
Robust Control of Resistive Wall Modes in
Tokamak Plasmas using μ-synthesis �

J. Dalessio, E. Schuster ∗ D.A. Humphreys, M.L. Walker ∗∗
Y. In, and J.S. Kim ∗∗∗

∗Lehigh University, Bethlehem, PA 18015, USA,
(Tel: 610-758-5253; e-mail: schuster@lehigh.edu).
∗∗General Atomics, San Diego, CA 92121, USA

∗∗∗FAR-TECH Inc., San Diego, CA 92121

Abstract:
In this work, μ-synthesis is employed to stabilize a model of the resistive wall mode (RWM) instability
in the DIII-D tokamak. The GA/Far-Tech DIII-D RWM model is used to derive a linear state space
representation of the mode dynamics. The key term in the model characterizing the magnitude of the
instability is the time-varying uncertain parameter cpp, which is related to the RWM growth rate γ .
Taking advantage of the structure of the state matrices, the model is reformulated into a robust control
framework, with the growth rate of the RWM modeled as an uncertain parameter. A robust controller
that stabilizes the system for a range of practical growth rates is proposed and tested through simulations.

1. INTRODUCTION

Nuclear fusion produces energy through fusing together the
nuclei of two light hydrogen atom isotopes (e.g., deuterium and
tritium). Such a process requires extreme temperatures to occur,
since the nuclei need to overcome the Coulomb barrier (both
nuclei carry positive charges) in order to fuse. The confinement
of this high-temperature, ionized, hydrogen gas called plasma
can be provided by a magnetic confinement device (e.g., a
tokamak, which is in the shape of a torus).

One of the major non-axisymmetric instabilities in tokamaks
is the resistive wall mode (RWM), a form of plasma kink
instability whose growth rate is moderated by the influence
of a resistive wall (Walker [2006]). This instability is present
in sufficiently high pressure plasmas which causes the plasma
to kink similar to that of a garden hose. In a kink mode, the
entire plasma configuration deforms in a helically symmetric
manner with an extremely fast growth time (a few microsec-
onds) generating time-varying magnetic perturbations that in-
duce eddy currents in the surrounding conductive structure.
These induced currents, in turn, generate magnetic fields that
oppose the plasma deformation slowing the overall growth rate
of the instability (to a few milliseconds), which allows the use
of feedback to control the RWM. If the surrounding structure
were perfectly conductive at a critical distance from the plasma,
the system would be stabilized by the mode-induced eddy cur-
rents, however the resistive losses cause a decay in the wall
currents, which allow for growth in the mode amplitude. At
present, research efforts focus on the stabilization of the n = 1
RWM(the plasma perturbation repeats only once as the toroidal
angle varies from 0 to 2π) because this instability is usually the
first to occur when pressure increases.
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The GA/Far-Tech DIII-D RWM model replaces the spatial
perturbation of the plasma with an equivalent perturbation of
surface current on a spatially fixed plasma boundary and repre-
sents the resistive wall using an eigenmode approach (Fransson
[2003], In [2006]). The spatial and current perturbations are
equivalent in the sense that they both produce the same mag-
netic field perturbation. Observations from experiments show
that the mode spatial structure remains unchanged. Based on
the surface current representation of the mode, a state-space
model of the plant can be derived from Faraday’s Law, with
states consisting only of the surrounding wall current and the
external control coil currents. Since the plasma is represented as
a single mode, and due to the mode spatial invariance, the state
space model is parameterized with a scalar coupling coefficient
cpp, which is directly related to the growth rate γ of the mode.

Although the plasma surface deformation cannot be directly
measured in real time, the magnitude and phase of the defor-
mation can be diagnosed from measurements by a set of 22
magnetic field sensors composed of poloidal magnetic field
probes and saddle loops, which measure radial flux. A set of
12 internal feedback control coils (I-coils) can then be used
to return the plasma to its original axisymmetric shape. Fig. 1
shows the arrangement of coils and sensors. Using an estimator,
the 22 outputs are reduced to 2 outputs that represent the RWM
orthogonal components of the assumed n = 1 mode pattern.
These 2 outputs can be combined to calculate the amplitude
and toroidal phase of the mode (Edgell [2002]). In addition, a
typical quartet configuration reduces the number of controllable
inputs from 12 to 3 by locking the phase of the I-coils in sets of
4. The plant can be modeled then as a 3 input, 2 output system.

In the past years there have been many efforts on feed-
back stabilization of resistive wall modes in DIII-D (Garafalo
[2001]-Okabayashi [2005]) as well as in other tokamaks,
such as HBT-EP, NSTX, and ITER. Most of these efforts fo-
cused on designing empirically-tuned, non-model-based, PD
(proportional-derivative) controllers. Nevertheless, there has
been some work on the development of optimal controllers



Fig. 1. Coils and sensors for magnetic feedback stabilization.
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Fig. 2. Empirical relationship between growth rate γ and cpp.

based on circuit models of the DIII-D tokamak (Sen [2003])
and ITER (Katsuro-Hopkins [2007]). Although some of these
controllers have been proved effective in extending the stability
region of the closed-loop system, they have been designed for
a particular value of the system growth rate γ . The overall
goal of this work is to take advantage of the developed DIII-
D RWM model to design a model-based, feedback, stabilizing
controller for a whole predefined range of the growth rate γ
instead of a particular value (prior work in this direction can be
found in (Sun [2006]), where an adaptive control approach is
considered). The major parameter characterizing the magnitude
of the instability is the time-varying uncertain parameter cpp,
which is related to the RWM growth rate γ . This parameter,
in the form of the scalar coupling coefficient cpp, is buried
within the state space representation of the plasma and must be
extracted and separated from the nominal plant model to write
the model in a robust control framework. Once the uncertain
parameter is extracted, a robust controller, as measured by the
structured singular value μ (Zhou et al. [1996]), is designed to
stabilize the RWM instability over a certain range of the growth
rate γ . This has the benefits of designing one constant controller
that can stabilize the plasma RWM instability over the entire
physical range of the uncertain time-varying growth rate.

The paper is organized as follows. Section II introduces the
GA/Far-Tech DIII-D RWM plasma model and manipulates
the state space equation to achieve an affine parameterized
form. Section III fully separates the uncertain parameter cpp
from the nominal plant using linear fractional transformations.
Section IV describes the design of a robust controller based
on the parameterized model using the D−K iteration for μ-
synthesis. The performance of the controller is assessed through
simulations. Section V closes the paper stating the conclusions.

2. PLASMA MODEL & PARAMETERIZATION

2.1 System Model

Stated below is the GA/Far-Tech DIII-D RWM model, a plasma
response model for the resistive wall mode using a toroidal cur-
rent sheet to represent the plasma surface (Edgell [2002]). Most
of the matrices and variables presented are characteristics of
the tokamak and are well known. The uncertainty is introduced
through the variable cpp, which corresponds to a certain growth
rate γ of the resistive wall mode. The relationship between these
variables is shown empirically in Fig. 2 for a particular plasma
equilibrium and is further explained in (In [2006]).

The model is represented in terms of the couplings between the
plasma (p), vessel wall (w), and coils (c). The model derived
from Faradays law of induction results in the system dynamics
that reduce to

(Mss −MspcppMps)İs +RssIs = Vs

where Mss is the mutual inductance between external conduc-
tors, including the vessel wall and the coils, Msp is the mu-
tual inductance between either the external conductors and the
plasma, Rss is the resistance matrix, Is is the current flowing in
the conductors, and Vs is the externally applied voltage to the
conductors. The mutual inductance matrices are given by

Mss =
[
Mww Mwc
Mcw Mcc

]
, Msp =

[
Mwp
Mcp

]
, Mps = [Mpw Mpc] ,

where Mps and Msp satisfy the following condition

Mps = MT
sp =

[
MT

wp MT
cp

] ⇒ Mpw = MT
wp,Mpc = MT

cp.

The resistance matrix is given by

Rss =
[

λw 0
0 Rc

]
,

where λw characterizes the couplings of a wall surface eigen-
mode to other states by the time-varying perpendicular mag-
netic fields contributed by those states and Rc is the coil resis-
tance. The current and externally applied voltage to the conduc-
tors can be written as

Is =
[

Iw
Ic

]
, Vs =

[
0
Vc

]
,

where Iw is the wall current, Ic is the coil current, and Vc is the
externally applied voltage to the coil.

This model can be represented in a state space formulation
using the current in the conductors as the states (x = Is) and
the applied voltage as the inputs (u = Vs). This results in the
following state space equation

ẋ = Ax+Bu
where

A = −L−1
ss Rss, B = L−1

ss , (1)
where Lss = Mss − MspcppMps. The output equation of the
state space representation is based on sensor measurements that
relate to the conductor currents through the dynamics

y = (Css −CypcppMps)Is
where Cyp is the coupling matrix between the sensor and plasma
current and

Css = [Cyw Cyc ]
is given by the coupling matrix between the sensor and wall
current Cyw, and the coupling matrix between the sensor and
coil current Cyc. This results in the state space output equation

y = Cx
where C = Css −CypcppMps.



2.2 Parameterization of the L−1
ss Matrix

The goal of this section is to extract the uncertain parameter
cpp from the uncertain state space system and introduce it as an
uncertainty block that perturbs a nominal state space system.
The initial step to obtaining the nominal state space system
is to express each state matrix as a general affine state space
representation using nonlinear functions of the uncertainty cpp.
As seen in (1), the majority of the complexity is introduced
in the A and B state matrices, where the uncertainty cpp is
introduced through L−1

ss , and where Lss = (Mss −MspcppMps).
Since the instability is two-dimensional, the matrix product
MspMps is rank 2 and the 2× 2 diagonal Cpp matrix is treated
as a scalar cpp. Thus the Lss matrix can be expressed as

Lss = Mss −MspcppMps = Mss − cpp

2

∑
i=1

uiu
′
i (2)

where Msp = M′
ps = [ u1 u2 ], and u1 and u2 are n× 1 vectors

where n is the number of states in the RWM state space model.
To obtain a parameterized expression for the L−1

ss term, we must
first compute the inverse of a matrix sum. Given the matrix
AT , the scalar bT , and the vectors CT and DT , the inverse of
a matrix sum is given by the Sherman-Morrison formula as
Kailath [1979]

(AT −bTCT DT )−1 = A−1
T +

bT (A−1
T CT )(DT A−1

T )
1−bT DT A−1

T CT
. (3)

Using (2), the inverse of Lss can be written as

L−1
ss = (Mss −MspcppMps)−1 = (Mss − cppu1u′1 − cppu2u′2)

−1.

Now, using the matrix Al = Mss − cppu1u′1 the above equation
can be written as L−1

ss = (Al − cppu2u′2)
−1. This is now in the

form given by (3) and thus the formula can be applied, resulting
in

L−1
ss = A−1

l +
cpp(A−1

l u2)(u′2A−1
l )

1− cppu′2A−1
l u2

. (4)

Now the matrix L−1
ss is expressed in terms of A−1

l , which is
equivalent to (Mss − cppu1u′1)

−1, and once again applying (3)
results in

A−1
l = (Mss − cppu1u′1)

−1 = M−1
ss +

cpp(M−1
ss u1)(u′1M−1

ss )
1− cppu′1M−1

ss u1
.

This expression can now be substituted back into (4). The terms
can be collected and rewritten in the form

B = L−1
ss =

4

∑
i=0

αiBi,

where αi’s are nonlinear functions of cpp, and Bi’s are constant
matrices. The individual terms are given by

α0 = 1, α1 =
cpp

1− cppu′1M−1
ss u1

α2 =
cpp

1− cppu′2M−1
ss u2 − c2

pp

1−cppu′1M−1
ss u1

u′2(M
−1
ss u1)(u′1M−1

ss )u2

α3 = α2α1, α4 = α2α2
1 , B0 = M−1

ss ,

B1 = [(M−1
ss u1)(u′1M−1

ss )], B2 =
[
(M−1

ss u2)(u′2M−1
ss )

]
B3 =

[
(M−1

ss u2)
(
u′2(M

−1
ss u1)(u′1M−1

ss )
)

+
(
(M−1

ss u1)(u′1M−1
ss )u2

)
(u′2M−1

ss )
]

B4 =
[
(M−1

ss u1)(u′1M−1
ss )u2u′2(M

−1
ss u1)(u′1M−1

ss )
]
.

Fig. 3. G(s) as a LFT using Mα , 1
s In.

2.3 Expressing the Parameterized State Space Matrices

The last section allowed us to express the L−1
ss matrix in a

parameterized form, which allows the parameterization of the
state and input matrices A and B respectively. In a similar way,
the output matrix C can also be parameterized. Using the fact
that cpp is a scalar, the C matrix can be written as

C = Css −CypcppMps = Css − cppCypMps = C0 +α5C5,

where
C0 = Css, C5 = −CypMps, α5 = cpp.

Defining Ai = −BiRss, we can finally summarize the parame-
terized expressions for the state matrices A, B, and C in terms
of αi’s, given as

A = A0 +α1A1 +α2A2 +α3A3 +α4A4 (5)
B = B0 +α1B1 +α2B2 +α3B3 +α4B4 (6)

C = C0 +α5C5. (7)

3. GROWTH RATE PARAMETERIZATION

3.1 Linear Fractional Transformation (LFT) of RWM

A system with state space representation A,B,C,D has a trans-
fer function G(s) = D+C(sIn −A)−1B, where n is the number
of states (or eigenvalues) in the system and In is the convention
used to describe an n×n identity matrix. Defining the matrix

Mα =
[

A B
C D

]

we can write the transfer function as the linear fractional
transformation of Mα as (Packard [1988])

G(s) = Fu(
[

A B
C D

]
,
1
s

In) = Fu(Mα ,
1
s

In)

= Mα22 +Mα21

1
s

In(In −Mα11

1
s

In)−1Mα12

= D+C
1
s

In(In −A
1
s

In)−1B = D+C(sIn −A)−1B.

The graphical representation of G(s) is shown in Fig. 3, with
equivalent equations

[
z1
y

]
=

[
A B
C D

][
w1
u

]

w1 =
1
s

z1, y = Fu(Mα ,
1
s

In)u = G(s)u.

To introduce the uncertainty given by the parameterized state
space system (5)-(7), the Mα matrix can be written in the form
of a general affine state space uncertainty



Mα =

⎡
⎢⎢⎢⎣

A0 +
k

∑
i=1

αiAi B0 +
k

∑
i=1

αiBi

C0 +
k

∑
i=1

αiCi D0 +
k

∑
i=1

αiDi

⎤
⎥⎥⎥⎦

with k = 5, A5 = 0,B5 = 0, Ci = 0 for i = 1, . . . ,4, and Di = 0∀i.

This uncertainty can be formulated into a linear fractional
transform by achieving the smallest possible repeated blocks
using the method outlined in (Packard [1988]). To begin this
method, matrices Ji’s are formed such that

Ji =
[

Ai Bi
Ci Di

]
∈ R

(n+ny)×(n+nu)

for each i = 1, . . . ,5. Then ,using singular value decomposition
and grouping terms, an expression for Ji can be achieved (note:
A∗ is denoted as the complex conjugate transpose of A)

Ji = UiΣiV
∗
i = (Ui

√
Σi)(

√
ΣiV

∗
i ) =

[
Li
Wi

][
Ri
Zi

]∗
.

Denoting qi as the rank of each matrix Ji, each inner matrix is
given by

Li ∈ R
(n×qi),Wi ∈ R

(ny×qi),Ri ∈ R
(n×qi),Zi ∈ R

(nu×qi).

Then, the uncertainty can be introduced as

αiJi =
[

Li
Wi

]
[αiIqi ]

[
Ri
Zi

]∗
,

where for this particular equilibrium, q1 = 1,q2 = 1,q3 =
2,q4 = 1,q5 = 2. Finally, the linear fractional transformed
matrix can be written as

Mα = M11 +M12αpM21,

where

M11 =
[

A0 B0
C0 D0

]
M12 =

[
L1 · · · L5
W1 · · · W5

]

M21 =

⎡
⎢⎣

R∗
1 Z∗

1
...

...
R∗

5 Z∗
5

⎤
⎥⎦ αp =

⎡
⎢⎣

α1Iq1 0
. . .

0 α5Iq5

⎤
⎥⎦ .

This is equivalent to the lower linear fractional transformation

Mα = Fl(
[

M11 M12
M21 0

]
,αp) = Fl(M,αp)

= M11 +M12αp(IqT −M22αp)−1M21 = M11 +M12αpM21

where

M =
[

M11 M12
M21 0

]
,

and qT is the total rank of the αp matrix given by

qT = ∑
i

qi = 7.

Finally, the transfer function of the uncertain state space model
is written as

G(s) = Fu(Mα ,
1
s

In) = Fu(Fl(
[

M11 M12
M21 0

]
,αp),

1
s

In).

The graphical representation of G(s) is shown in Fig. 4 with the
equivalent equations

⎡
⎣

[
z1
y

]

z2

⎤
⎦ =

[
M11 M12
M21 0

]⎡
⎣

[
w1
u

]

w2

⎤
⎦

w1 =
1
s

z1, w2 = αpz2, y = Fu(Fl(M,αp),
1
s

In)u = G(s)u.

Fig. 4. G(s) as a LFT using M, αp, 1
s In.

3.2 Normalizing α Parameters

The system is now in a form where the uncertainty is given
by the five αi parameters. However, as shown earlier, each of
the αi parameters are nonlinear functions of the single variable
cpp. Thus the next step is to express the linear fractional
transformation in terms of the single uncertainty cpp. First, cpp
is normalized using

cpp = d +δe,

d = c∗pp, e = max[
∣∣cppmax − c∗pp

∣∣ , ∣∣cppmin − c∗pp

∣∣],
where c∗pp is the nominal value of cpp, and cppmin and cppmax are
its minimum and maximum values respectively. This defines a
new normalized uncertainty δ that has a range of values within
|δ | ≤ 1 that corresponds to the desired cpp range.

Now that each αi parameter is expressed in terms of δ , we “pull
out the δ” (Zhou et al. [1996]). This is done by drawing the
block diagram for each αi system and labeling the input to each
δ block z3i and the output of each δ block w3i . Then the matrix
Q, which satisfies αp = Fl(Q,Δ) with Δ = δ ImT , can be found

using

[
w2i
z3i

]
� Qi

[
z2i
w3i

]
for each αi term, where mT is the total

number of uncertainty elements needed to represent αp. Thus
the Qi matrix satisfies the equation αi = Fl(Qi,δ Imi), where
mi is the minimum number of uncertainty elements δ needed
to represent αi. Recalling that w2 = αpz2, the system can be
formulated such that w2 = Fl(Q,Δ)z2. To correspond to each αi
term in the matrix αp, the w2, z2, w3, z3 matrices are given by

w2 =

⎡
⎢⎢⎢⎣

w21
w22
w23
w24
w25

⎤
⎥⎥⎥⎦ ,z2 =

⎡
⎢⎢⎢⎣

z21
z22
z23
z24
z25

⎤
⎥⎥⎥⎦ ,w3 =

⎡
⎢⎢⎢⎣

z31
z32
z33
z34
z35

⎤
⎥⎥⎥⎦ ,z3 =

⎡
⎢⎢⎢⎣

z31
z32
z33
z34
z35

⎤
⎥⎥⎥⎦ ,

where each w2i and z2i are vectors of length qi, based on the
rank of each Ji matrix, and each w3i and z3i are vectors of
length miqi, based on the minimum number of δ ’s required to
represent each αi and the value of qi. The composite Q matrix
will be defined after each individual Qi is determined, where Qi

is given by Qi =
[

Qi11 Qi12
Qi21 Qi22

]
. The total number of uncertainty

elements mT for αp is given by the total length of w3, which is
mT = ∑

i
miqi. The block representation of αp is show in Fig. 5.



Fig. 5. αp as a LFT using Q and Δ.

Fig. 6. Block Diagram for α1.

Recalling that α1 = cpp

1−cppu′1M−1
ss u1

, and using a = u′1M−1
ss u1

and the normalized relationship cpp = d + δe, we can rewrite
α1 = d+δe

(1−ad)−aeδ . Since there is only one uncertainty element,
m1 = 1. The block diagram for α1, shown in Fig. 6, can be
directly drawn from this form, with the feedback terms in the
denominator and the feedforward terms in the numerator. Thus,
the governing equation for α1 is given by[

w21
z31

]
= Q1

[
z21
w31

]
,

which results in a Q1 given by

Q1 =

⎡
⎢⎣

d
1−ad

e

[
1+

ad
1−ad

]

1
1−ad

ae
1−ad

⎤
⎥⎦ =

[
Q111 Q112
Q121 Q122

]
.

For the system matrices of the DIII-D tokamak under the partic-
ular equilibrium, the behavior of α1 and α2 are approximately
the same, with an error on the order of 10−12. From this very
good approximation, we can take α1 = α2. Although the full
model could be used, this is an accurate enough assumption that
allows the reduction of computational complexity. As a result
of this approximation, the following changes can be made to the
other α parameters: α3 = α2α1 ⇒α3 = α2

1 , α4 = α2α2
1 ⇒α4 =

α3
1 . Since α2 = α1, m2 = m1 = 1 and the Q2 block is simply

defined by Q2 = Q1. The parameter α3 is given as α3 = α2
1 ,

or α3 = Fl(Q1,δ ) ·Fl(Q1,δ ). A reduction can be made so that
α3 = Fl(Q3,δ I2), where I2 is the size 2 identity matrix, thus
m3 = 2. Through the series connection of the linear fractional
transform of Q1, the Q3 block is given by

Q3 =

⎡
⎣ Q2

111
Q111Q112 Q112

Q121 Q122 0
Q121Q111 Q121Q112 Q122

⎤
⎦ .

Similarly to Q3, the parameter α4 is given as α4 = α3
1 , or

α4 = Fl(Q1,δ ) ·Fl(Q1,δ ) ·Fl(Q1,δ ). A reduction can be made
so that α4 = Fl(Q4,δ I3), where I3 is the size 3 identity matrix,
m4 = 3, and Q4 is given by the series connection of the linear
fractional transform such that

Fig. 7. G(s) as a LFT using M, Q, δ , 1
s In.

Q4 =

⎡
⎢⎢⎣

Q3
111

Q2
111

Q112 Q111Q112 Q112

Q121 Q122 0 0
Q121Q111 Q121Q112 Q122 0
Q121Q2

111
Q121Q111Q112 Q121Q112 Q122

⎤
⎥⎥⎦ .

Also, Q5 can be directly written as

Q5 =
[

d e
1 0

]
,

such that m5 = 1.

Now that there is an expression for each of the αi (i = 1, . . . ,5)
parameters in terms of a linear fractional transformation αi =
Fl(Qi,δ Imi), they can be combined to form one linear fraction
transformation with a common uncertainty δ . As shown earlier,
the uncertainty in terms of α is given as

αp =

⎡
⎢⎢⎢⎣

α1Iq1 0
α2Iq2

α3Iq3
α4Iq4

0 α5Iq5

⎤
⎥⎥⎥⎦ ,

where Iqi is the size qi identity matrix. The total number of
uncertain elements is given by mT = ∑

i
miqi = 11. Thus, the

linear fractional transformation αp = Fl(Q,Δ) with Δ = δ ImT

is given by αp = Q11 + Q12Δ(ImT −Q22Δ)−1Q21 where Q =[
Q11 Q12
Q21 Q22

]
. Each submatrix Qjk is given by the block diagonal

matrix

Qjk =

⎡
⎢⎣

Q1 jk 0
. . .

0 Q5 jk

⎤
⎥⎦

where j = 1,2 and k = 1,2. The matrix Qjk has the same
number of diagonal blocks as αp based on the rank of each Ji
matrix denoted by qi.

3.3 Model in Robust Control Framework

The final expanded representation of entire system is G(s) =
Fu(Fl(M,Fl(Q,Δ)), 1

s In), which is described by Fig. 7 and cor-
responding equation set



Fig. 8. Graphical representation of G(s) manipulation.

Fig. 9. General framework for robust control.
⎡
⎣

[
z1
y

]

z2

⎤
⎦ =

[
M11 M12
M21 0

]⎡
⎣

[
w1
u

]

w2

⎤
⎦

[
w2
z3

]
=

[
Q11 Q12
Q21 Q22

][
z2
w3

]

w1 =
1
s

z1, w3 = δ z3, y = Fu(Fl(M,Fl(Q,Δ)),
1
s

In)u = G(s)u.

Finally, the original system M can be combined with the matrix
Q through the interconnection of LFT’s Skogestad [2005]. This
is done using the fact that Mα = Fl(M,αp) = Fl(M,Fl(Q,Δ)) =
Fl(R,Δ) where R is equal to

R =
[

M11 +M12Q11M21 M12Q12
Q21M21 Q22

]
.

Now the system is reduced to a simple form of R, uncertainty
Δ = δ ImT with |δ | ≤ 1, and 1

s In. The system can now be reduced
using a simple property of the LFT. The system given by G(s) =
Fu(Fl(R,Δ), 1

s In) can be written as G(s) = Fl(Fu(R, 1
s In),Δ) =

Fl(P′,Δ) where P′ = Fu(R, 1
s In). The final step in the system

reduction moves the uncertainty, creating an upper LFT for
convention purposes. This is done by using G(s) = Fl(P′,Δ) =
Fu(P,Δ) The overall system reduction is shown in Fig. 8.

The parameterization of the RWM model allows this system
to be represented in the general framework of robust control
for uncertain systems. The goal is to design a controller K that
stabilizes the plant for all uncertainty |δ | ≤ 1. The feedback
controller K can be applied to the plant to formulate a closed-
loop LFT system on the uncertainty and the controller (Fig. 9)

G(s) = Fl(Fu(P,Δ),K) = Fu(Fl(P,K),Δ).

4. CONTROLLER SYNTHESIS AND SIMULATION

4.1 DK-iteration Model Based Controller

The goal is to design a controller that can robustly stabilize the
RWM and meet specified controller performance criteria. The
robust stability of the plant is determined by the N11 sub-matrix,
where N = Fl(P,K) represents the nominal closed-loop system.
The sub-system N11 term isolates the uncertainty from the input
and output of the system. The robust stability is determined by
the structured singular value, which is defined as

μ(N11) � 1
min{km|det(I− kmN11Δ) = 0}

for σ̄(Δ) ≤ 1. Larger μ values means (I − N11Δ) becomes
singular with small perturbations, thus the smaller μ the better.
The robust stability condition is found by finding the smallest
value of km at the onset of instability, or det(I − kmN11Δ) =
0, which yields km = 1

μ(N11) , where km is a measure of the
robust stability to perturbations in Δ. Thus, assuming N11
and Δ are stable, the system is robustly stable if and only
if μ(N11( jω)) < 1,∀ω . Similarly, the robust performance is
given by μ(N( jω)) < 1,∀ω . Both conditions assume that N
is internally stable.

DK-iteration is one available procedure to design a controller
using μ-synthesis. Since there is no direct method to synthesize
a μ-optimal controller, this method is used by combining H∞
synthesis and μ-analysis. This method starts with the upper
bound on μ in terms of the scaled singular value

μ(N) ≤ min
D∈D

σ̄
(
DND−1)

where D is the set of matrices D which commute with Δ, i.e.,
DΔ = ΔD. Then, the controller that minimizes the peak value
over frequency of this upper bound is found, namely

min
K

(
min
D∈D

‖DN(K)D−1‖∞

)
.

The controller is designed by alternating between the two min-
imization problems until reasonable performance is achieved.
The DK-iteration can summarized as follows (Skogestad [2005]):
1. K-step. Synthesize an H∞ controller for the scaled problem,
minK |DN(K)D−1|∞ with fixed D(s).
2. D-step. Find D( jω) to minimize σ̄

(
DND−1( jω)

)
at each

frequency with fixed N.
3. Fit the magnitude of each element of D( jω) to a stable and
minimum-phase transfer function D(s) and go to step 1.
The iteration continues until ||DN(K)D−1||∞ < 1 or the H∞
norm no longer decreases.

Using the derived P−Δ formulation (Fig. 9), a controller can be
designed with the DK-iteration method for robust stabilization.
For the model being used the growth rate γ ranges from 10
rad/s to 5,000 rad/s. This results in a range for the uncertain
parameter cpp that goes from 71 to 0.3325. This is the range
of values for which the system should be stabilized so that the
robust controller can be considered a suitable design.

The complete system that is used to design the controller has an
additional two time delay blocks preceding the plasma model.
The time delays physically represent the plasma control system
and the power supply. For design purposes, the time delays are
linearized using second order Padé approximations.



Table 1. Performance Targets and Constraints.
Condition Target Value Maximum Constraint
Rise Time 1.0ms 5.0ms

Settling Time 5.0ms 10ms
Overshoot 15% 50%

Input Voltage N/A ± 100V

Two controllers are synthesized using the dksyn ccommand in
Matlab, one using the nominal plant and the other an augmented
plant with input weight. The performance weight is added
to the inputs of the system to achieve desired loop-shaping

results. The weight is of the form W = (M−1/ns+ω∗
b )n

(s+ω∗
b A1/n)n , where

M = 106, ω∗
b = 109, A = 1, and n = 2. The DK controllers are

synthesized using a P−Δ system constructed for c∗pp = 0.34125
(γ∗ = 4,890rad/s) and guarantees μ < 1 for the range defined
by cppmin = 0.3325, cppmax = 0.35, which is equivalent to γmax =
5,000rad/s, γmin = 4,660rad/s. However, these results are
conservative and, as it will be shown in the next part, the
stability and performance ranges for our system are indeed
bigger. The conservatism is explained by the fact that the
DK-iteration implicitly assumes that the uncertain parameter
is complex and does not take advantage of the known phase
information of the real uncertainty. The real uncertainty can
be considered using a modified algorithm, the DGK-iteration
(Young [1993]), however this algorithm greatly increases the
numerical complexity. The controllers were designed using a
15 eigenmode model with 36 states. The designed controllers
have orders of 108 and 107 for the plant without weight and
with weight respectively. In both cases, the controller order
is reduced to 16 before computing the effective stability and
performance ranges.

4.2 Controller Simulation and Results

In order to be able to compare the proposed model-based
DK controllers with present non-model-based controllers, a
proportional-derivative (PD) controller is designed (integral
action is not required for this system). The PD controller is
synthesized to maximize the stability range as a function of

γ and is of the form Ki j =
GPi j +GDi j s

1+τpcss
, for i = 1 . . .3, j =

1 . . .2, and with τpcs = 4× 10−4 sec. The resulting non-zero
gains are GP11 = 3.80 × 104, GD11 = 76, GP22 = 1.38 × 104,
GD22 = 40, GP32 = 6.62× 104, GD32 = 103. Table 1 provides
the performance constraints in response to a unit step in the
RWM mode amplitude.

Fig. 10 shows the time response to a unit step in the RWM
mode amplitude at constant RWM growth rates of γ = 10
rad/s and γ = 5,000 rad/s, the lower and upper limits of the
growth rate range of our interest. For the slower growth rate (top
graph), the DK and PD controllers have similar responses with
approximately 20% overshoot, and a fast rise and settling time.
For the faster growth rate (bottom graph), the settling time is
increased to approximately 5 ms. Another example is presented
in Fig. 11, which shows the response to initial conditions of
the plasma, normalized to a starting RWM mode amplitude
of 1 Gauss. The DK controllers provide quick suppression of
the RWM mode amplitude, out-performing the PD controller,
which does not provide quick suppression at the faster growth
rate. While the settling time is similar for both DK controllers,
the weighted version slightly out-performs the non-weighted
one. For both growth rates, the weighted DK controller design
uses less applied voltage to achieve similar results.
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Fig. 10. Step response RWM mode amplitude for γ = 10 rad/s
(top) and γ = 5,000 rad/s (bottom).
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Fig. 11. Initial condition response RWM mode amplitude for
γ = 10 rad/s (top) and γ = 5,000 rad/s (bottom).

Table 2. γ Stability and Performance Ranges.
Controller DK w/o Weight DK w/ Weight PD

Stability Range 0 - 7,437 rad/s 0 - 8,434 rad/s 0 - 5,042 rad/s
Perf. Range (Step) 0 - 7,254 rad/s 0 - 7,450 rad/s 0 - 2,247 rad/s

Perf. Range (Initial) 0 - 6,459 rad/s 0 - 7,150 rad/s 0 - 5,980 rad/s

4.3 Closed-loop Stability and Performance

Table 2 provides the ranges of γ for which stability and per-
formance conditions are satisfied. The first row Stability Range
indicates the range of γ for which the system remains stable
when using a unit step input for the RWM model amplitude.
The second row Perf. Range (Step) represents the range of γ for
which the performance conditions are satisfied under the same
control input. The final row Perf. Range (Initial) indicates the
range of γ for which the performance conditions are satisfied
when an initial unit excitation of the RWM mode amplitude is
forced through appropriate initial conditions. Both model-based
DK controllers show good stability and performance properties
well beyond the desired γ range and that of the PD controller,
with the weighted DK controller design having a larger range
in both stability and performance.
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Fig. 12. Initial condition response control inputs for stepping γ
with DK controller.
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Fig. 13. Initial condition response control inputs for sinusoidal
γ with DK controller.

Since the robust controller stabilizes the plant over a range
of growth rate, it is of interest to investigate the controller
performance using time-varying of growth rate γ . The results
for stepping, and sinusoidal excitation of the cpp parameter
are presented (Fig. 12- 13). The step function also initiates
at cpp = 5.75 and changes between the maximum, nominal,
and minimum values of cpp in 0.5 ms intervals over a 2.5
ms span. The amplitude of the sinusoidal function is defined
by the design range of cpp used for the synthesis of the con-
troller. Its frequency is 5,000 rad/sec. In both cases, the RWM
mode amplitude is quickly suppressed (Fig. 12- 13). Again, the
weighted DK controller design maintains less RWM amplitude
compared to the nominal DK controller, providing better rejec-
tion to changes in the growth rate. In all cases the PD controller
has difficulty suppressing the RWM amplitude and becomes
unstable in the stepping cpp case.

5. CONCLUSIONS

The GA/Far-Tech DIII-D RWM model was restructured into
a robust control framework, isolating the RWM time-varying
uncertain parameter cpp, the key term influencing the size of
the RWM instability. With the system model in this frame-
work, the DK-iteration method was applied to develop robust

controllers, as measured by the structured singular value, for
a predetermined range of γ . Augmenting the nominal system
with performance weight provides better loop-shaping of the
closed-loop system, which results in improved controller per-
formance. Since the plasma RWM growth rate can vary with
operating conditions, the design of a controller that can stabilize
the system over the entire physical range of γ is critical. In terms
of robust stability, this method eliminates the need of online
identification and controller scheduling.
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