¥=(0) = ¢2(1) + kwt)(1) = 0
control functionf(z) and numerical methods are necessaryyherek, (x) is the observer gain to be designed. We define

The Sturm-Liouville problem of (8), wheh, = 0, is e =1 — 1), which is governed by
= —Y2bn, ¢,(0) = ¢,(1) + ¢n(1) =0, n €N, (11) et = €aa + Ae = ko(2)e(1), (20)
ex(0) =e,(1) =0.

We assume that the solution of (9) can be approximated as _ _
We use the variable separation methiefl, t) = Y (x)T'(t))

1. to obtain the Sturm—Liouville problem of (20),
X(x) ~ ibi(x), 12
(CC) ; a;¢ (w) (12) vy _ ko(l')y(l) + \Y =Y, (21)
. . e . Y'(0)=Y'(1) =0,

wherel, is a truncation number of the infinitely many basis

functions provided by (11), and;, (i = 1,2,---,1.) are where v can be a complex number since the operator
constants. Then, we can multiply both sides of (9)dy S = ddfff) — ko(z)p(1) + Ap(z) over the domain
and integrate ovel0, 1] to obtain D(S2) = {p € H?¢'(0) = ¢/(1) = 0} is non self-adjoint,

, , i.e., (p2,5201) # (1, 5202), V1,02 € D(S2). We can

< L explicitly solve the eigenvalue probleyy = v, v € C,
- Zai¢i(1)¢j(1) —/0 Zai¢§(w)¢§ (x)dz when k,(x) is a simple function, such as a constant or a
i=1 i=1

¢ " harmonic function as discussed below. However, a numerical
c 1 1 . .
‘ ‘ . approach is needed in the general case.
—ky Zal/o /0 F(@)f(y)¢i(y)¢;(x)dydz 1) Constant gain:If the feedback gain in the observer is
;:1 ) a constant,, the Sturm-Liouville problem (21) becomes
20 fy et AD hpl1) + 2p(e) = vpla), (22)
I. I. 1 dp o« dp o
—- Y laemla-3| [ s a0 =g,0=0 23)
1:1] Iizl 0 We first check thatr = X is not the eigenvalue. If =
- = ! A, we have the solutiop(z) = Ci2? + Cyx + C3, where
- kvz[fifj] i +)‘Z /o (bi(x)‘bj(x)dx} di C1,Cs,Cy are constants determined by (0) = Cy = 0,
L =t ¢'(1) = 2C; = 0, but " (z) = 201 = 0 # kop(1). Then
_ ui: |:/1 5@, (x)dx} .. v # X and the general solution is given by
i=1 /0

(13) @(x)=C1 cos(Vv — Ax)+Cy sin(vv — Ax)+ k;‘i(i\) (24



whereC; and C; are constants. Whe@; = C; = 0, we the eigenvalues of the operatSh is given by o(S3) :=

have a constant solution, {v : equation(33)} N{v : v £ X}n{v :v—-X#
k(1) nm} N{v:v — X # n?x%}. The stabilization problem is to
p(x) = V%/\ = v=—k,+ A (25) find a feedback gaik, such that the roots of (33) in(Ss)

] ) reside on the left half plane. However, this is a transcetaden
Then, we can find that a constant gaip can change the ¢omplex equation and not always able to be solved explicitly

conditions¢’(0) = ¢'(1) = 0 whereCy(# 0) andC5(= 0)  sturm-Liouville problem (21) associated with the observer
are constants to be determined by the boundary condﬂmagsign problem.

(23), i.e., 3) General function gain - Numerical approachfhe
On/v = Asin(0)—Cav/vr — A cos(0)=0 Sturm-Liouville problem of (20), whek,(z) = 0, is

’ 26
{CI\/V — Asin(vv — A\)=Cov/v — A cos(vVv — X)=0. (26) O = —wion, ©,(0) = ¢, (1) =0, neN.  (34)

Then, the eigenvalue is determined byin(v/z — ) = 0 We assume the solution of (21) can be expressed as
which is independent of,. This is an interesting result I,

that shows that a constant gaky can only change the Y(z) ~ Zbisoi(:v), (35)
eigenvalue corresponding to the first constant eigenfancti i=1

Therefore, to design an effective observer based on theherel, is a truncation number of the infinitely many basis

point measurement output, a gain function including pesiti functions provided by (34), and;,(: = 1,2,---,1,) are
frequency harmonics is required. constants. Then, we can multiply both sides of (21)y
2) Harmonic function gain:We choose sine functions asand integrate ovef0, 1] to obtain
the feedback gain, i.ek,(z) = sin(n7z), n € N, then (21) 11 I 1
becomes - [ S nt@ey @z = Y bi) / kol)p; (2)de
d2 =1 1=1
AD e sin(nmr)o(1) + Ag(e) = vola),  (27) | L
dp — =N [ 3 bigila)es(a) (36)
ZO == =0, (28) 0 S
P We introduce the matrix notation
whose solution is given by
Bi(¢,7) = {(¢i,pi), 37
o(x) nwsinyv — Az __ sin(nma) 1(1’]) <<'0/ (pf> (37)
kop(1) Vv —Av—A—n2r2) v—\—n2r2 Bz(w) = (¢, ;) (38)
L n cos(vv — Ax)(cos Vv — X\ — cos(nT)) (29) Bs(i,j) = ¢i(1ko,;, (39)

wherek, ; = fol ko(x)pj(z)dx, and rewrite (36) to obtain
the finite dimensional representation of (21):

V= Xv — X —n2a2)sin(vv — )

whenv # )\, v—\ # n?7? andv — \ # nw. The other cases

are ()\Bl — BQ — Bg) b = VBlb. (40)

s o(x)  sin(nmz) —1 (30) To ensure that equation (40) has non-trivial solutlon=
veA kop(1) n2n2 [b1, b2, ,br,]T, we require

A png2.  P@) eI — (—1)"] det((\ — v)By — By — B3) = 0. (41)

- 2.-2(__ 2nm
kotp(1) 2n2me( 1.+ e?nm) Therefore, the observer design problem is to find such
e [(=1)"e™™ — 1]  sin(nwx) y

_ that the roots of (41) reside on the left half plane, iRfy) <
2n2m2(—1+ e2n) 2n2n2 (31) 0. o)

eVnTT [—1 + (_1)71@\/%}

g ' o(x) V. SIMULATION STUDY
Y= e kow(1) (1 +nm)y/nm (—1+e2vn7)  A. Numerical Approach
VAT (l—2)[(~1)"—eV"7] sin(nmz) The closed-loop system is governed by the following

— . (32 :
(14 nr)y/nw (—1 + e2vnr) + (1 + nr) (32)  coupled PDEs:

1
By makingz = 1 in (29), we can obtain the characteristic Yy = Ygp — f(:z:)/ ko f ()Y (y, t)dy + b,
equation forr (n € N, v # A\, v—X\ # n?x? andv—X\ # nr): 0

1
\/FA(U—A—TLQFQ) sinvﬁ—_)\—l—komr{(—l)"cos \/ﬁ—_)\—l} =0. + f(fE) ‘/0 kvf(y)e(y, t)dya (42)
(33) et = ezx + Ae — ko(z)e(1),
We neglect the other three cases in (30)=(32), since the [ ¥=(0)=1x(1)+ (1) =0,

eigenvaluev is positive and not of our interest. Therefore, ex(0) = ez(1) = 0.



Defining an operator Remark 1:It is interesting to note that the closed-loop

1 system (53) can be rewritten in the complex domain by using
Spe = f(:c)/ ko f(y)e(y, t)dy, (43) the Laplace transform (assuming the initial values areero
0
we can rewrite the closed—loop system (42) as sAyz = —(A; + As + by Az — ALz + F, (54)
8815 = —(BQ - /\Bl + 33)&:,

alc)=(v8)(0) e

where the separation principle holds (see, e.g., [1]) taens
closed—loop stability. T /Oo st

For the numerical simulation, we can use the Galerkin f(s) = 0 e f(tydt, s eC. (55)
method to solve the closed—loop system (42). We make t
following expansion

where f is defined as the Laplace transform, i.e.,

hﬁmn, we can obtain the characteristic equations for bath th
state and observer equations

IN IN
PN =N "z (t)gi(z), N =N ei(t)pi(x),  (45) |sAs+ (A1 + Az + ko As — AM4)| =0, (56)
i i |sB1 + By — ABy + B3)| = 0, (57)

where the basis function§p; }/~, and {¢;}/¥, solve (11)
and (34), respectively. We note that the indéky” in
deriving the numerical scheme in this Section is aIwaygN
chosen larger than or equal td.” and “I,” in Section IlI. B. Numerical Examples
Now we substitute (45) into the system (42) and use Galerkin

which become the design conditions obtained in (18)(i
) and (41) (ifI, = Iy), respectively.

projection to obtain In this subsection, we assume the input functjfin) =

In In In c0s(0.86x) + frcos(9.53z) and A = 10, where f, is a
g = — (D) (1)z; — A constant. We solve the Sturm-Liouville problem (11) to

;<¢ 032 ; Pi1);(1)z ;<¢“ 95) obtain the first four eigenvalueg = 0.86, vo = 3.43, 73 =

6.44, v4 = 9.53 and associated eigenfunctions

IN IN
—ky Zl fifizi+ A 2<¢i’ P5)%i ¢1(z) = cos(.86z), ¢a(x) = cos(3.43x),
T - ¢3(z) = cos(6.44z), a(z) = cos(9.53z).
+kfy [ )™ w0,

We solve the Sturm-Liouville problem (34) for = 0 and

In In In n € N: v, = nm, o, () = cos(vpx).
D pipi)éi == (e epei+AD (pies)e The stabilization and observer design problems are to find
=1 =1 =1 k, € R, and k,(x) such that (18) and (41) have all the
N roots on the left half plane, i.eR(x) < 0, R(v) < 0. For
- 2;90i(1)k0=j5i' the feedback gain design, we choake= 3 and compute

(46 the matrices defined in (14)—(16). The characteristic egquat

We first solve thes—equations in (46), then substitute(18) becomes
eV (z,1) = YOI &;(t)pi(z) into the z— equations in (46)

3 2
. . cop” +ep + capp+c3 =0, 58
to solve the state equations. Defining oK LA 2T (58)

2= (21,20, 21,) T, e = (e1, 9, 1) T, (47) where the coefficients;, (i =0, 1,2, 3) are given by
! =0.2176 (59)
Ai(i,5) = ¢; (1 »1,Az’,'=/ i(x)¢ (z)dz (48 €0 ’
16.0) = 6:(1)6,(1), Aaling) = [ (@0 @ (48) O antie 4 52050 0
1 1
Asis ) = fifs :/ / F@) ()61 (0); (2)dyda, (49) ¢y = 9.1672k, — 54.9763, (61)
o o do cs = 15.0723k, — 109.9055. (62)
Ay (i, ) :/O ¢i(z)¢; (z)dz, (50) By using the Hurwitz stability criterion, we can obtain the

Bi(iyg) = (pisi)s  Baliyf) = (¢, ¢;>’ (51) stability condition with respect to the feedback g&in

1
Bs(i, j) = ¢i(1koj, F(j) = f; /0 F)e™) (y, t)dy, (52)

we can rewrite system (46) as

c; >0, (Z = 2,3), and0102 > cocg = ky > 5.9256. (63)

We choose that the observer gain function takes the form
of k,(x) = a + beos(nz). Let I. = 3, then we compute
the matrices defined in (37)—(39). The characteristic equat

dz
A4$ = —(./41 + Ay + ky Az — )\A4)Z + .7:(6), (53) (41) becomes

de
B = —(By — ABy + Bs)e. dov® + div? 4 dov 4 d3 = 0, (64)



t 00 X

Fig. 1. Simulation of the controlled system without obser{/e, = 12).

e(x,t)

t 00 X

Fig. 2. Simulation of the observer equation £ 12,b = 0.8).

where the coefficientd;, (i = 0, 1,2, 3) are given by

do = 0.25, (65)
dy = 0.25a — 0.50b + 4.84, (66)
dy = 7.34a — 9.74b — 74.33, (67)
ds = —.96a + 147.39b + 9.61. (68)

By using the Hurwitz stability criterion, we can obtain the

stability condition with respect tfa, b):

d; >0, (i=1,2,3), anddids > dods. (69)

For the numerical simulation, we choode = 4 and
compute the matrices defined in (48)—(52). We chogse
12,a = 12,b = 0.8 to satisfy the stability conditions (63)—
(69). When f;, = 0, i.e., there is no truncation error for
the input functionf(x) involved in the control design, the

closed—loop dynamics is shown in Fig. 1, and the observ@io]
dynamics is shown in Fig. 2. The observer—based feedback

system dynamics is shown in Fig. 3.

V. CONCLUSIONS

t 00 X

Fig. 3. Simulation of the controlled system with observer.

solved using the finite dimensional truncation approackdtas
on the pseudo-spectral method. The design of a state olpserve
based on a boundary measurement is also approached in
this work. Analytical and numerical work is carried out for
the solution of the Sturm-Liouville system arising during
the observer design in terms of three different scenarios
for the observer gain: constant, harmonic and general gains
The analysis concludes that it is required to have harmonic
components in the observer gains instead of pure constants.
A numerical algorithm using the pseudo-spectral method is
proposed for the observer design with general gain.
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