
DYNAMIC OPTIMIZATION OF A HETEROGENEOUS SWARM OF ROBOTS

Miles C. D. Pekala
Department of Electrical Engineering

Lehigh University
Bethlehem, PA

mcp7@lehigh.edu

Eugenio Schuster
Department of Mechanical Engineering

Lehigh University
Bethlehem, PA

schuster@lehigh.edu

ABSTRACT
The control mechanisms of swarms of cooperating robots
have been studied for some time now, but usually assuming
homogeneous swarms. This paper presents a control al-
gorithm for a heterogeneous swarm of cooperating robots
based on a modification of the ant colony optimization
(ACO) method. We consider the possibility of a partially
disabled robot, we analyze the effect it would have on a het-
erogeneous swarm of robots, and we discuss how to work
around the disability. We examine the effectivness of this
control algorithm through a simulation study. For this pur-
pose, a biologically inspired strategy is used for the move-
ment of the robots.

KEY WORDS
Heterogeneous Swarm Optimization, Ant Colony Opti-
mization

1 Introduction

There has been a great deal of research recently with re-
gard to the application of emergent intelligence in swarms
of robots. Many different researchers have illustrated co-
operation between different individuals in a swarm. For
instance, researchers managed to build a team of similar
robots that surmount holes when encountering them [1, 2].
They accomplished this by letting the robots form chains
when encountering a hole that was too wide for a single
robot to traverse. Researchers at the University of Alberta
made robots clear a platform for possible other construc-
tion [3]. Other accomplishments include getting a robot
to autonomously choose a construction site [4] and many
others.

Most cooperating swarms have been homogeneous
with regard to their component robots, i.e., any particular
robot can take on any particular task. A significant problem
arises when one wants to introduce heterogeneous robots
into the swarm; some robots may not be physically capa-
ble of doing all the jobs a task requires. For example if a
job requires a flying robot, a robot unable to fly would be
physically incapable of completing the job. A similar prob-
lem occurs when considering a robot that becomes disabled
during the course of a task. The main goal of this paper is
to develop a method or algorithm that can control a hetero-
geneous swarm in an optimal manner to accomplish any

particular task without human intervention. To accomplish
this, we propose a modified version of a popular aggrega-
tion strategy, the Ant Colony Optimization (ACO) method,
set forth in [5] by Dorigo and coworkers.

The ACO method was developed by considering the
movement of ants. If there are two paths between two
points, say a piece of food and a home, the ants pick the
shorter one. This is due to the fact that ants reach the goal
and return on the shorter path before they do on the longer
path, resulting in a greater amount of pheromones on the
shorter path. Ants choose which path to traverse by the
amount of pheromone on each path, and thus, they are more
likely to take the shorter, more-pheromone-laden path.

A number of papers ([6], [7], [8], [9], [10], and [11])
deal with this sort of optimization. Two of them ([8] and
[9]) deal with a straightforward application of the ACO
method in the Traveling Salesman Problem (TSP). Due to
the effectiveness of this method in solving TSPs, ACO is
used extensively in telecommunications for routing. In this
paper, a modified version of the ACO method is used to
solve a TSP where the nodes are robot jobs instead of cities.
The modified (or dynamic) ACO method proposed in this
work allows the drop and addition of nodes, an incomplete
circuit, and the modification of job efficiencies. This allow
us to optimize each robot in our swarm to work through the
task in the most efficient order, and to effectively drop any
job the robot is incapable of doing.

2 Dynamic ACO

The dynamic ACO method used in this paper is a modi-
fication of the classic ant system, described in [5], to ac-
count for dynamic alteration. A dynamic ACO can be best
explained as an ACO implementation in which either the
nodes or path length between the nodes vary during the op-
eration of the ACO. Nodes may either be deleted or come
into existence during the operation of the ACO, and path
lengths may increase or decrease depending on external
factors beyond the control of the ACO system. The ques-
tion becomes how does one optimize the ACO system when
such things are occurring?

Already some research has been done on dy-
namic ACO algorithms with some notable work done by
Merkle [12] and Guntsch [13, 14]. These researchers ex-
plored the possibility of a dynamic ACO system that solves

a TSP that has nodes removed or added during the ACO
process, developing several strategies to deal with such a
system. Others such as Montemanni [15] explored a dy-
namic vehicle routing problem in which the new orders for
a delivery service are received and must be incorporated
optimally in each vehicles route. Although this prior work
is not specifically relevant to our particular problem, it pro-
vides us with a good starting point in developing a dynamic
strategy for job selection.

3 A Modifed Dynamic ACO Algorithm for
Job Selection

Since our optimization algorithms attempt to fit any robot
with a particular job, we shall divide the task in to a set of
sub-tasks (called “jobs” in this paper) which, when com-
pleted, make up the entire task. The different jobs are rep-
resented as nodes in the ACO algorithm.

To design the Modified Dynamic ACO (MDA) algo-
rithm, we first define the “distance” between job nodes as
the quality of the job done by the robot. In the case that we
consider here, the quality is defined as the time it takes for
the robot to finish each job. Upon completion of each job,
the quality is incorporated into a quality matrix. The qual-
ity matrix is a square matrix of order equal to the number
of jobs. Each column represents the current job and each
row represents the next job. Each position in each column
represents the probability for the robot to switch to the job
represented by the associated row. After the completion
of each job, the job quality is averaged with the quality in
the row corresponding to the current job and in the column
corresponding to the previous job. In doing this, the MDA
method judges itself on the quality of the job it does after
transitioning from a previous job. A quality matrix can be
defined for each agent as

Q =

⎡
⎢⎣

q1,1 · · · q1,n

...
. . .

...
qn,1 · · · qn,n

⎤
⎥⎦ , (1)

where n is the number of jobs. Each entry in this matrix
represents the quality of each job the robot completes when
transitioning from another job. Since this matrix essentially
represents the edge lengths between nodes, this is essen-
tially a TSP. Running the ACO on this TSP produces the
quickest cycle though these jobs.

We run the ACO through the values in the transition
matrix as the edge lengths between nodes. Once the ACO is
completed, a job cycle can be generated by simply letting a
single ant walk through the weighted paths of this TSP. The
ant keeps track of which nodes it has visited, and simply
walks through with the same probabilistic functions as the
ants who generated the weighted paths. Once the ant has
visited all the nodes, the sequence of nodes it has visited is
what we call a job cycle.

An issue arises when an robot cannot complete a job
due to either injury or design. What is it to do then? The

job remains in the robot’s undone job queue, and the robot
keeps attempting to do it until the job is completed. Since
the robot cannot do the job, it will wait in it states in this
situation forever. To fix this, a job timeout can be added,
where the agent attempt to do a job for a certain amount of
time and if the job remains unfinished when the timeout oc-
curs, the robot switches to another job. However, the prob-
lem remains that eventually the robot returns to the job that
it cannot complete. If the robot cannot physically complete
the job, then it should not try to do the job in the future.
Allowing the ACO to do an incomplete circuit (a “loop”
or “looping” as refered to in this paper) enables the robot
to do another job without completing an entire cycle. An-
other problem arises here if the problem is time based, i.e.,
something has not occurred so the robot cannot complete
the job at the given time but may at some point in the fu-
ture. This eventually resolves itself as the robot completes
all possible jobs and it is only left with the job it previously
could not complete. The likelihood of it switching to the
job it could not do previously would then increase due to
the inability to do any other job.

4 Simulator Design

A simulator was programmed to test the MDA. Using this
simulator, the MDA can be compared against an unop-
timized approach based on a basic sequential job selec-
tion, and data can be gathered without the need for a large
amount of expenditure on robots. Each robot of the simula-
tor should accurately represent a robot in real life, properly
simulating all of its attributes. The robots should also be
implemented in such a way that a large amount of different
robots can be achieved with relative ease.

4.1 Tasks and Jobs

To test the MDA we require a task, which is defined in this
case as a simple food-gathering task. The overall goal of
the system is to gather food at the home base (or “kitchen”
as it is referred to in this paper) from any food source in
the surrounding area. The task is further complicated by
requiring that the food brought to the kitchen be stacked
(piled) on one another. Therefore, we have three jobs:

1. Scouting: Agents with the “Scouting” job will wander
around looking for a source of food. When food is
found, the agents will return to the kitchen with the
glorious news.

2. Transporting: Agents with the “Transportation” job
will look for the source of food that the scouts found,
grab a piece of food, and take it to the kitchen.

3. Stacking: Agents with the “Stacking” job will take a
piece of food in the kitchen and place it on another
piece of food.

These three tasks then have the following job transition
conditions:

1. When “Scouting” is finished and the agent has re-
turned to the kitchen, switch to another job.

2. When “Transportation” is finished (i.e., a piece of
food is brought to the kitchen), switch to another job.

3. When another piece of food is found in the kitchen,
and the agent is currently doing the “Stacking” job,
stack the food in the cargo and switch to another job.

If the agent is “Stacking” and the job timer expires, drop
the food in the cargo and switch to another job.

The basic route through this task consists on each job
being done in turn (i.e., 1, 2, 3, 1, 2, 3, . . .). This is referred
to as basic sequential (BS) job selection in the rest of the
paper, and it is used to be compared with the MDA algo-
rithm proposed in this work.

Along with the robot, the food attributes must also be
defined with regard to the simulator. Although significantly
simpler than the robot design, a piece of food should have
similar properties, that is, a physical representation in the
field and a location within the arena. For this simulator, a
field is required for the robots to act upon. The field is a
simple arena consisting of walls, obstacles, and a kitchen.
The field does not specify food and robots, nor does any
other possible dynamic object. Rather, the field is simply a
static representation of the environment.

4.2 A Pheromone Based Movement Strategy

The movement strategy is biological inspired by the ant be-
havior, i.e., it is based on the pheromone concept explained
above. This movement algorithm produces a faster task
completion when compared with a simple collision avoid-
ance algorithm. This is because the algorithm directs the
robots towards the food more often than not. As such, this
movement strategy is used in conjunction with the MDA.
The movement algorithm works without knowledge of the
surrounding area, it requires little pre-processing, and it is
a dynamic method.

For this pheromone inspired movement strategy, a
normal ACO cannot be used as it is not a general enough
implementation. While the normal ACO would be excel-
lent if we were attempting to find the fastest method to
solve a TSP, it is not very good when we try to implement
movement. Each pixel would have to be considered a node
(assuming we do not use some sort of map division strat-
egy) and the map would have to be known. However, using
the fact that our robots are meant to more probably follow a
pheromone than not, we can generate a movement strategy.

First, let us define the pheromone the robot lays down.
Each robot lays down a pheromone trail of width W and of
strength S. The width is in pixels since we are working in
a digital environment. The strength S is a number that rep-
resents the amount of pheromone that is laid down. For the
simulator, each robot lays down this trail on a pheromone
map that is of the same height and width as our field. As
the robots run around the field, they lay pheromone down

behind them. After each “tick” (.1666th of a second) of
the simulator, the pheromone currently on the field evap-
orates with a predefined evaporation rate. The robot sees
the pheromone in its proximity and more probably gen-
erates a heading towards the area with a larger amount
of pheromone. We use a truncated normal distribution to
choose a direction based on the pheromone levels.

Next, let us define how each robot moves on the
board. Each robot has a probabilistic weight associated
with its movement based on the amount of pheromone it
sees. It is more probable to move in the direction of the
pheromone than not. We must also include a weight to pre-
vent the robot from crashing into some obstacle in the field,
that is, a weight dependant on a non-collision strategy. For
our purposes, a basic non-collision movement strategy can
be used. For each robot with an array of distance sensors,
a weighted combination of the angle of the sensor, with re-
spect to the normal direction of the sensor, and its distance
is generated. From this weighted value an overall heading
can be obtained. This strategy is simple and serves our pur-
pose well while not interfering with the robot moving on
the pheromone trails.

The pheromone-based movement (PBM) algorithm
combines the heading from the sensors with the heading
generated by the pheromone. This combination provides a
heading that has a good probablity to follow the pheromone
avoiding collisions. When applied, this movement algo-
rithm generates very good pheromone following robots.

It is also possible to generate a simpler movement
strategy by just using the weighted sensor information and
disregarding the pheromone data. This basic movement
(BM) algorithm is also considered for the simulation cases
presented below.

4.3 A simulation run

In figure 1 we can see a typical simulation run. Five robots
are working together to find 15 pieces of food, bring them
back, and stack them in a designated kitchen area. Each
robot is represented by a colored rectangle with a point on
the end (different colors indicate different jobs being exe-
cuted by the robots), while the black polygons are simple
obstacles, and the yellow circles are pieces of food. This
configuration of 5 robots and 15 pieces of food are used
in every simulation run presented below. The lines being
drawn from each robot are the pheromone trails for the
movement strategy.

Figure 2 shows the consequence of an inappropriate
pheromone evaporation rate. The robots create pheromone
“black holes” during the simulation of the pheromone-
based movement strategy. The robots initally move in a
circle because of some reason (usually object avoidance)
and then get stuck. This is because the pheromones do not
evaporate quickly enough, and they reinforce each time the
robots go around. This can be fixed by adjusting the evapo-
ration constant, and the probability for the robots to follow
a pheromone.

Figure 1. A typical simulation run of one set of robots

Figure 2. A circle being generated by the pheromone move-
ment strategy

5 Discussion of results

The simulator was run several times with several different
configurations to ensure the validity of our results. Fig-
ures 3 and 4 show some of the runs (denoted as “series”
in the figures), illustrating at what time (vertical axis) each
piece of food (horizontal axis) is stacked in the kitchen, and
therefore the progress of the task. Figure 3 illustrates the
Modified Dynamic ACO (MDA) job selection algorithm,
while figure 4 illustrates the simpler basic sequential (BS)
job selection algorithm. Both cases are simulated using the
pheromone based movement (PBM) strategy. Since a total
of 15 pieces of food are laid out, when 15 pieces of food
are stacked, the simulation is considered to be completed.
The disparity in the two different runs in figure 3 are due
to the randomness associated with the MDA algorithm, in
particular at the beginning of the task (see below).

Figure 5 compares the food delivery times for dif-
ferent algorithms: MDA job selection algorithm with
pheromone-based movement strategy (MDA/PBM), basic
sequential job selection algorithm with pheromone-based
movement strategy (BS/PBM), and basic sequential job se-
lection algorithm with a basic movement strategy that dis-
regards pheromone information (BS/BM). In the beginning
of the simulation, the MDA shows a lack of optimization.
This is because the MDA has yet to adjust itself to the task,
and all jobs are equally probable. The MDA algorithm
starts out with poor effiency due to the fact that the job is
randomly selected at the beginning. This creates a period
at the beginning of the run where a robot may be in an un-
completable task. In the sequential selection algorithm, the
first job is completable at the beginning of the run, and the
first piece of food can be grabbed faster.

In this simulation example, the sequential job cycle
turns to be the most efficient way to complete the task. It
is possible to note from figures 5 and 6 that the MDA algo-
rithm eventually optimizes itself to be sequential. Figure 5

Figure 3. Food delivery times for a Modified Dynamic
ACO (MDA) job selection algorithm with a Pheromone
Based Movement (PBM) strategy

Figure 4. Food delivery times for a basic sequential (BS)
job selection algorithm with a Pheromone Based Move-
ment (PBM) strategy

Figure 5. Comparison of food delivery times for different
job selection methods

Figure 6. Optimized and unoptimized transition (quality)
matrices

shows that the necessary time to complete the task (i.e., to
gather the 15 pieces of food) for the MDA/PBM algorithm
is comparable with that for the BS/PBM algorithm. Fig-
ure 6 shows the unoptimized and optimized job transition
matrices, which evolve during the run of the simulator. The
black color represents a probability of 1, a white color rep-
resents a probability 0, and shades of gray are intermedi-
ate probabilities. The colors in the optimized job transition
matrix indicate a sequential job selection.

Since a pure sequential job selection appears to be the
optimal route through the task in this simulation example,
the loss of time in the beginning of the optimization causes
most of the MDA job selection simulations to be slightly
longer than the sequential job selection counterparts. This
can be seen in figure 7, where the task completion times
for different methods are compared in several simulation
runs. Besides the MDA/PBM, BS/PBM, and BS/BM algo-
rithms described above, a reverse sequential job selection
algorithm with a basic movement strategy that disregards
pheromone information (RS/BM) is also presented. In this
case, the jobs are executed sequentially in the 3-2-1 order.
It is easy to note that the reverse sequential algorithm is
outperformed by the sequential algorithms and the MDA
algorithm, which in fact evolves into a sequential algorithm
in this simulation example.

In this simulation example, each robot is fully capable
of doing every single job. When the simulation is run with
some disabled robots, the MDA algorithm absolutely out-
performs the sequential job selection algorithms indepen-
dently of the movement strategy considered for the simu-
lation. This is because the MDA algorithm allows the job
selection to loop, and complete the task without having to
wait for jobs to time out.

Another interesting thing occurs when looping is al-
lowed in the job selection algorithm. In this case, any re-
dundant job is no longer attempted to be completed. In
many of the simulations using looping, the first job, “scout-
ing”, was ignored by the majority of the robots.

Figure 7. Task completion time comparison

6 Final Thoughts

Upon review of the data, one should see that there is sig-
nificant promise in the MDA method for the optimization
of jobs. The MDA job selection seems to perform poorly
at first when compared to the sequential job selection, al-
though this is due to the fact that sequential is indeed the
most efficient way to complete the task for the example
considered in this work. One can imagine a more complex
task in which the most optimal job order is not as readily
apparent. Additionally, it has been proved in simulations
that the MDA algorithm beats the sequential job selection
algorithm when broken or partially disabled robot are con-
sidered. This is explained by the fact that each robot is able
to drop whatever job it cannot complete (looping), and go
on to another job without having to let its job timer expire.
This is interesting, since in dealing with a TSP and the ant
colony simulation, looping is undesirable, yet here it is very
desirable. In the conventional ACO/TSP, looping confines
your solution set, while here looping is almost required for
completing the task in an optimal way.

References

[1] Nouyan S., Dorigo M., Chain Formation in a Swarm
of Robots, Technical Report TR/IRIDIA/2004-18,
IRIDIA, March 2004.

[2] Trianni V., Nolfi S., Dorigo M., Cooperative Hole
Avoidance in a Swarm-bot , Robotics and Au-
tonomous Systems, Feb. 2006, vol. 54, no. 2, pp. 97-
103

[3] Parker, Chris A. C., Zhang, Hong and Kube, Ronald
C. Blind Bulldozing: Multiple Robot Nest Construc-
tion, In proceedings of IROS2003. (2003), Oct. 2003,
pp. 2010- 2015

[4] Sahin E., Franks N.R., Simulation of Nest Assess-
ment Behavior by Ant Scouts,Proceedings of ANTS

2002: From Ants Colonies to Artificial Ants, 3rd In-
ternational Workshop on Ants Algorithm, 2002, vol.
2463, pp. 274-282

[5] M. Dorigo, V. Maniezzo, and A. Colorni, The ant sys-
tem: optimization by a colony of cooperating agents,
IEEE Transactions on Systems, Man, and Cybernetics
, Feb 1996, Part B, vol. 26, no. 1, pp. 29-41

[6] H.M. Botee and E. Bonabeau, Evolving ant colony
optimization, Advances in Complex Systems, 1999,
vol. 1, no. 2/3, pp. 149-159

[7] A. Colorni, M. Dorigo, and V. Maniezzo, Distributed
optimization by ant colonies, Proc. First European
Conference on Artificial Life , 1992 , pp. 134-142

[8] L.M. Gambardella and M. Dorigo, Solving symmetric
and asymmetric TSPs by ant colonies, Proc. IEEE In-
tenational Conference on Evolutionary Computation,
May 20-22 1996, pp. 622-627

[9] M. Dorigo and L.M. Gambardella, Ant colonies for
the traveling salesman problem, BioSystems, 1997,
vol. 43, pp. 73-81

[10] H. Kawamura, M. Yamamoto, K. Suzuki, and A.
Ohuchi, Multiple ant colonies algorithm based on
colony level interactions, IEICE Transactions on
Fundamentals , Feb. 2000, vol. E83-A, no. 2, pp.371-
379

[11] .D. Taillard, Ant systems, Technical report IDSIA-05-
99 , IDSIA, Lugano, 1999, Handbook of Applied Op-
timization.

[12] D. Merkle, M. Middendorf, A New Approach
to Solve Permutation Scheduling Problems with
Ant Colony Optimization,Applications of Evolution-
ary Computing : EvoWorkshops 2001: EvoCOP,
EvoFlight, EvoIASP, EvoLearn, and EvoSTIM, 2001,
vol. 2037, pp. 484

[13] M. Guntsch, M. Middendorf, Pheromone Modifica-
tion Strategies for Ant Algorithms Applied to Dy-
namic TSP, Applications of Evolutionary Computing :
EvoWorkshops 2001: EvoCOP, EvoFlight, EvoIASP,
EvoLearn, and EvoSTIM, 2001, vol. 2037, pp. 213

[14] M. Guntsch, M. Middendorf, and H. Schmeck.,
An Ant Colony Optimization Approach to Dynamic
TSP,In L. S. et al., editor, Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO-2001), 2001, pages 860-867

[15] R. Montemanni,, L.M. Gambardella, A.E. Rizzoli, A.
V. A new algorithm for a Dynamic Vehicle Routing
Problem based on Ant Colony System, Technical Re-
port IDSIA-23-02, IDSIA, 2002

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

