
Nonlinear Burn Control in Tokamak Fusion
Reactors via Output Feedback ?

Mark D. Boyer ∗, Eugenio Schuster ∗

∗ Mechanical Engineering and Mechanics, Lehigh University,
Bethlehem, PA 18015, USA.

Abstract: The next experimental step in the development of nuclear fusion reactors is the ITER
tokamak. It is designed to explore the burning plasma regime in which the plasma temperature is
sustained mostly by self-heating from fusion reactions. Burn control, the control of fusion power
and other reactor parameters through modulation of fueling and heating, will be essential for
achieving and maintaining desired operating points and ensuring stability. Design of burn control
strategies is made challenging by the multi-variable, highly nonlinear, uncertain nature of the
system. Furthermore, due to the extreme conditions in fusion reactors, diagnostic systems may
be limited. To deal with these challenges, we propose the use of a nonlinear, multi-variable
output feedback control strategy with a proportional-integral observer. A simulation study is
carried out to illustrate the performance of the scheme using a set of diagnostics likely to be
available in ITER.

Keywords: Nonlinear Control Systems, Nuclear Reactors, Lyapunov Stability, Output
Feedback, Uncertain Dynamic Systems.

1. INTRODUCTION

For nuclear fusion to become an economical means of
producing power, tokamak reactors must achieve a burning
plasma characterized by a large ratio of fusion power to ex-
ternal heating power. Precise control of the plasma density
and temperature will be required to ensure good transient
performance when moving between operating points, and
to respond to unexpected changes in confinement, impu-
rity content, or other parameters. Feedback control will
also be critical for enabling operation at thermally unsta-
ble points. Without a well-designed burn control scheme,
disruptive plasma instabilities could be triggered, stopping
operation and potentially damaging the machine.

Modulation of the burn condition is made challenging by
the nonlinearly coupled, multi-variable, uncertain nature
of the burning plasma system. In past work on the problem
of burn control, the feasibility of various actuators has
been studied (Mandrekas and Stacey, 1989; Haney et al.,
1990). Most previous efforts made use of just one of the
available actuators and linearized the system model to
make use of linear control design techniques. In Leonov
et al. (2005), a diagonal multi-input, multi-output lin-
ear control scheme was developed, while non-model-based
proportional-integral controllers were studied in (Mitarai,
2002; Mitarai et al., 2010). When tested using nonlinear
models, these control strategies succeed in stabilizing the
system against a limited set of perturbations and are only
valid near the operating point for which they are designed.
In our previous work, Schuster et al. (2003); Boyer and
Schuster (2011, 2012), a zero-dimensional nonlinear model
for the energy and the ion density dynamics was used
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to synthesize nonlinear feedback controllers for stabiliz-
ing the burn condition. The controllers utilize auxiliary
power modulation, controlled impurity injection, and fu-
eling modulation as actuators simultaneously. Nonlinear
burn control using multiple actuators had only been done
previously in works using non-model-based techniques, like
neural networks (Vitela, 2001).

Due to the extreme conditions in fusion reactors, as well
as cost considerations, diagnostic systems may be limited.
Because the proposed nonlinear burn control control ap-
proach relies on knowledge of the states of the system
(state feedback), it may not be directly implementable. To
overcome this, a dynamic observer that combines knowl-
edge from the mathematical model of the system with the
available real-time output measurements to estimate the
system states will likely be necessary. In this work, we
design a nonlinear proportional-integral observer (PIO)
to augment the nonlinear controller design, resulting in
an output feedback control scheme. PIO designs differ
from classical observers by the presence of an integral
component in the output injection term, which provides an
additional degree of freedom that can be used to decrease
sensitivity to model uncertainties and disturbances. Out-
put feedback controllers with PIOs have been proposed for
general linear systems (Beale and Shafai, 1989) and have
been applied to certain nonlinear systems (Jung et al.,
2007; Orjuela et al., 2008). For the nominal system, the
observer design proposed in this work is stable for suitably
small state estimation errors or observer gains. The state
estimation error is input-to-state-stable (ISS) with respect
to a particular set of uncertain model parameters, while,
due to the inclusion of integral output injection terms, the
output estimation error converges to zero asymptotically.



This paper is organized as follows. The model used for
control design is given in Section 2. The design of a
nonlinear multi-variable controller and observer is detailed
in Section 3, and a simulation study is shown in 4. Finally,
conclusions and future work are discussed in 5.

2. BURNING PLASMA MODEL

We consider a burning plasma model of the form

ṅα =− θ1
nα
τscE

+ Sα, (1)

Ė =− θ2
E

τscE
+ Pα − Prad + Paux + POhm, (2)

ṅI,c =− θ7
nI,c
τscE

+ SinjI , (3)

ṅI,sp =− θ7
nI,sp
τscE

+ SspI , (4)

ṅD =− θ3
nD
τscE

+ θ4
nT
τscE
− Sα + SinjD , (5)

ṅT =θ5
nD
τscE
− θ6

nT
τscE
− Sα + SinjT , (6)

where nα, nD, nT , and E are the α-particle, deuterium,
tritium, and energy densities, respectively. The deuterium
and tritium injection rates (controller inputs) are given
by SinjD and SinjT . Note that the second term in (5)
and first term in (6) arise due to coupling caused by
particles recycling from the walls of the reactor. The term
nI,c represents the density of impurities due to controlled
impurity injection, while nI,sp represents the uncontrolled
impurity density that arises due to sputtering from plasma
facing components of the confinement vessel. The source
of α-particles from fusion is given by

Sα = γ(1− γ)n2
DT 〈σv〉, nDT = nD+nT , γ =

nT
nDT

, (7)

where nDT = nD +nT is the density of deuterium-tritium
fuel and γ is the tritium fraction. The DT reactivity 〈σν〉,
a highly nonlinear, positive and bounded function of the
plasma temperature, T = 2

3
E
n , is calculated by

〈σν〉 = exp
( a

T r
+a2+a3T+a4T

2+a5T
3+a6T

4
)
, (8)

where the parameters ai and r are taken from Hively
(1977). The plasma density is given by

n = 2nD + 2nT + 3nα + (ZI + 1)nI . (9)

The term SinjI (controller input) is the injection of impu-
rities that increases the controlled impurity density nI,c to
cool the plasma. The sputtering source is modeled as

SspI =
fspI n

τ∗I
+ fspI ṅ, (10)

where 0 ≤ fspI � 1 in order to maintain nI,sp = fspI n. This
simple model reflects the fact that there is typically a small
uncontrolled impurity content. To simplify presentation,
we consider both impurity populations to have the same
atomic number ZI . The total impurity content nI = nI,s+
nI,c is then governed by

ṅI = −θ7
nI
τscE

+ SinjI + SspI . (11)

Paux (controller input) is the auxiliary heating power,
while Pα = QαSα is the plasma heating from fusion where

Qα = 3.52 MeV is the energy of α-particles. Prad repre-
sents radiative cooling losses, which are approximated by
an expression for bremsstrahlung losses (Stacey, 2010),

Prad = Abrem
(
nD+nT +4nα+Z2

InI
)
ne
√
T (keV ), (12)

where Abrem is a constant and ne is the electron density.
The electron density is obtained from the neutrality con-
dition ne = nD + nT + 2nα + ZInI . Ohmic heating POhm
is approximated as (Stacey, 2010)

POhm = 2.8× 10−9ZeffI
2
pa

−4T−3/2, (13)
where Ip is in Amps, T is in keV, and Zeff =(
nD + nT + 4nα + nIZ

2
I

)
/ne.

The state-dependent energy confinement time is given by

τscE =0.0562I0.93
p B0.15

T P−0.69n0.41
e19M

0.19R1.97ε0.58κ0.78
95 , (14)

where P = Paux + POhm + Pα − Prad is the total power
(MW), ne19 is the electron density (1019m−3), M is the
effective mass of the plasma (amu) (ITER Director, 2001).
Based on ITER design parameters, we consider the plasma
current Ip = 15.0 MA, the toroidal magnetic field BT =
5.3 T, the major radius R = 6.2 m, and the elongation at
the 95% flux surface κ95 = 1.7. A minor radius a = 2.0 m
is used to calculate the aspect ratio ε = a/R.

The terms θi for i ∈ {1, ..., 7} represent model parameters
that depend on the confinement and particle recycling
properties of the machine. In the control design, we con-
sider them to be uncertain and bounded.

3. NONLINEAR CONTROLLER AND OBSERVER

We consider an observer of the form

˙̊nα =− θ̂1
n̊α
τscE

+ Sα + Lα, (15)

˙̊
E =− θ̂2

E̊

τscE
+ Pα − Prad + Paux + POhm + LE , (16)

˙̊nI =− θ̂7
n̊I
τscE

+ SinjI + SspI + LI , (17)

˙̊nD =− θ̂3
n̊D
τscE

+ θ̂4
n̊T
τscE
− Sα + SinjD + LD, (18)

˙̊nT =θ̂5
n̊D
τscE
− θ̂6

n̊T
τscE
− Sα + SinjT + LT , (19)

where Lα, LE , LI , LD, and LT are to-be-designed output
injection terms. The terms Sα, Pα, Prad, POhm, and SspI
are considered to be measured, based on the diagnostic
systems planned for ITER (Snipes et al., 2012) (if unavail-
able, these terms could always be estimated based on the
observer state estimates). The terms θ̂i for i ∈ {1, . . . , 7}
are estimates of the uncertain model parameters. The
measured output map is considered to be of the form

y = h(nα, E, nI , nD, nT ). (20)
We consider an additional state, ž, governed by

˙̌z = ẙ − y = y̌, (21)

where ẙ = h(̊nα, E̊, n̊I , n̊D, n̊T ).

For the purposes of control design, we consider the esti-
mated states n̊ and γ̊, which are governed by



˙̊n =2

[(
θ̂5 − θ̂3

) n̊D
τscE

+
(
θ̂4 − θ̂6

) n̊T
τscE
− 2Sα + SinjD + SinjT

+ LD + LT

]
+ 3

[
−θ̂1

n̊α
τscE

+ Sα + Lα

]
+ (ZI + 1)

[
−θ̂7

n̊I
τscE

+ SinjI + SspI + LI

]
, (22)

˙̊γ =
1

n̊DT

{
θ̂5
n̊D
τscE
− θ̂6

n̊T
τscE
− Sα + SinjT + LT

−γ̊
[(
θ̂5−θ̂3

) n̊D
τscE

+
(
θ̂4−θ̂6

) n̊T
τscE
− 2Sα+SinjD

]
+SinjT + LD + LT

]}
. (23)

We define the tracking errors Ẽ = E̊ − Er, γ̃ = γ̊ − γr ,
and ñ = n̊− nr to write

˙̃E =− θ̂2
Ẽ

τscE
− θ̂2

Er

τscE
+ Pα − Prad + Paux

+ POhm + LE − Ėr, (24)

˙̃γ =− θ̂6
γ̃

τscE
+

2
[
u(γr) + (1− γ̊)SinjT − γ̊SinjD

]
n̊− 3n̊α − (ZI + 1) n̊I

, (25)

˙̃n =− ñ
[
−
(
θ̂5 − θ̂3

) (1− γ̊)

τscE
−
(
θ̂4 − θ̂6

) γ̊

τscE

]
+ v − ṅr + 2

(
SinjD + SinjT

)
, (26)

where

u(γr) =
n̊−3n̊α−(ZI+1) n̊I

2

[
θ̂5

(1− γ̊)

τscE
− θ̂6

γr

τscE
−γ̇r

−
(
θ̂5 − θ̂3

) (̊γ − γ̊2
)

τscE
−
(
θ̂4 − θ̂6

) γ̊2

τscE

]
+(2̊γ−1)Sα + (1− γ̊)LT − γ̊LD, (27)

v = [−nr+3n̊α+(ZI+1) n̊I ]

[
−
(
θ̂5−θ̂3

) (1−γ̊)

τscE

−
(
θ̂4−θ̂6

) γ̊

τscE

]
− 4Sα + 3

[
−θ̂1

n̊α
τscE

+ Sα + Lα

]
+ (ZI + 1)

[
−θ̂7

n̊I
τscE

+ SinjI + SspI + LI

]
+ 2 (LD + LT ) . (28)

Note that, without steady-state controlled impurity injec-
tion, the reference r = [Er, nr, γr] uniquely determines the
equilibrium values of nα and nI , and these states remain
bounded if r is stabilized. We therefore make regulation of
r the objective of the control design.

3.1 Controller Design

The error Ẽ can be driven to zero by satisfying

f(n,E,nα,nI ,γ) =− θ̂2
Er

τscE
+POhm+Pα−Prad+Paux

+ LE − Ėr +KEẼ = 0. (29)
The condition (29) can be satisfied in several different
ways. The auxiliary heating term Paux enters directly, the
actuators SinjD and SinjT can be used to change Pα by
modulating the tritium fraction, and the impurity injec-
tion term SinjI can be used to increase impurity content

and consequently Prad. Having several methods available
enables us to achieve stabilization despite saturation of one
or even several of the available actuators.

Step 1: We first calculate Paux as

Punsataux =θ̂2
Er

τscE
−γr (1− γr) Pα

γ̊ (1− γ̊)
+Prad

−POhm− LE +Ėr−KEẼ, (30)
where Pα/ [̊γ (1− γ̊)] is an estimate of Qαn2

DT 〈σν〉. This
value is saturated by the limits Pmaxaux , which depends on
the installed power on the tokamak, and Pminaux ≥ 0, which
depends on the operating scenario.

Step 2: We next find a trajectory γ∗ that would result in
a fusion heating value satisfying (29), i.e.

γ∗(1−γ∗) Pα
γ̊ (1− γ̊)

=Prad−POhm−Paux− LE

+θ̂2
Er

τscE
+Ėr−KEẼ. (31)

Solving this equation yields

γ∗ (1− γ∗) =
γ̊ (1− γ̊)

Pα

[
θ̂2
Er

τscE
+Prad−POhm−Paux

−LE +Ėr −KEẼ
]

= C, (32)

γ∗ =
1±
√

1− 4C

2
. (33)

Note that, if the value of Paux calculated in Step 1 is
not saturated, then γ∗ = γr. This can be shown by
substituting (30) into (29). If C ≤ 0.25, the two resulting
solutions for γ∗ are real and we take the tritium-lean
solution, such that γ∗ ≤ 0.5. If C ≥ 0.25, even the optimal
isotopic mix and maximum value of auxiliary heating will
not generate enough heating to satisfy f = 0, indicating
that the requested operating point may not be achievable
for the amount of auxiliary heating power installed on the
device. Barring this situation, we have that

f (n,E, nα, nI , γ
∗) = 0. (34)

This allows us to write f = γ̂φγ where γ̂ = γ̊ − γ∗ and
φγ is a continuous function. Noting (24) and (29), we can
then write the dynamics of the energy perturbation as

˙̃E = −θ̂2
Ẽ

τscE
−KEẼ + γ̂φγ , (35)

while the dynamics of γ̂ can be written as

˙̂γ = −θ̂6
γ̂

τscE
+

2
[
u(γ∗) + (1− γ̊)SinjT − γ̊SinjD

]
n̊− 3n̊α − (ZI + 1) n̊I

. (36)

by noting (25) and (27).

Step 3: Having selected Paux and γ∗ in, we next choose
SinjD and SinjT to ensure that Ẽ, γ̂, and ñ, governed by
(35), (36), and (26), are driven to zero. We consider the
Lyapunov function V0 = Vn + VE,γ where Vn = 1

2 ñ
2 and

VE,γ = 1
2k1Ẽ

2 + 1
2 γ̂

2. It can be shown that satisfying

2
(
SinjT + SinjD

)
=− v −Knñ+ ṅr, (37)

(1− γ̊)SinjT − γ̊SinjD =− n̊− 3n̊α − (ZI + 1) n̊I
2

×
(
k1Ẽφγ +Kγ γ̂

)
− u(γ∗), (38)



where Kn > 0 and Kγ > 0 results in

V̇n =− ñ2

(
−
(
θ̂5 − θ̂3

) (1− γ̊)

τscE

−
(
θ̂4 − θ̂6

) γ̊

τscE
+Kn

)
< 0, (39)

V̇E,γ =− k1θ̂2
Ẽ2

τscE
− k1KEẼ

2 −
(

1

τT
+Kγ

)
γ̂2 < 0, (40)

such that V̇0 < 0, guaranteeing asymptotic stability of the
system (for physically relevant parameters, θ5 < θ3 and
θ4 < θ6). The conditions (37) and (38) can be satisfied by

SinjD =
n̊− 3n̊α − (ZI + 1) n̊I

2

(
k1Ẽφγ +Kγ γ̂

)
+ u(γ∗) + (1− γ̊)

(
−v −Knñ+ ṅr

2

)
, (41)

SinjT =

(
−v −Knñ+ ṅr

2

)
− SinjD . (42)

These values are subject to the constraints 0 ≤ SinjD ≤
Sinj,maxD and 0 ≤ SinjT ≤ Sinj,maxT . If one of the fueling
actuators saturates, we cannot satisfy both conditions of
the control law, so we must choose to either control n̊ or
γ̊. To avoid a potential violation of the disruptive density
limit, we instead choose to maintain control of the density
by satisfying (37).

Due to fueling saturation, we may have V̇E,γ > 0, that
is, stability of the system may not be ensured with the
previously considered actuators. There are two situations
to consider, either a quench or an excursion. In a quench,
the controller has already increased heating to its maxi-
mum, so the only alternative would be to alter magnetic
parameters to improve confinement (see (14)) or to change
the target operating point to an achievable one. In an ex-
cursion, however, we can use impurity injection to stabilize
the energy, despite the heating and fueling saturation. In
this case we enable the use of impurity injection by setting
the flag Fimp = 1 and proceeding to Step 4.

Step 4: If Fimp = 1, we use the expression for radiation
losses given in (12) to find an impurity density n∗I that
satisfies condition (29). Defining the error n̂I = n̊I − n∗I ,
we can write its dynamics as

˙̂nI = −θ̂7
n̂I
τscE
− θ̂7

n∗I
τscE

+ SinjI + SspI − ṅ
∗
I . (43)

Based on the choice of n∗I , we have that
f (n,E, nα, γ, n

∗
I) = 0, (44)

which allows us to write f = n̂IφI where φI is a continuous
function. We can then rewrite (24) as

˙̃E = −θ̂2
Ẽ

τscE
−KEẼ + n̂IφI . (45)

We take as a Lyapunov function V1 = Vn+Vγ+VE,I where
Vγ = 1

2 γ̂
2 and VE,I = 1

2k3Ẽ
2 + 1

2 n̂
2
I . By satisfying

SinjI = −k3ẼφI + θ̂7
n∗I
τscE
− SspI + ṅ∗I −KI n̂I , (46)

where KI > 0, the derivative of VE,I can be reduced to

V̇E,I = −k3θ̂2
Ẽ2

τscE
− k3KEẼ

2 −KI n̂
2
I < 0. (47)

We modify the tritium fraction trajectory to γ∗ =

γ∗(Step 2) − KS

´ t
t0
SinjI dt where γ∗(Step 2) is the value of γ∗

calculated in Step 2, KS > 0, and t0 is the time at which
impurity injection was first used. This ensures that the
tritium fraction is, if possible, eventually reduced to such
a level that impurity injection is no longer needed, i.e.,
SinjI → 0. Once SinjI = 0, impurity injection is disabled in
subsequent steps by setting Fimp = 0. By satisfying

2
(
SinjT + SinjD

)
=− v −Knñ, (48)

(1− γ̊)SinjT − γ̊SinjD =− n̊− 3n̊α − (ZI + 1) n̊I
2

Kγ γ̂

− u(γ∗I ). (49)
We can ensure that V̇n < 0, V̇γ < 0, and therefore V̇1 < 0,
guaranteeing stability of the system. The conditions (48)
and (49) can be satisfied by choosing

SinjD =
n̊− 3n̊α − (ZI + 1) n̊I

2
Kγ γ̂

+ u(γ∗) + (1− γ̊)

(
−v −Knñ

2

)
, (50)

SinjT =

(
−v −Knñ

2

)
− SinjD , (51)

which are again subject to saturation. If one of the fueling
actuators saturates, we again choose to hold (48).

3.2 Observer Design

The dynamics of the estimation error are governed by

˙̌nα =− θ̃1
n̊α
τscE
− θ1

ňα
τscE

+ Lα, (52)

˙̌E =− θ̃2
E̊

τscE
− θ2

Ě

τscE
+ LE , (53)

˙̌nI =− θ̃7
n̊I
τscE
− θ7

ňI
τscE

+ LI , (54)

˙̌nD =− θ̃3
n̊D
τscE
− θ3

ňD
τscE

+ θ̃4
n̊T
τscE

+ θ4
ňT
τscE

+ LD, (55)

˙̌nT =θ̃5
n̊D
τscE

+ θ5
ňD
τscE
− θ̃6

n̊T
τscE
− θ6

ňT
τscE

+ LT , (56)

where θ̃i = θ̂i − θi and the estimation errors are de-
noted by .̌ Taking x̌ =

[
ňα, Ě, ňD, ňT , ňI

]T
, L =

[Lα, LE , LD, LT,LI ]
T , Θ =

[
θ̃1, θ̃2, θ̃3, θ̃4, θ̃5, θ̃6, θ̃7

]T
, this

can be written in a more compact form
˙̌x = Ax̌+ L+ ΦΘ, (57)

where A is negative definite for physically relevant model
parameters and

Φ = − 1

τscE


n̊α 0 0 0 0 0 0

0 E̊ 0 0 0 0 0
0 0 n̊D −n̊T 0 0 0
0 0 0 0 −n̊D n̊T 0
0 0 0 0 0 0 n̊I

 . (58)

We consider the Lyapunov function

V̌ =
1

2
x̌TQx̌+

1

2
žTKI ž, (59)

where Q is positive definite and ž is given by (21). We
calculate the time derivative of V̌ as

˙̌V = x̌T [QAx̌+QL+QΦΘ] + žTKI y̌. (60)
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Fig. 1. Comparison of measured outputs to the values calculated from the states of the observer during the output
feedback simulation using the uncertain model. The desired tritium ratio, γ∗, is shown in (f).

Noting that the output error can be written as y̌ =

∂h
∂x

∣∣∣∣
x=x̊

x̌+H.O.T. (higher order terms) and that the scalar

term žTKI y̌ is equivalent to y̌TKT
I ž, we can write

˙̌V =x̌TQ

[
Ax̌+ L+ ΦΘ +Q−1 ∂h

∂x

∣∣∣∣T
x=x̊

KT
I ž

]
+ (H.O.T.)KT

I ž. (61)
By choosing

L =−Q−1 ∂h

∂x

∣∣∣∣T
x=x̊

KT
I ž +A0

∂h

∂x

∣∣∣∣T
x=x̊

y̌

=−Q−1 ∂h

∂x

∣∣∣∣T
x=x̊

KT
I ž

+A0
∂h

∂x

T ∣∣∣∣
x=x̊

(
∂h

∂x

∣∣∣∣
x=x̊

x̌+H.O.T.

)
, (62)

where A0 is a negative definite matrix, we have that

˙̌V =x̌TQ

[
Ax̌+A0

∂h

∂x

T ∣∣∣∣
x=x̊

∂h

∂x

∣∣∣∣
x=x̊

x̌+ ΦΘ

]

+QA0
∂h

∂x

T ∣∣∣∣
x=x̊

(H.O.T ) + (H.O.T.)KT
I ž. (63)

If θ is known exactly, then Θ = 0 and ˙̌V ≤ 0 for sufficiently
small state estimation errors or observer gains. It can
be shown that the system is input-to-state-stable with
respect to Θ, implying that x̌ will be bounded for bounded
parameter errors. Furthermore, since ž is bounded and
ž =

´ t
0

(ẙ − y) dτ , the estimated and measured outputs
converges. This implies that, despite uncertainty in the
actual states, if the references Er, γr, and nr are chosen

such that the observer output tracks a desired target, the
measured output will converge to that same target.

4. SIMULATION RESULTS

In the following, the nominal model parameters were taken
as θ1 =0.333, θ2 =1, θ3 =0.1733, θ4 =0.0832, θ5 =0.0832,
θ6 = 0.1733, θ7 = 0.1. As a test of robustness, perturbed
parameters were used in the controller and observer design,
i.e., θ̂1 =1.3θ1, θ̂2 =1.3θ2, θ̂3 =0.7θ3, θ̂4 =1.3θ4, θ̂5 =0.7θ5,
θ̂6 = 1.3θ6, θ̂7 = 1.1θ7. The observer gain was designed
with Q = diag(8e-36,2e-38,2e-38,3e-10,2e-36), A0 =
−diag(8,5,5,1,6), and KI = 0.1diag(1e-34, 1e-6, 0.02, 4.0,
3e-40,8).

Figure 1 compares the output measurements to the values
calculated from the estimated states of the observer.
The observed outputs converge to the measured values,
and remain close to the measured values throughout the
simulation. The states of the system are compared with
the estimated states in Figure 2 (a)-(d). As expected,
the estimated states converge to the actual values over
time. Despite the absence of direct state measurements
and uncertain initial conditions, the scheme is able to drive
the energy, density, and tritium fraction to their respective
desired references. Finally, the controlled actuators are
shown in Figure 2 (e) and (f), showing how the isotopic
fueling technique was used to account for saturation of the
ICRH power early in the simulation.

5. CONCLUSIONS

A nonlinear output feedback control scheme for track-
ing the burn condition in fusion reactors has been pre-
sented. The scheme uses auxiliary heating and fuel in-



100 120 140 160 180 200
4

4.5

5

5.5

6
x 10

5

Time

E
n
e
rg

y
 (

W
m

−
3
)

 

 

E

E (observer)

E
r

(a)

100 120 140 160 180 200
1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24
x 10

20

Time

P
la

s
m

a
 D

e
n
s
it
y
 (

#
m

−
3
)

 

 

n

n
r

n (observer)

(b)

100 120 140 160 180 200
2

2.2

2.4

2.6

2.8

3

3.2
x 10

19

Time

D
e
n
s
it
y
 (

#
m

−
3
)

 

 

n
D

n
T

n
D
 (observer)

n
T
 (observer)

(c)

100 120 140 160 180 200
0

0.5

1

1.5

2
x 10

18

Time

D
e
n
s
it
y
 (

#
m

−
3
)

 

 

n
α

n
α

 (observer)

n
I

n
I
 (observer)

(d)

100 120 140 160 180 200
0

5

10

15

20

Time

P
IC

R
H
 (

M
W

)

(e)

100 120 140 160 180 200
0

0.5

1

1.5

2

2.5
x 10

18

Time

F
u
e
lin

g
 (

#
s

−
1
m

−
3
)

 

 

S
D

S
T

(f)
Fig. 2. Comparison of state estimations to actual values ((a)-(d)), as well as control input evolutions ((e)-(f)). Note

that Paux = PICRH + PCD, where PCD = 40 MW is a fixed power due to non-inductive current drive sources.

jection to stabilize and track desired equilibria (impurity
injection is also used, when necessary). The nonlinear
proportional-integral observer guarantees the desired out-
puts are tracked despite model uncertainty. A simulation
study shows the performance of the scheme with a set
of measurements likely to be available on future reactors.
Future work will involve coupling the output feedback con-
troller with online optimization and parameter estimation
schemes, and testing the control strategy with other codes
like METIS or TRANSP.
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