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Abstract: Active closed-loop control of the plasma safety factor profile (q-profile) and internal
energy dynamics in nuclear fusion tokamak devices has the potential to significantly impact
the success of the ITER project. These plasma properties are related to both the stability and
performance of a given plasma operating scenario. In this work, we develop integrated feedback
control algorithms to control the q-profile and internal energy dynamics in DIII-D advanced
tokamak (high performance) scenarios. The feedback controllers are synthesized by embedding
a nonlinear, physics-based, control-oriented partial differential equation model of the plasma
dynamics into the control design and to be robust to uncertainties in the plasma electron density,
electron temperature, and plasma resistivity profiles. The auxiliary heating and current-drive
system and the total plasma current are the actuators utilized by the feedback controllers
to control the plasma dynamics. Finally, the feedback controllers are tested both through
simulations based on the physics-based model and experimentally in the DIII-D tokamak.

1. INTRODUCTION

One of the most promising magnetic confinement devices
utilized to create the conditions necessary for thermonu-
clear fusion to occur is the tokamak (Wesson (2004)). In
a tokamak, externally applied magnetic fields are used to
confine a reactant gas, which is in the plasma state, in a
fixed volume by exploiting the plasma’s ability to conduct
electrical current. Two properties that are often employed
to define a plasma operating scenario are the safety factor
profile (q-profile), which is related to the plasma stability
and performance, and the normalized plasma beta (βN ),
which is a measure of the confinement efficiency of the
plasma magnetic configuration (Wesson (2004)). There-
fore, closed-loop q-profile and plasma βN control has the
potential to significantly impact the success of the ITER
project, which is the next phase of tokamak development.

Closed-loop q-profile control was recently demonstrated in
low confinement (L-mode) (Wesson (2004)) scenarios at
the DIII-D tokamak (Barton et al. (2012); Boyer et al.
(2013, 2014)). The utilized controllers were synthesized by
embedding a nonlinear, physics-based, partial differential
equation (PDE) model of the plasma dynamics into the
control design. In this work, we extend this control phi-
losophy to develop feedback algorithms for integrated q-
profile and plasma βN control in DIII-D high confinement
(H-mode) advanced tokamak scenarios (Wesson (2004)).
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The coupling between the plasma magnetic and kinetic
states increases in H-mode scenarios (characterized by
transport barriers (Wesson (2004)) just inside the plasma
boundary) through the increase of the noninductive boot-
strap current (a self-generated current) (Peeters (2000)).
In Barton et al. (2013), a general control-oriented physics-
based modeling approach has been developed to convert
the first-principles physics model that describes the plasma
poloidal magnetic flux profile evolution (related to the q-
profile) into a form suitable for control design, with empha-
sis on H-mode scenarios. The plasma internal energy (re-
lated to the plasma βN ) is modeled by a volume-averaged
plasma energy balance equation. Feedback algorithms to
control the q-profile and plasma βN evolutions in H-mode
scenarios in DIII-D are developed by embedding these
physics-based models of the plasma dynamics into the con-
trol synthesis. Additionally, the controllers are designed to
be robust to uncertainties in the plasma electron density,
electron temperature, and plasma resistivity profiles. The
actuators used to control the plasma dynamics are the
auxiliary heating and current-drive (H&CD) system and
total plasma current. Finally, the controllers are tested
both through simulations based on the physics-based mod-
els of the plasma dynamics and experimentally in DIII-D.

2. PLASMA STATE EVOLUTION MODELS

A well confined tokamak plasma equilibrium is charac-
terized by the formation of nested surfaces of constant
poloidal magnetic flux. In this work, the magnetic flux



surfaces are indexed by their mean effective minor radius,
ρ, i.e., Φ(ρ̂) = πBφ,0ρ

2, where Φ is the toroidal magnetic
flux and Bφ,0 is the vacuum toroidal magnetic field at the
geometric major radiusR0 of the tokamak. The normalized
effective minor radius is defined as ρ̂ = ρ/ρb, where ρb is
the mean effective minor radius of the last closed magnetic
flux surface.

The q-profile is related to the spatial gradient of the
poloidal magnetic flux Ψ and is defined as

q(ρ̂, t) = −dΦ

dΨ
= − dΦ

2πdψ
= −Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ̂
, (1)

where t is the time and ψ is the poloidal stream function,
which is closely related to the poloidal flux (Ψ = 2πψ).
The plasma βN is related to the volume-averaged plasma
internal energy E and is defined as

βN = βt[%]
aBφ,0
Ip

βt =
〈p〉V

B2
φ,0/(2µ0)

=
(2/3)(E/Vp)

B2
φ,0/(2µ0)

, (2)

where βt is the toroidal plasma beta (Wesson (2004)),
a is the plasma minor radius, Ip is the total plasma
current (evaluated in units of MA), p is the plasma ki-
netic pressure, 〈·〉V denotes the volume-average operation
1/Vp

∫
V

(·)dV , V is the volume enclosed by a magnetic
flux surface, Vp is the total plasma volume, and µ0 is
the vacuum magnetic permeability. Therefore, the q-profile
and plasma βN can be controlled if we are able to control
the poloidal flux gradient profile, which we define as

θ(ρ̂, t) ≡ ∂ψ/∂ρ̂(ρ̂, t), (3)

and the plasma internal energy, assuming the magnetic
geometry is time invariant and the system is controllable.

We begin by converting the physics model that de-
scribes the poloidal magnetic flux profile evolution in
the tokamak (the magnetic diffusion equation (Hinton
and Hazeltine (1976))) into a form suitable for control
design. The auxiliary H&CD actuators on DIII-D con-
sidered in this work are 1 effective electron cyclotron
(gyrotron) microwave launcher and 6 co-current neutral
beam injectors (NBI), which are referred to by the names
[30L/R,150L/R,330L/R], where L and R denote left and
right NBI lines, respectively. In the H&CD scheme con-
sidered, the gyrotrons inject power into the plasma in the
spatial region ρ̂ ∈ [0.3, 0.7], the 30L/R and 330L/R neutral
beams inject power into the plasma with a deposition
profile that is peaked at the magnetic axis (referred to
as on-axis NBI), and the 150L/R neutral beams inject
power into the plasma with a deposition profile that is
peaked away from the magnetic axis in the spatial region
ρ̂ ∈ [0.3, 0.5] (referred to as off-axis NBI) (Barton et al.
(2013)). The magnetic axis is the limiting magnetic flux
surface at the center of the plasma. Simplified physics-
based models of the noninductive current-drives are dis-
cussed in Barton et al. (2013). The auxiliary gyrotron
and neutral beam current-drives are proportional to the
current-drive efficiencies Te/ne and

√
Te/ne, respectively,

where Te and ne are the electron temperature and den-
sity profiles, respectively. The bootstrap current (jbs) is
proportional to the inverse of the poloidal flux gradient
profile multiplied by the kinetic plasma profile gradients,
i.e., jbs ∝ (θ)−1[ne

∂Te
∂ρ̂ + Te

∂ne
∂ρ̂ ].

We define ranges in which the electron density and tem-
perature profiles are expected to be in typical DIII-D

advanced scenarios, which are shown in Figs. 1(a-b).
We model these parameters as a nominal profile plus a
bounded uncertain profile, i.e.,

ne(ρ̂, t) = nnome (ρ̂) + nunce (ρ̂)δne(t), (4)

Te(ρ̂, t) = Tnome (ρ̂) + Tunce (ρ̂)δTe(t), (5)

where the nominal (nnome , Tnome ) and uncertain profiles
(nunce , Tunce ) are defined in terms of the maximum and
minimum profiles shown in Figs. 1(a-b), with |δTe | ≤ 1 and
|δne | ≤ 1. The plasma resistivity is inversely related to the
electron temperature (minimum resistivity is defined by
the maximum electron temperature), and the resistivity
range is shown in Fig. 1(c). Additionally, the parameters√
Te and 1/ne are related to the electron temperature and

density, respectively. These parameters are modeled as

η(ρ̂, t) = ηnom(ρ̂) + ηunc(ρ̂)δTe(t), (6)√
Te(ρ̂, t) = Tnom

′

e (ρ̂) + Tunc
′

e (ρ̂)δTe(t), (7)

1/ne(ρ̂, t) = nnom
′

e (ρ̂) + nunc
′

e (ρ̂)δne(t), (8)

where the nominal (ηnom, Tnom
′

e , nnom
′

e ) and uncertain

(ηunc, Tunc
′

e , nunc
′

e ) profiles are defined in terms of the
maximum and minimum profiles shown in Fig. 1.

By combining the magnetic diffusion equation (Hinton
and Hazeltine (1976)) with the noninductive current-drive
models (Barton et al. (2013)) and the models (4)-(8), the
PDE governing the evolution of θ is given by

∂θ

∂t
= [q1(ρ̂) + q4(ρ̂)δTe ]

∂2θ

∂ρ̂2
+ [q2(ρ̂) + q5(ρ̂)δTe ]

∂θ

∂ρ̂

+ [q3(ρ̂) + q6(ρ̂)δTe ] θ +
∑

i

[
g′i(ρ̂) + h′i(ρ̂)δne

+k′i(ρ̂)δTe + l′i(ρ̂)δTeδne +m′i(ρ̂)δ2
Te

+p′i(ρ̂)δ2
Teδne

]
Pi(t)−

[
gbs(ρ̂) + hbs(ρ̂)δne + kbs(ρ̂)δTe

+lbs(ρ̂)δTeδne +mbs(ρ̂)δ2
Te + pbs(ρ̂)δ2

Teδne
](1

θ

)2
∂θ

∂ρ̂

+
[
g′bs(ρ̂) + h′bs(ρ̂)δne + k′bs(ρ̂)δTe + l′bs(ρ̂)δTeδne

+m′bs(ρ̂)δ2
Te + p′bs(ρ̂)δ2

Teδne
](1

θ

)
, (9)

with boundary conditions

θ(0, t) = 0 θ(1, t) = −kIpIp(t), (10)

where i ∈ {ectot, nbi30L/R, nbi150L/R, nbi330L/R}, the pa-
rameters qk(ρ̂), for k = 1, . . . , 6, gi(ρ̂), hi(ρ̂), ki(ρ̂), li(ρ̂),
mi(ρ̂), pi(ρ̂), gbs(ρ̂), hbs(ρ̂), kbs(ρ̂), lbs(ρ̂), mbs(ρ̂), pbs(ρ̂)
are functions of space, (·)′ = d/dρ̂, kIp is a constant, and
Pi(t) is the total gyrotron launcher power and the indi-
vidual neutral beam injection powers, respectively. The
volume-averaged plasma energy balance is given by

dE

dt
= − E

τE(t)
+ Paux(t) = − E

τE(t)
+
∑

i

Pi(t), (11)

where τE(t) is the global energy confinement time, Paux is
the total auxiliary heating power, and we have neglected
the ohmic and radiated power as they are typically small
compared to Paux in the scenarios considered. The en-
ergy confinement time scaling used in this work is the
IPB98(y,2) scaling law (ITER Physics Basis (1999)).

3. SPATIAL DISCRETIZATION OF PDE MODEL

We spatially discretize the governing PDE (9) by employ-
ing a finite difference method, where the spatial domain of
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Fig. 1. Plasma parameter uncertainty ranges: (a) electron density, (b) electron temperature, and (c) plasma resistivity.
Note: nominal values (solid) and minimum/maximum values (dash).
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Fig. 2. Relevant control channels: (a-b) output and (c) input. The decoupled output is defined as ŷ = [ŷθ, ŷE ] where ŷθ

are the system outputs associated with the magnetic states and ŷE is the system output associated with the kinetic
states. The feedback vector components are ufb = [Pectot

, Pnbi150L/R
, Pnbi330L/R

, Ip] where ufb = 0 for Pnbi30L/R
.

Fig. 3. Schematic of feedback control problem formulation.

model suitable for tracking control design. After spatially
discretizing (9) and taking into account the boundary
conditions (10), we obtain a nonlinear, finite dimensional,
ordinary differential equation model defined by

˙̂
θ = fθ(θ̂, u, δ),

where θ̂ = [θi] ∈ Rnθ is the magnetic state vector, θi is
the value of θ at the i-th node, for i = 2, . . . , mθ − 1,
u = [Pectot , Pnbi30L/R

, Pnbi150L/R
, Pnbi330L/R

, Ip]
T ∈ R8 is the

control input vector, δ =
�
δTe , δne , δTeδne , δ

2
Te

, δ2Te
δne

�
∈

R5 is the uncertain parameter vector, fθ ∈ Rnθ is a
nonlinear function of the plasma magnetic states, control
inputs, and uncertain parameters, and nθ = mθ − 2. By
defining the augmented plasma state vector as

x =

�
θ̂
E

�
∈ R(nθ+1),

we can write the magnetic and kinetic state dynamics as

ẋ =




fθ(θ̂, u, δ)

− E

τE
+ Paux


 = Fθ,E(x, u, δ) ∈ R(nθ+1). (12)

Linearizing (12) with respect to the state and control
input around a set of feedforward system trajectories
(xff , uff , δff ), we obtain a linear time-invariant (LTI)
model given by

˙̃x = Ax̃ + Bufb + d y = Cx̃ + Dufb, (13)

with

A = A0 +
5�

m=1

δmAm B = B0 +
5�

m=1

δmBm,

C = C0 +
5�

m=1

δmCm D = D0 +
5�

m=1

δmDm, (14)

where x̃(t) = x(t) − xff (t), ufb(t) = u(t) − uff (t) (ufb(t)
is the output of the to-be-designed feedback controller),
d(t) = Fθ,E(xff , uff , δ)−Fθ,E(xff , uff , δff ), A and B are

the Jacobians ∂Fθ,E/∂x ∈ R(nθ+1)×(nθ+1) and ∂Fθ,E/∂u ∈
R(nθ+1)×8, respectively, evaluated at a specific feedforward
state and input, Ai and Bi, for i = 0, . . . , 5, are the
components of the matrices A and B, respectively, C0 is
an (nθ +1)× (nθ +1) identity matrix, D0 = 0, and Cj = 0
and Dj = 0, for j = 1, . . . , 5.

4. RELEVANT CONTROL CHANNELS

In order to acquire diagnostic data that is needed by the
real-time EFIT (rtEFIT) equilibrium reconstruction code
(Ferron et al. (1998)) to reconstruct the plasma q-profile
for feedback control, the 30L/R neutral beam line powers
need to be constant. Therefore, we do not utilize these
neutral beam lines for feedback control, i.e., ufb = 0 for
Pnbi30L/R

. As a result, we have six actuators we can utilize
in feedback, which implies we can independently control
at most six linear combinations of the system output. To
identify the relevant control channels, we employ a singular
value decomposition (SVD) of the nominal state-space

system y = G0(s)ufb = (C0 (sIn − A0)
−1

B0 + D0)ufb at
a particular frequency.

The real approximation of the nominal input-output rela-
tion at a particular frequency jωdc is expressed as

ŷ = Ĝ0ûfb, (15)

where ŷ denotes the decoupled/relevant output, ûfb de-

notes the decoupled/relevant input, and Ĝ0 denotes the

Fig. 1. Plasma parameter uncertainty ranges: (a) electron density, (b) electron temperature, and (c) plasma resistivity.
Note: nominal values (solid) and minimum/maximum values (dash).
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Fig. 1. Plasma parameter uncertainty ranges: (a) electron density, (b) electron temperature, and (c) plasma resistivity.
Note: nominal values (solid) and minimum/maximum values (dash).
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Fig. 3. Schematic of feedback control problem formulation.

model suitable for tracking control design. After spatially
discretizing (9) and taking into account the boundary
conditions (10), we obtain a nonlinear, finite dimensional,
ordinary differential equation model defined by

˙̂
θ = fθ(θ̂, u, δ),

where θ̂ = [θi] ∈ Rnθ is the magnetic state vector, θi is
the value of θ at the i-th node, for i = 2, . . . , mθ − 1,
u = [Pectot

, Pnbi30L/R
, Pnbi150L/R

, Pnbi330L/R
, Ip]

T ∈ R8 is the

control input vector, δ =
�
δTe

, δne
, δTe

δne
, δ2Te

, δ2Te
δne

�
∈

R5 is the uncertain parameter vector, fθ ∈ Rnθ is a
nonlinear function of the plasma magnetic states, control
inputs, and uncertain parameters, and nθ = mθ − 2. By
defining the augmented plasma state vector as

x =

�
θ̂
E

�
∈ R(nθ+1),

we can write the magnetic and kinetic state dynamics as

ẋ =




fθ(θ̂, u, δ)

− E

τE
+ Paux


 = Fθ,E(x, u, δ) ∈ R(nθ+1). (12)

Linearizing (12) with respect to the state and control
input around a set of feedforward system trajectories
(xff , uff , δff ), we obtain a linear time-invariant (LTI)
model given by

˙̃x = Ax̃ + Bufb + d y = Cx̃ + Dufb, (13)

with

A = A0 +

5�

m=1

δmAm B = B0 +

5�

m=1

δmBm,

C = C0 +

5�

m=1

δmCm D = D0 +

5�

m=1

δmDm, (14)

where x̃(t) = x(t) − xff (t), ufb(t) = u(t) − uff (t) (ufb(t)
is the output of the to-be-designed feedback controller),
d(t) = Fθ,E(xff , uff , δ)−Fθ,E(xff , uff , δff ), A and B are

the Jacobians ∂Fθ,E/∂x ∈ R(nθ+1)×(nθ+1) and ∂Fθ,E/∂u ∈
R(nθ+1)×8, respectively, evaluated at a specific feedforward
state and input, Ai and Bi, for i = 0, . . . , 5, are the
components of the matrices A and B, respectively, C0 is
an (nθ +1)× (nθ +1) identity matrix, D0 = 0, and Cj = 0
and Dj = 0, for j = 1, . . . , 5.

4. RELEVANT CONTROL CHANNELS

In order to acquire diagnostic data that is needed by the
real-time EFIT (rtEFIT) equilibrium reconstruction code
(Ferron et al. (1998)) to reconstruct the plasma q-profile
for feedback control, the 30L/R neutral beam line powers
need to be constant. Therefore, we do not utilize these
neutral beam lines for feedback control, i.e., ufb = 0 for
Pnbi30L/R

. As a result, we have six actuators we can utilize
in feedback, which implies we can independently control
at most six linear combinations of the system output. To
identify the relevant control channels, we employ a singular
value decomposition (SVD) of the nominal state-space

system y = G0(s)ufb = (C0 (sIn − A0)
−1

B0 + D0)ufb at
a particular frequency.

The real approximation of the nominal input-output rela-
tion at a particular frequency jωdc is expressed as

ŷ = Ĝ0ûfb, (15)

where ŷ denotes the decoupled/relevant output, ûfb de-

notes the decoupled/relevant input, and Ĝ0 denotes the

Fig. 2. Relevant control channels: (a-b) output and (c) input. The decoupled output is defined as ŷ = [ŷθ, ŷE ] where ŷθ
are the system outputs associated with the magnetic states and ŷE is the system output associated with the kinetic
states. The feedback vector components are ufb = [Pectot , Pnbi150L/R

, Pnbi330L/R
, Ip] where ufb = 0 for Pnbi30L/R

.

interest, ρ̂ ∈ [0, 1], is represented as mθ nodes, to obtain a
model suitable for tracking control design. After spatially
discretizing (9) and taking into account the boundary
conditions (10), we obtain a nonlinear, finite dimensional,
ordinary differential equation model defined by

˙̂
θ = fθ(θ̂, u, δ),

where θ̂ = [θ2, . . . , θmθ−1]T ∈ Rnθ is the magnetic state
vector, θi, for i = 2, . . . ,mθ − 1, is the value of θ at the i-
th node, u = [Pectot , Pnbi30L/R

, Pnbi150L/R
, Pnbi330L/R

, Ip]
T ∈

R8 is the control input vector, the uncertain parameter

vector is δ =
[
δTe , δne , δTeδne , δ

2
Te
, δ2
Te
δne
]T ∈ R5, fθ ∈ Rnθ

is a nonlinear function of the plasma magnetic states,
control inputs, and uncertain parameters, and nθ = mθ−2.

By defining the plasma state vector as x = [θ̂, E] ∈
R(nθ+1), we can write the magnetic and kinetic state
dynamics as

ẋ =




fθ(θ̂, u, δ)

− E

τE(t)
+

7∑

i=1

ui


 = Fθ,E(x, u, δ) ∈ R(nθ+1). (12)

Linearizing (12) with respect to the state and control input
around a nominal equilibrium point (xeq, ueq, 0), we obtain
a linear time-invariant (LTI) model given by

˙̃x = Ax̃+Bufb + d y = Cx̃+Dufb, (13)

with

A = A0 +

5∑

m=1

δmAm B = B0 +

5∑

m=1

δmBm,

C = C0 +

5∑

m=1

δmCm D = D0 +

5∑

m=1

δmDm, (14)

where x̃(t) = x(t) − xeq, ufb(t) = u(t) − ueq is the
output of the to-be-designed feedback controller, d(t) =
Fθ,E(xeq, ueq, δ), A and B are the Jacobians ∂Fθ,E/∂x ∈
R(nθ+1)×(nθ+1) and ∂Fθ,E/∂u ∈ R(nθ+1)×8, respectively,
evaluated at (xeq, ueq), Ai and Bi, for i = 0, . . . , 5, are the

Fig. 3. Schematic of feedback control problem formulation.

components of the matrices A and B, respectively, C0 is
an (nθ + 1)× (nθ + 1) identity matrix, D0 = 0, and Cj = 0
and Dj = 0, for j = 1, . . . , 5.

4. RELEVANT CONTROL CHANNELS

In order to acquire diagnostic data that is needed by
the real-time EFIT (rtEFIT) equilibrium reconstruction
code (Ferron et al. (1998)) to reconstruct the plasma
q-profile for feedback control, the 30L/R neutral beam
powers need to be constant, and we do not utilize them
for feedback control, i.e., ufb = 0 for Pnbi30L/R

. As a result,
we have six actuators to utilize in feedback, which implies
we can independently control at most six linear combina-
tions of the system output. To identify the relevant con-
trol channels, we employ a singular value decomposition
(SVD) of the nominal state-space system y = G0(s)ufb =

(C0 (sInθ −A0)
−1
B0 +D0)ufb at a particular frequency.

The real approximation of the nominal input-output rela-
tion at a particular frequency jωdc is expressed as

ŷ = Ĝ0ûfb, (15)

where ŷ denotes the decoupled/relevant output, ûfb de-

notes the decoupled/relevant input, and Ĝ0 denotes the
real approximation of the complex matrix G0(jωdc) (Sko-
gestad and Postlethwaite (2005)). By selecting the fre-
quency as ωdc = 25 rad/sec., the total plasma current
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Fig. 1. Plasma parameter uncertainty ranges: (a) electron density, (b) electron temperature, and (c) plasma resistivity.
Note: nominal values (solid) and minimum/maximum values (dash).
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Fig. 2. Relevant control channels: (a)-(b) output and (c) input. The decoupled output is defined as ŷ = [ŷθ, ŷE ] where ŷθ

are the system outputs associated with the magnetic states and ŷE is the system output associated with the kinetic
states. The feedback vector components are ufb = [Pectot

, Pnbi150L/R
, Pnbi330L/R

, Ip] where ufb = 0 for Pnbi30L/R
.

Fig. 3. Schematic of feedback control problem formulation.

model suitable for tracking control design. After spatially
discretizing (9) and taking into account the boundary
conditions (10), we obtain a nonlinear, finite dimensional,
ordinary differential equation model defined by

˙̂
θ = fθ(θ̂, u, δ),

where θ̂ = [θi] ∈ Rnθ is the magnetic state vector, θi is
the value of θ at the i-th node, for i = 2, . . . , mθ − 1,
u = [Pectot , Pnbi30L/R

, Pnbi150L/R
, Pnbi330L/R

, Ip]
T ∈ R8 is the

control input vector, δ =
�
δTe

, δne
, δTe

δne
, δ2Te

, δ2Te
δne

�
∈

R5 is the uncertain parameter vector, fθ ∈ Rnθ is a
nonlinear function of the plasma magnetic states, control
inputs, and uncertain parameters, and nθ = mθ − 2. By
defining the augmented plasma state vector as

x =

�
θ̂
E

�
∈ R(nθ+1),

we can write the magnetic and kinetic state dynamics as

ẋ =




fθ(θ̂, u, δ)

− E

τE
+ Paux


 = Fθ,E(x, u, δ) ∈ R(nθ+1). (12)

Linearizing (12) with respect to the state and control
input around a set of feedforward system trajectories

(xff , uff , δff ), we obtain a linear time-invariant (LTI)
model given by

˙̃x = Ax̃ + Bufb + d y = Cx̃ + Dufb, (13)

with

A = A0 +

5�

m=1

δmAm B = B0 +

5�

m=1

δmBm,

C = C0 +

5�

m=1

δmCm D = D0 +

5�

m=1

δmDm, (14)

where x̃(t) = x(t) − xff (t), ufb(t) = u(t) − uff (t) (ufb(t)
is the output of the to-be-designed feedback controller),
d(t) = Fθ,E(xff , uff , δ)−Fθ,E(xff , uff , δff ), A and B are

the Jacobians ∂Fθ,E/∂x ∈ R(nθ+1)×(nθ+1) and ∂Fθ,E/∂u ∈
R(nθ+1)×8, respectively, evaluated at a specific feedforward
state and input, Ai and Bi, for i = 0, . . . , 5, are the
components of the matrices A and B, respectively, C0 is
an (nθ +1)× (nθ +1) identity matrix, D0 = 0, and Cj = 0
and Dj = 0, for j = 1, . . . , 5.

4. RELEVANT CONTROL CHANNELS

In order to acquire diagnostic data that is needed by the
real-time EFIT (rtEFIT) equilibrium reconstruction code
(Ferron et al. (1998)) to reconstruct the plasma q-profile
for feedback control, the 30L/R neutral beam line powers
need to be constant. Therefore, we do not utilize these
neutral beam lines for feedback control, i.e., ufb = 0 for
Pnbi30L/R

. As a result, we have six actuators we can utilize
in feedback, which implies we can independently control
at most six linear combinations of the system output. To
identify the relevant control channels, we employ a singular
value decomposition (SVD) of the nominal state-space

system y = G0(s)ufb = (C0 (sIn − A0)
−1

B0 + D0)ufb at
a particular frequency.
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Fig. 1. Plasma parameter uncertainty ranges: (a) electron density, (b) electron temperature, and (c) plasma resistivity.
Note: nominal values (solid) and minimum/maximum values (dash).
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ŷ
θ

 

 

1st Sing. Vec.

2nd Sing. Vec.

3rd Sing. Vec.

4th Sing. Vec.

5th Sing. Vec.

6th Sing. Vec.

(a) ŷθ
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Fig. 2. Relevant control channels: (a)-(b) output and (c) input. The decoupled output is defined as ŷ = [ŷθ, ŷE ] where ŷθ

are the system outputs associated with the magnetic states and ŷE is the system output associated with the kinetic
states. The feedback vector components are ufb = [Pectot

, Pnbi150L/R
, Pnbi330L/R

, Ip] where ufb = 0 for Pnbi30L/R
.

Fig. 3. Schematic of feedback control problem formulation.

model suitable for tracking control design. After spatially
discretizing (9) and taking into account the boundary
conditions (10), we obtain a nonlinear, finite dimensional,
ordinary differential equation model defined by

˙̂
θ = fθ(θ̂, u, δ),

where θ̂ = [θi] ∈ Rnθ is the magnetic state vector, θi is
the value of θ at the i-th node, for i = 2, . . . , mθ − 1,
u = [Pectot , Pnbi30L/R

, Pnbi150L/R
, Pnbi330L/R

, Ip]
T ∈ R8 is the

control input vector, δ =
�
δTe

, δne
, δTe

δne
, δ2Te

, δ2Te
δne

�
∈

R5 is the uncertain parameter vector, fθ ∈ Rnθ is a
nonlinear function of the plasma magnetic states, control
inputs, and uncertain parameters, and nθ = mθ − 2. By
defining the augmented plasma state vector as

x =

�
θ̂
E

�
∈ R(nθ+1),

we can write the magnetic and kinetic state dynamics as

ẋ =




fθ(θ̂, u, δ)

− E

τE
+ Paux


 = Fθ,E(x, u, δ) ∈ R(nθ+1). (12)

Linearizing (12) with respect to the state and control
input around a set of feedforward system trajectories

(xff , uff , δff ), we obtain a linear time-invariant (LTI)
model given by

˙̃x = Ax̃ + Bufb + d y = Cx̃ + Dufb, (13)

with

A = A0 +

5�

m=1

δmAm B = B0 +

5�

m=1

δmBm,

C = C0 +

5�

m=1

δmCm D = D0 +

5�

m=1

δmDm, (14)

where x̃(t) = x(t) − xff (t), ufb(t) = u(t) − uff (t) (ufb(t)
is the output of the to-be-designed feedback controller),
d(t) = Fθ,E(xff , uff , δ)−Fθ,E(xff , uff , δff ), A and B are

the Jacobians ∂Fθ,E/∂x ∈ R(nθ+1)×(nθ+1) and ∂Fθ,E/∂u ∈
R(nθ+1)×8, respectively, evaluated at a specific feedforward
state and input, Ai and Bi, for i = 0, . . . , 5, are the
components of the matrices A and B, respectively, C0 is
an (nθ +1)× (nθ +1) identity matrix, D0 = 0, and Cj = 0
and Dj = 0, for j = 1, . . . , 5.

4. RELEVANT CONTROL CHANNELS

In order to acquire diagnostic data that is needed by the
real-time EFIT (rtEFIT) equilibrium reconstruction code
(Ferron et al. (1998)) to reconstruct the plasma q-profile
for feedback control, the 30L/R neutral beam line powers
need to be constant. Therefore, we do not utilize these
neutral beam lines for feedback control, i.e., ufb = 0 for
Pnbi30L/R

. As a result, we have six actuators we can utilize
in feedback, which implies we can independently control
at most six linear combinations of the system output. To
identify the relevant control channels, we employ a singular
value decomposition (SVD) of the nominal state-space

system y = G0(s)ufb = (C0 (sIn − A0)
−1

B0 + D0)ufb at
a particular frequency.
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Fig. 1. Plasma parameter uncertainty ranges: (a) electron density, (b) electron temperature, and (c) plasma resistivity.
Note: nominal values (solid) and minimum/maximum values (dash).
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Fig. 2. Relevant control channels: (a)-(b) output and (c) input. The decoupled output is defined as ŷ = [ŷθ, ŷE ] where ŷθ

are the system outputs associated with the magnetic states and ŷE is the system output associated with the kinetic
states. The feedback vector components are ufb = [Pectot

, Pnbi150L/R
, Pnbi330L/R

, Ip] where ufb = 0 for Pnbi30L/R
.

Fig. 3. Schematic of feedback control problem formulation.

model suitable for tracking control design. After spatially
discretizing (9) and taking into account the boundary
conditions (10), we obtain a nonlinear, finite dimensional,
ordinary differential equation model defined by

˙̂
θ = fθ(θ̂, u, δ),

where θ̂ = [θi] ∈ Rnθ is the magnetic state vector, θi is
the value of θ at the i-th node, for i = 2, . . . , mθ − 1,
u = [Pectot , Pnbi30L/R

, Pnbi150L/R
, Pnbi330L/R

, Ip]
T ∈ R8 is the

control input vector, δ =
�
δTe

, δne
, δTe

δne
, δ2Te

, δ2Te
δne

�
∈

R5 is the uncertain parameter vector, fθ ∈ Rnθ is a
nonlinear function of the plasma magnetic states, control
inputs, and uncertain parameters, and nθ = mθ − 2. By
defining the augmented plasma state vector as

x =

�
θ̂
E

�
∈ R(nθ+1),

we can write the magnetic and kinetic state dynamics as

ẋ =




fθ(θ̂, u, δ)

− E

τE
+ Paux


 = Fθ,E(x, u, δ) ∈ R(nθ+1). (12)

Linearizing (12) with respect to the state and control
input around a set of feedforward system trajectories

(xff , uff , δff ), we obtain a linear time-invariant (LTI)
model given by

˙̃x = Ax̃ + Bufb + d y = Cx̃ + Dufb, (13)

with

A = A0 +

5�

m=1

δmAm B = B0 +

5�

m=1

δmBm,

C = C0 +

5�

m=1

δmCm D = D0 +

5�

m=1

δmDm, (14)

where x̃(t) = x(t) − xff (t), ufb(t) = u(t) − uff (t) (ufb(t)
is the output of the to-be-designed feedback controller),
d(t) = Fθ,E(xff , uff , δ)−Fθ,E(xff , uff , δff ), A and B are

the Jacobians ∂Fθ,E/∂x ∈ R(nθ+1)×(nθ+1) and ∂Fθ,E/∂u ∈
R(nθ+1)×8, respectively, evaluated at a specific feedforward
state and input, Ai and Bi, for i = 0, . . . , 5, are the
components of the matrices A and B, respectively, C0 is
an (nθ +1)× (nθ +1) identity matrix, D0 = 0, and Cj = 0
and Dj = 0, for j = 1, . . . , 5.

4. RELEVANT CONTROL CHANNELS

In order to acquire diagnostic data that is needed by the
real-time EFIT (rtEFIT) equilibrium reconstruction code
(Ferron et al. (1998)) to reconstruct the plasma q-profile
for feedback control, the 30L/R neutral beam line powers
need to be constant. Therefore, we do not utilize these
neutral beam lines for feedback control, i.e., ufb = 0 for
Pnbi30L/R

. As a result, we have six actuators we can utilize
in feedback, which implies we can independently control
at most six linear combinations of the system output. To
identify the relevant control channels, we employ a singular
value decomposition (SVD) of the nominal state-space

system y = G0(s)ufb = (C0 (sIn − A0)
−1

B0 + D0)ufb at
a particular frequency.

Fig. 4. Singular value diagrams: (a) 1/Wp and SDCo and (b) 1/Wu and KSDCo , and (c) µ versus frequency. The robust
stability condition of the closed-loop system is defined as: µ(jω) < 1, ∀ω (Skogestad and Postlethwaite (2005)).

(Ip) is exclusively utilized to control the q-profile near the
plasma boundary (2nd singular vectors in Figs. 2(a) and
2(c)). Additionally, to weight the relative tracking perfor-
mance and control effort, we introduce the positive definite
weighting matrices Q ∈ R(nθ+1)×(nθ+1) and R ∈ R6×6.
We next define the economy size SVD of the weighted
matrix G̃0 as G̃0 = Q1/2Ĝ0R

−1/2 = UΣV T , where Σ =
diag(σ1,σ2, . . . ,σ6) ∈ R6×6 is a diagonal matrix of singular
values and U ∈ R(nθ+1)×6 and V ∈ R6×6 are matrices that
possess the following properties V T V = V V T = I, UT U =
I, where I is a 6× 6 identity matrix, and (·)T denotes the
matrix transpose. The relevant control channels are then
obtained from the input-output relation

ŷ = Q−1/2G̃0R
1/2ûfb = Q−1/2UΣV T R1/2ûfb

and are shown in Fig. 2. We note that some of the singular
values σi may have a small magnitude relative to the others
and may be chosen to be neglected in the control synthesis.
Quantities that are associated with the significant singular
values (the ones retained in the control design) are denoted
by a subscript s for the remainder of this paper, i.e.,
(·)s. More details regarding this technique can be found
in Barton et al. (2012); Ambrosino et al. (2007).

5. FEEDBACK CONTROLLER SYNTHESIS

By exploiting the structure of the of the state matrices
in (14), the feedback system (13) can be written in the
conventional P −∆ control framework (shown in the light
purple box in Fig. 3), where P is the generalized plant and
∆ = diag{δTe , δne} is a structured uncertainty matrix, by
employing the method outlined in Packard (1988). The
system input-output equations in this framework are

y∆ = P11u∆ + P12ufb y = P21u∆ + P22ufb + d, (16)

where P11, P12, P21, and P22 are the component transfer
functions of the generalized plant P that are related to the
system outputs (y∆, y) and inputs (u∆, ufb), respectively.

It is desired that the output y be able to track a reference
value r, therefore, we define the tracking error as e =
r − y. The feedback control problem is formulated as
shown in Fig. 3, where K is the feedback controller,
Z1 = Wpe

∗
s, Z2 = Wuu∗

fbs
, and Wp and Wu are frequency

dependent weight functions used to optimize the closed-
loop performance. The nominal performance condition of
the closed-loop system is expressed as�

Z1

Z2

�
=

�
WpSDCO

−WpSDCO

WuKSDCO
−WuKSDCO

� �
r∗s
d∗s

�
� Tzw

�
r∗s
d∗s

�
,

where SDCO
= (I +Σ−1

s UT
s Q1/2P22R

−1/2VsK)−1, and the
control problem is formulated as

min
K

����Tzw

����
∞, ∀ω. (17)

The feedback controller written in terms of the tracking
error e and control input ufb is expressed as

ẋfb = Afbxfb + BfbΣ
−1
s UT

s Q1/2e,

ufb = R−1/2VsCfbxfb + R−1/2VsDfbΣ
−1
s UT

s Q1/2e, (18)

where xfb is the internal controller state vector and
Afb, Bfb, Cfb, Dfb are the state-space matrices of the
controller K that are determined by solving (17). To
analyze the performance and robust stability of the closed-
loop system, the singular value diagrams of the inverse
of the performance weight functions and the achieved
transfer functions SDCO

and KSDCO
are shown in Figs.

4(a-b) and a plot of the structured singular value µ versus
frequency is shown in Fig. 4(c).

6. SIMULATION TESTING OF SAFETY FACTOR
PROFILE AND PLASMA βN CONTROLLER

In this section, the q-profile + βN feedback controller
(18) is tested through simulations based on the physics-
based model of the poloidal magnetic flux profile dynamics
developed in Barton et al. (2013) and the volume-averaged
plasma energy balance (11) tailored to DIII-D H-mode
scenarios. To ensure the closed-loop system remains well
behaved in the presence of actuator magnitude satura-
tion, the controller is augmented with an anti-windup
compensator. First, a target q-profile and βN evolution
is obtained by executing a feedforward-only simulation
with the control input trajectories and initial conditions
(q(ρ̂, 0.5) and βN (0.5)) achieved in DIII-D shot 150318.
Second, a nominal q-profile and βN evolution is obtained
by executing a feedforward-only simulation with a nominal
set of input trajectories and initial conditions. Finally, the
ability of the algorithm to track the target evolutions is
determined by executing a feedforward + feedback sim-
ulation with the nominal input trajectories and initial
conditions. During the feedback-controlled simulation, the
controller is inactive during the time interval t = [0.5, 2.0]
sec. Simulated white noise is added to both the feedforward
+ feedback and feedforward simulations, respectively, to
approximately replicate the noise level observed in the
rtEFIT measurements during DIII-D operations.

Time traces of q at various spatial locations, a time trace
of the plasma βN , and a comparison of the control inputs
(Poff−axis = Pectot

+ Pnbi150L
+ Pnbi150R

and Pon−axis =
Pnbi330L

+ Pnbi330R
) is shown in Fig. 5. As shown in the

figures, the controller is able to drive the q-profile and
plasma βN to the target evolutions once it becomes active
at 2.0 sec. during the feedback-controlled simulation. The
local q-value is roughly inversely related to the local
current density amplitude in tokamaks, i.e., a low q-profile

Fig. 4. Maximum singular values: (a) 1/Wp and SDCo and (b) 1/Wu and KSDCo and (c) µ(N11(jω)) versus frequency.
The closed-loop robust stability condition is defined as µ(N11(jω)) < 1, ∀ω (Skogestad and Postlethwaite (2005)).

(Ip) is exclusively utilized to control the q-profile near
the plasma boundary (2nd singular vector in Figs. 2(a)
and 2(c)). Additionally, to weight the relative tracking
performance and control effort, we introduce the posi-
tive definite weighting matrices Q ∈ R(nθ+1)×(nθ+1) and
R ∈ R6×6. We next define the economy size SVD of the
weighted matrix G̃0 as G̃0 = Q1/2Ĝ0R

−1/2 = UΣV T ,
where Σ = diag(σ1, σ2, . . . , σ6) ∈ R6×6 is a diagonal
matrix of singular values and U ∈ R(nθ+1)×6 and V ∈ R6×6

are matrices that possess the following properties V TV =
V V T = I, UTU = I, where I is a 6×6 identity matrix, and
(·)T denotes the matrix transpose. The relevant control
channels are then obtained from the input-output relation

ŷ = Q−1/2G̃0R
1/2ûfb = Q−1/2UΣV TR1/2ûfb

and are shown in Fig. 2. We note that some of the singular
values σi may have a small magnitude relative to the others
and may be chosen to be neglected in the control synthesis.
Quantities that are associated with the significant singular
values (the ones retained in the control design) are denoted
by a subscript s for the remainder of this paper, i.e.,
(·)s. More details regarding this technique can be found
in Barton et al. (2012); Ambrosino et al. (2007).

5. FEEDBACK CONTROLLER SYNTHESIS

By exploiting the structure of the of the state matrices
in (14), the feedback system (13) can be written in the
conventional P −∆ control framework (shown in the light
purple box in Fig. 3), where P is the generalized plant and
∆ = diag{δTe , δne} is a structured uncertainty matrix, by
employing the method outlined in Packard (1988). The
system input-output equations in this framework are

y∆ = P11u∆ + P12ufb y = P21u∆ + P22ufb + d, (16)

where P11, P12, P21, and P22 are the component transfer
functions of the generalized plant P that are related to the
system outputs (y∆, y) and inputs (u∆, ufb), respectively.

It is desired that the output y be able to track a reference
value r, therefore, we define the tracking error as e =
r − y. The feedback control problem is formulated as
shown in Fig. 3, where K is the feedback controller,
Z1 = Wpe

∗
s, Z2 = Wuu

∗
fbs

, and Wp and Wu are frequency
dependent weight functions used to optimize the closed-
loop performance. The nominal performance condition of
the closed-loop system is expressed as[

Z1

Z2

]
=

[
WpSDCO −WpSDCO
WuKSDCO −WuKSDCO

] [
r∗s
d∗s

]
, Tzw

[
r∗s
d∗s

]
,

where SDCO = (I+Σ−1
s UTs Q

1/2P22R
−1/2VsK)−1, and the

control problem is formulated as

min
K

∣∣∣∣Tzw
∣∣∣∣
∞, ∀ω. (17)

The feedback controller written in terms of the tracking
error e and control input ufb is expressed as

ẋfb = Afbxfb +BfbΣ
−1
s UTs Q

1/2e,

ufb = R−1/2VsCfbxfb +R−1/2VsDfbΣ
−1
s UTs Q

1/2e, (18)

where xfb is the internal controller state vector and Afb,
Bfb, Cfb, Dfb are the state-space matrices of the controller
K that are determined by solving (17). To analyze the
performance and robust stability of the closed-loop system,
the maximum singular value diagrams of the inverse of the
performance weight functions and the achieved transfer
functions SDCO and KSDCO are shown in Figs. 4(a-b)
and a plot of the structured singular value µ(N11(jω))
versus frequency is shown in Fig. 4(c), where N11 =
P11−P12R

−1/2VsKSDCOΣ−1
s UTs Q

1/2P21 is the closed-loop
transfer function between y∆ and u∆ in Fig. 3.

6. SIMULATION TESTING OF SAFETY FACTOR
PROFILE AND PLASMA βN CONTROLLER

In this section, the q-profile + βN feedback controller
(18) is tested through simulations based on the physics-
based model of the poloidal magnetic flux profile dynamics
developed in Barton et al. (2013) and the volume-averaged
plasma energy balance (11) tailored to DIII-D H-mode
scenarios. To ensure the closed-loop system remains well
behaved in the presence of actuator magnitude satura-
tion, the controller is augmented with an anti-windup
compensator. First, a target q-profile and βN evolution
is obtained by executing a feedforward-only simulation
with the control input trajectories and initial conditions
(q(ρ̂, 0.5) and βN (0.5)) achieved in DIII-D shot 150318.
Second, a nominal q-profile and βN evolution is obtained
by executing a feedforward-only simulation with a nominal
set of input trajectories and initial conditions. Finally, the
ability of the algorithm to track the target evolutions is
determined by executing a feedforward + feedback sim-
ulation with the nominal input trajectories and initial
conditions. During the feedback-controlled simulation, the
controller is inactive during the time interval t = [0.5, 2.0]
sec. Simulated white noise is added to both the feedforward
+ feedback and feedforward simulations, respectively, to
approximately replicate the noise level observed in the
rtEFIT measurements during DIII-D operations.

Time traces of q at various spatial locations, a time trace
of the plasma βN , and a comparison of the control inputs
(Poff−axis = Pectot + Pnbi150L + Pnbi150R and Pon−axis =
Pnbi330L + Pnbi330R) is shown in Fig. 5. As shown in the
figures, the controller is able to drive the q-profile and
plasma βN to the target evolutions once it becomes active
at 2.0 sec. during the feedback-controlled simulation. The
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Fig. 5. Simulation testing of q-profile + βN feedback controller: (a-c) time trace of q at various spatial locations, (d)
time trace of plasma βN , and (e-f) control actuator trajectory comparison (actuator limits (solid green)). The
gray-shaded region indicates when the feedback controller is inactive. Note gyrotrons become available at 2.5 sec.

Time traces of q at various spatial locations and of the
plasma βN are shown in Figs. 5-?? and a comparison of
the control inputs is shown in Figs. ??-??, respectively.
As shown in the figures, the controller is able to drive the
q-profile and plasma βN to the target evolutions once it
becomes active a 2.0 sec. during the feedback-controlled
simulation. The q-profile is inversely related to the current
profile in tokamaks, i.e., a low q-profile is characterized
by a high current profile and vice versa. In the feedback-
controlled simulation, firstly, the controller decreases the
total plasma current to eliminate the error in q near the
plasma boundary. Secondly, at approximately 2.5 sec., the
value of q in the center of the plasma evolves below the
target value. Therefore, the controller decreases the on-
axis auxiliary current-drive (Pnbi330L/R

) and increases the

off-axis auxiliary current-drive (Pectot and Pnbi150L/R
) to

track the q-profile in the center of the plasma. Finally,
in order to track the target plasma βN while maintaining
good tracking of the q-profile in the center of the plasma,
the controller slowly increases the on-axis auxiliary heating
(specifically Pnbi330R) beginning at approximately 3.25 sec.

7. EXPERIMENTAL TESTING OF SAFETY FACTOR
PROFILE CONTROLLER

In this section, we test the q-profile feedback controller in
a disturbance rejection experiment in an H-mode scenario
in the DIII-D tokamak. Note that the q-profile controller is
designed by removing the plasma internal energy from the
system outputs in (13). It is also important to emphasis
that the actuator requests generated by the controller
represent the references to dedicated control loops that
command the physical actuators.

In DIII-D shot 154692, the q-profile feedback controller
was tested in a disturbance rejection experiment. The tar-
get q-profile (qtar(ρ̂, t)) was chosen as the q-profile achieved
in DIII-D shot 154358 (q358(ρ̂, t)). The disturbance in-
troduced to the plasma in shot 154692 was to delay the
time at which the plasma transitioned from L-mode to H-
mode. This delay resulted in the inductive component of
the plasma current profile diffusing in towards the center

of the plasma at a faster rate than in the target shot. As a
result, there was a significant perturbation in the initial
q-profile at 0.5 sec. (low relative to the target) in the
feedback-controlled experiment. Also during the feedfor-
ward + feedback shot 154692, the feedforward component
of the control input was frozen after 1.6 sec.

A comparison of the target and feedforward + feedback
controlled q-profiles at various times is shown in Fig. ??,
time traces of q at various spatial locations and of the
plasma βN are shown in Fig. 6, and a comparison of the
control inputs is shown in Fig. ??. As shown in the figures,
the controller was able to reject the effects of the initial
condition error and drive the q-profile to the target evolu-
tion during the approximate time interval t ∈ [0.5, 4.0] sec.
The controller utilized the total plasma current to regulate
the q-profile evolution near the plasma boundary and
modulated the mix of on-and-off axis auxiliary current-
drive to track the target q-profile evolution in the center
of the plasma as showin in Figs. 6(h)-(i). However, even
though the feedback controller requested the maximum
amount of the off-axis auxiliary current-drive during the
time interval t ∈ [4.0, 6.0] sec., the q-profile evolution in
the center of the plasma was unable to be maintained at
the target. Two factors that contributed to this were the
inability of the dedicated control loops commanding the
physical actuators to (i) deliver any gyrotron power (shown
in Fig. ??) and (ii) follow the line average electron density
request (shown in Fig. 7). These two factors contributed
to the achieved plasma βN being relatively far away from
the target evolution during the approximate time interval
t ∈ [3.0, 6.0] sec. (shown in Fig. 7). As the plasma βN

is a measure of the confinement efficiency of a plasma
equilibrium, the energy confinement characteristics of the
plasma were lower in the feedback-controlled experiment
relative to the target. The reduced energy content of the
plasma, along with the poor regulation of the electron
density, may have contributed to a lower bootstrap current
(jbs ∝ (θ)−1[ne

∂Te

∂ρ̂ + Te
∂ne

∂ρ̂ ]) in the feedback-controlled

experiment. As the bootstrap current is an off-axis non-
inductive source of current, a lower bootstrap current
may have contributed to the inability to maintain the q-

Fig. 5. Simulation testing of q-profile + βN feedback controller: (a-c) time trace of q at various spatial locations, (d)
time trace of plasma βN , and (e-f) control actuator trajectory comparison (actuator limits in solid green). The
gray-shaded region indicates when the feedback controller is inactive. Note gyrotrons become available at 2.5 sec.

local q-value is roughly inversely related to the local
current density amplitude in tokamaks, i.e., a low q-profile
is characterized by a high current profile and vice versa.
In the feedback-controlled simulation, firstly, the controller
decreases the total plasma current to eliminate the error in
q near the plasma boundary. Secondly, at approximately
2.5 sec., the value of q in the plasma core evolves below
the target value. In response, the controller decreases the
on-axis auxiliary current-drive (Pnbi330L/R

) and increases

the off-axis auxiliary current-drive (Pectot and Pnbi150L/R
)

to track the target q-profile in the plasma core. Finally, in
order to track the target plasma βN while maintaining
good tracking of the q-profile in the plasma core, the
controller slowly increases the on-axis auxiliary heating
(specifically Pnbi330R) beginning at approximately 3.25 sec.

7. EXPERIMENTAL TESTING OF SAFETY FACTOR
PROFILE CONTROLLER IN THE DIII-D TOKAMAK

In this section, the q-profile feedback controller is exper-
imentally tested in an H-mode scenario in DIII-D. Note
that the q-profile controller is designed by removing the
plasma internal energy from the system outputs in (13). It
is also important to emphasize that the actuator requests
generated by the controller represent the references to ded-
icated control loops that command the physical actuators.

In DIII-D shot 154692, the q-profile feedback controller
was tested in a disturbance rejection experiment. The
q-profile evolution achieved in DIII-D shot 154358 was
chosen as the target. The disturbance introduced to the
plasma in shot 154692 was to delay the time at which
the plasma transitioned from L-mode to H-mode. This
delay resulted in the inductive component of the plasma
current profile diffusing in towards the plasma core at
a faster rate than in the target shot. As a result, there
was a significant perturbation in the initial q-profile at 0.5
sec. (low relative to the target) in the feedback-controlled
experiment. Also during the feedforward + feedback shot
154692, the feedforward component of the control input
was frozen after 1.6 sec. Therefore, the achieved profile
regulation was obtained exclusively through feedback.

A comparison of the target and feedforward + feedback
controlled q-profiles at various times, time traces of q
at various spatial locations, a time trace of the plasma
βN , and a comparison of the control inputs (Pnbioff =
Pnbi150L + Pnbi150R and Pnbion = Pnbi330L + Pnbi330R) is
shown in Fig. 6. As shown in the figures, the controller
was able to reject the effects of the initial condition error
and drive the q-profile to the target evolution during the
approximate time interval t ∈ [0.5, 3.5] sec. The controller
utilized the total plasma current to regulate the q-profile
evolution near the plasma boundary and modulated the
mix of on-and-off axis auxiliary current-drive to track the
target q-profile evolution in the plasma core as shown in
Figs. 6(h-i). However, even though the feedback controller
requested the maximum amount of the off-axis auxiliary
current-drive during the time interval t ∈ [4.0, 6.0] sec., the
q-profile in the plasma core was unable to be maintained
at the target. Two factors that contributed to this were
the inability of the dedicated control loops commanding
the physical actuators to follow the line average electron
density request and to deliver any gyrotron power (shown
in Fig. 7). These factors contributed to the achieved
plasma βN being relatively far away from the target
during the approximate time interval t ∈ [3.0, 6.0] sec.
(shown in Fig. 6(g)). As the plasma βN is a measure of
the confinement efficiency of a plasma equilibrium, the
energy confinement time of the plasma was lower in the
feedback-controlled experiment relative to the target. The
reduced energy content of the plasma, along with the poor
regulation of the electron density, may have contributed
to a lower bootstrap current (jbs ∝ (θ)−1[ne

∂Te
∂ρ̂ + Te

∂ne
∂ρ̂ ])

in the feedback-controlled experiment. As the bootstrap
current is an off-axis noninductive source of current, a
lower bootstrap current may have contributed to the
inability to maintain the q-profile in the plasma core at
the target during the feedback-controlled experiment.

8. CONCLUSIONS AND FUTURE WORK

Robust feedback algorithms to control the q-profile and
plasma βN evolutions in DIII-D advanced plasma scenarios
were designed by employing a physics-based model of the
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Fig. 7. Line average electron density n̄e and total gyrotron
power Pectot

versus time during DIII-D shot 154692.

profile in the center of the plasma at the target during the
feedback-controlled experiment.

8. CONCLUSIONS AND FUTURE WORK

Robust feedback algorithms to control the q-profile and
plasma βN evolutions in DIII-D advanced plasma scenarios
were designed by employing a physics-based model of the
plasma dynamics. The controllers were tested through
simulation and experimentally in the DIII-D tokamak.
The simulation and experimental results demonstrated
the capabilities of the algorithms and provided some in-
sight into the requirements needed to obtain good control
performance in advanced scenarios, namely the need to

simultaneously achieve a target q-profile and plasma βN .
Our future work includes simultaneously controlling the q-
profile and plasma βN in feedback experiments in DIII-D.
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measured q-profiles are shown by the red-shaded regions. Note that the plasma βN was not feedback-controlled.
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8. CONCLUSIONS AND FUTURE WORK

Robust feedback algorithms to control the q-profile and
plasma βN evolutions in DIII-D advanced plasma scenarios
were designed by employing a physics-based model of the
plasma dynamics. The controllers were tested through
simulation and experimentally in the DIII-D tokamak.
The simulation and experimental results demonstrated
the capabilities of the algorithms and provided some in-
sight into the requirements needed to obtain good control

performance in advanced scenarios, namely the need to
simultaneously achieve a target q-profile and plasma βN .
Our future work includes simultaneously controlling the q-
profile and plasma βN in feedback experiments in DIII-D.
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plasma dynamics. The controllers were tested through
simulation and experimentally in the DIII-D tokamak.
The simulation and experimental results demonstrated
the capabilities of the algorithms and provided some in-
sight into the requirements needed to obtain good control
performance in advanced scenarios, namely the need to
simultaneously achieve a target q-profile and plasma βN .
Our future work includes simultaneously controlling the q-
profile and plasma βN in feedback experiments in DIII-D.
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