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Abstract—In this paper we present a control strategy for the
SpaceHawk, an Earth-based model spacecraft designed to navi-
gate the surface of the moon in a series of “hops”. By design, the
nonholonomic dynamics of the SpaceHawk allow the use of full-
state feedback linearization, which obviates the need for more
involved control techniques such as backstepping. We design two
controllers: an exact feedback-linearization controller for the
position states, and an approximate linearization controller for
the attitude states. The approximate-linearization simplifies the
attitude control task by excluding the highly nonlinear attitude
dynamics from the designed control laws. Simulation results
show both controllers performing well in stability and tracking.

I. INTRODUCTION

Traditional planetary exploration vehicles falls into two
classes: landers and rovers. Landers, such as the NASA
Viking and Phoenix, are robotic spacecraft that use vari-
able throttle rockets to perform a controlled decent onto a
planetary surface. Once on the surface, the lander is free to
explore the immediate vicinity of its landing zone but can
not explore any regions beyond since it remains stationary
for the duration of its mission. In contrast, rovers, such as
the NASA Spirit and Opportunity, are generally delivered to
the planetary surface by an external propulsion mechanism
which is jettisoned once the decent is complete. Once on
the planet, rovers utilizes some form of propulsion (typically
powered wheels) to move along the surface of the planet.
The rover is capable of exploring the area near its immediate
landing site as well as areas within a few kilometers of the
site. Rovers usually travel at very slow driving speeds and
may take years to reach a target that is less than a kilometer
away. For these reasons, traditional landers and rovers are
inherently limited by their planetary exploration range.

In contrast, a hopper spacecraft has the ability to perform
a controlled descent, complete valuable mission operations
while landed, and then translate to a different location in
a very short period of time [1]. To change landing sites,
a hopper reignites its main engine in order to follow ei-
ther a ballistic trajectory or horizontal hovering trajectory
to its intended destination. This functionality offers grater
mission flexibility and represents an enabling technology for
exploring perilous terrain that traditional rovers are unable to
traverse. Obstacles such as bolder fields, steep crater walls,
mountains, and loose sand can all be bypassed by hopping
[2], [3]. Additionally, like rotary wing aircraft, hoppers
possess the ability to hold a stationary hover, allowing them
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to observe land features that are inaccessible to traditional
landers and rovers.

Hopping spacecrafts date back to the mid 1960’s with the
advent of NASA’s Survey program which attempted to soft-
land seven robotic spacecraft on the surface of the Moon
[4]. After its initial landing, Surveyor 6 reignited its vernier
thrusters for 2.5 seconds, attained an altitude of roughly
twelve feet, and translated roughly eight feet to the west
before landing again on the lunar surface. This was the first
liftoff of any craft from the surface of the moon. Recent
developments include spacecraft simulator designs powered
by ducted fans and compressed cold gas [5]. In this paper,
we design a set of control laws for stabilizing the attitude
and position of an Earth-based model lunar hopper. The
SpaceHawk prototype has a 75 centimeter wingspan, a mass
of 15 kilograms, a maximum thrust of 180 Newtons, and
a maximum power draw of 13 kilowatts. The SpaceHawk
is propelled by ducted fans mounted on single-axis gim-
bals which provide vectored thrust. The geometry of the
SpaceHawk is similar to that of a quadrotor, a nonholonomic
vehicle whose position must be controlled by modulating its
attitude. Importantly, the additional actuation provided by the
gimbals makes the SpaceHawk a quad-tiltrotor: a holonomic
vehicle whose attitude and position can be controlled inde-
pendently, presenting a more flexible control design problem.

This paper is organized as follows. In Section II, we derive
a first principles model for the hopper’s rigid-body dynamics.
In Section III we present a feedback linearization control
strategy. In Section IV, we present simulation results. Finally,
in Section V, we discuss conclusions and future work.

II. EQUATIONS OF MOTION

The equations of motion of the SpaceHawk are derived
in the inertial frame using the approach found in [6]. An
image of the SpaceHawk prototype is given in Fig. 1. The
inertial axes are separated from the Earth-fixed axes by a 3D
translation vector and a scalar yaw rotation denoted  . The
vehicle position is given by the vector ⇠ = [x, y, z]

T . The
attitude is given by the Tait-Bryan angles ⌘ = [ , ✓,�]

T . In
order to avoid ambiguities, the ranges of these angles are
limited as follows:

�⇡   < ⇡,

�⇡
/2  ✓  ⇡

/2,

�⇡  � < ⇡.
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where I
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is the moment of inertia tensor (which is assumed
to contain only the principle moments of inertia, I

jj

), m is
the vehicle mass, g is the acceleration due to gravity, and ⌦

is the 3D angular rotation vector resolved in the body-fixed
frame, which is separated from the inertial frame by the pitch
and roll rotations ✓ and �.

In (6), note that negative values of z represent positive
altitude (and therefore increasing potential energy) because
the z-axis of the inertial frame points toward the ground, in
the direction of the Moon’s gravitational force. The external
forces, as resolved in the vehicle-fixed frame, are
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where f

i

j

are the scalar components of the fan thrust vectors,
and l is the moment arm between opposing fans. Note that
the z-component of the external force is negative semi-
definite because the positive semi-definite cumulative thrust,
F

z

, is opposite in direction to the vehicle-fixed z-axis (which
points toward the ground when the attitude is equal to zero).
The vehicle-fixed axes and the external force vectors are
illustrated in Fig. 2. Note that the eight two-term sums and
differences on the right-hand side of (10) and (11) are eight
independent equations in the eight scalar control inputs which
compose the vector f =
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Figure 1. The SpaceHawk prototype features a heavy-duty aluminum frame
and twenty-five centimeter fan cowlings.
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2 < ↵
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<

⇡

2 is the gimbal angle of the ith fan. These
control inputs combine to exert a 3D force and a 3D moment
on the vehicle. Realizing that this model has eight inputs for
only six outputs, we can classify the SpaceHawk as an over-
actuated system.

We map F from the vehicle-fixed frame to the inertial
frame using the relation
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where R(⌘) is the rotation matrix (intrinsic XY Z conven-
tion) from the body-fixed frame to the inertial frame. In
(17), the trigonometric functions cos↵ and sin↵ have been
abbreviated to c

↵

and s

↵

, respectively.
Evaluating the Lagrangian
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Figure 2. The free-body diagram of the SpaceHawk illustrates the individual
thrust vectors (red) and the body fixed axes (purple).

III. CONTROL STRATEGY

A. Feedback Linearization Analysis

In this section, the control objective is to track the
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are stabilized at zero. Rearranging the equations of motion,
(19) and (20), we have
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We can use the state vector definitions
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to convert the second-order subsystems, (24) and (25), into
the first-order subsystems

˙

� = h

�

(t,�, �, F ), (28)
˙

� = h

�

(t, �, ⌧), (29)

h

�

=

2

6666664

�4

�5

�6

1
m

R

⇣
ˆ

�

⌘
2

4
F

x

F

y

�F

z

3

5�

2

4
ẍ
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ÿ

D

(t)

z̈

D

(t)� g

3

5

3

7777775
, (30)

h

�

=

2

6666664

�4

�5

�6

J�1

0

@

2

4
⌧

 

⌧

✓

⌧

�

3

5� d

1

A�

2

4
¨

 

D

(t)

¨

✓

D

(t)

¨

�

D

(t)

3

5

3

7777775
, (31)

ˆ

� =

2

6666664

�1 +  

D

(t)

�2 + ✓

D

(t)

�3 + �

D

(t)

�4 +
˙

 

D

(t)

�5 +
˙

✓

D

(t)

�6 +
˙

�

D

(t)

3

7777775
=

2

6666664

 

✓

�

˙

 

˙

✓

˙

�

3

7777775
, (32)

d = C(

ˆ

�)

2

4
ˆ

�4
ˆ

�5
ˆ

�6

3

5
. (33)

Subsystem (28), has three inputs in
⇥
F

x

F

y

F

z

⇤
T , and

three outputs in
⇥
�1 �2 �3

⇤
T . Similarly, subsystem (29)

has three inputs in
⇥
⌧

 

⌧

✓

⌧

�

⇤
T , and three outputs in⇥

�1 �2 �3

⇤
T . We note that (30) and (31) are both in the

normal form with each subsystem having a relative degree
of 2 in R

6. By observation, the zero dynamics for these
subsystems show them to be minimum phase.

B. Control Design
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into (30) to obtain the decoupled, linearized position subsys-
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liberty to apply linear control laws of our choosing to
guarantee that the closed-loop position subsystem is globally
exponentially stable.
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As with (34), we can substitute the exact feedback lin-
earization control law
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into (31) to obtain the linearized attitude subsystem
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We note, however, that the computational expense of imple-
menting the highly nonlinear (36) on an onboard microcon-
troller may be unjustified in light of the following. Since
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We can therefore drive �1, �2, and �3 to zero by applying the
simpler approximate linearization control law
2

4
⌧

 

⌧

✓

⌧

�

3

5 ,

2

4
I

zz

I

yy

I

xx

3

5

0

@

2

4
r

 

r

✓

r

�

3

5
+

2

4
¨

 

D

(t)

¨

✓

D

(t)

¨

�

D

(t)

3

5

1

A
. (41)

We proceed by selecting a class of critically-damped PD
controllers in
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for which the eigenvalues are � =
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indirect method, we assert that the closed-loop attitude
subsystem is therefore asymptotically stable in a
neighborhood D, surrounding the origin [7].



Sampling Time T 0.01 s
Fan Separation Distance l 0.75m
Vehicle Mass m 15Kg
Acceleration Due to Gravity on the Moon g 1.62m/s2
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C. Control Implementation

During the control analysis, we selected
F 2 R

3 and ⌧ 2 R3 as our virtual inputs.
These are functions of the eight scalar fan forces⇥
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we can invert the matrix to solve for the scalar fan forces
in terms of the control laws designed for F and ⌧ . Noting
that there are eight fan force inputs for only six inputs in
F and ⌧ , we avoid encountering a non-square matrix by
defining two additional constraints. We choose to equally
distribute both the cumulative thrust and the cumulative
yawing moment between one pair of opposing fans and the
other. These constraints, expressed mathematically as
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where M is a 8x8 square matrix. Solving for the fan forces, we
find

U = M

�1
P, (56)

2

666666664

f1
x

f1
z

f2
y

f2
z

f3
x

f3
z

f4
y

f4
z

3

777777775

=

2

6666666664

1
2Fx

� 1
4l⌧ 

1
4Fz

� 1
2l⌧�

1
2Fy

+ 1
4l⌧ 

1
4Fz

+ 1
2l⌧✓

1
2Fx

+ 1
4l⌧ 

1
4Fz

+ 1
2l⌧�

1
2Fy

� 1
4l⌧ 

1
4Fz

� 1
2l⌧✓

3

7777777775

. (57)

Next, we convert the eight scalar fan forces into four 2D
fan thrusts where each thrust vector is composed of a scalar
fan thrust magnitude and a scalar gimbal angle. For the ith
fan these are

|f
i

| = ||


f

i

x

f

i

z

�
||2, 8i = {1, 3}, (58)

|f
i

| = ||


f

i

y

f

i

z

�
||2, 8i = {2, 4}, (59)

↵

i

= arctan

f

i

x

f

i

z

, 8i = {1, 3}, (60)

↵

i

= arctan

f

i

y

f

i

z

, 8i = {2, 4}. (61)

Lastly, we convert the thrust magnitudes, |f
i

|, into the real
inputs of the physical plant, which are the motor throttle
values. To do this, each ducted fan is rigidly mounted on a
custom force gauge (so that the gimbal angle does not come
into play). Open-loop throttle commands are sent to the fan’s
electronic speed controller (ESC) while the corresponding
thrust measurements are logged for offline identification. This
process allows us to empirically estimate the motor velocity
constant, K

V

, which relates motor voltage to motor speed,
and therefore to motor thrust.

IV. SIMULATION

Simulations of the dynamics model given in Section II,
are carried out in Simulink. Fig. (4) shows the closed-loop
system executing a short distance hopping maneuver. In the
position response, the absences of overshoot and steady-state
error demonstrate the efficacy of the feedback linearization
control strategy. The attitude response is also quite good
despite the initial conditions starting far from the origin. Here
we find justification for choosing the simpler approximate
feedback linearization controller, (41), over the more complex
exact feedback linearization controller, (36). The critically
damped PD controllers allow us to control the rise-time for
each state through the control gains k(·). For a given state,
increasing the control gain will have the effect of increasing
the expended control energy.

V. CONCLUSIONS

The feedback linearization control strategy showed good
stability performance in simulation. We were able to demon-
strate that in certain portions of the state space (near hover),
we can set aside more complex nonlinear control laws in
favor of simpler control laws which make the state equations
pseudo-linear. The results show that appropriate choosing
of which nonlinearities to cancel and which to allow, can
create simple, efficient controllers with good stability and
tracking performance. These controllers are high yield in
terms of their performance payoff versus design time and
implementation effort. Future work will include experiments
designed to test the control performance in six degree of
freedom (DOF) flight. Once we can demonstrate stability in
the complete 6DOF pose, we will pursue advanced motion
control objectives for optimizing the hopping process.
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Figure 4. The plots on the left show the closed-loop response of the system (35), (37). In the position plots, the outputs (blue traces) track the the
reference signals

⇥
x

D

(t) y

D

(t) z

D

(t)
⇤
T (red dashed traces). In the attitude plots, the outputs are stabilized at the origin arbitrarily fast with

minimal overshoot and minimal steady-state error. The plots on the right show the corresponding trajectories of the control inputs.
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