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Abstract— We present a PDE boundary controller that sta-
bilizes the velocity, pressure, and electromagnetic fields in a
magnetohydrodynamic (MHD) channel flow, also known as
Hartmann flow, a benchmark model for applications such as
cooling systems, hypersonic flight and propulsion. This flow
is characterized by an electrically conducting fluid moving
between parallel plates in the presence of an externally imposed
transverse magnetic field. The system is described by the in-
ductionless MHD equations, a combination of the Navier-Stokes
equations and a Poisson equation for the electric potential under
the so-called MHD approximation in a low magnetic Reynolds
number regime, and is unstable for large Reynolds numbers.
Our control design needs actuation of velocity and the electric
potential at only one of the walls. The backstepping method for
stabilization of parabolic PDEs is applied to the velocity field
system written in some appropriate coordinates; this system
is very similar to the Orr-Sommerfeld-Squire system of PDE’s
and presents the same difficulties. Thus we use actuation not
only to guarantee stability but also to decouple the system
in order to prevent transients. Control gains are computed
solving linear hyperbolic PDEs—a much simpler task than,
for instance, solving nonlinear Riccati equations. Stabilization
of non-discretized 3-D MHD channel flow has so far been an
open problem.

I. INTRODUCTION

In this paper we consider an incompressible MHD channel
flow, also known as the Hartmann flow, a benchmark model
for applications such as cooling systems (computer systems,
fusion reactors), hypersonic flight and propulsion. In this
flow, an electrically conducting fluid moves between parallel
plates and is affected by an imposed transverse magnetic
field. When a conducting fluid moves in the presence of a
magnetic field, it produces an electric field and subsequently
an electric current. The interaction between this created elec-
tric current and the imposed magnetic field originates a body
force, called the Lorentz force, which acts on the fluid itself.
The velocity and electromagnetic fields are mathematically
described by the MHD equations [16], which are the Navier-
Stokes equation coupled with the Maxwell equations.

For non-conducting fluids, channel flow is a benchmark for
flow control, frequently cited as a paradigm for transition to
turbulence [19]. There are many results in channel flow sta-
bilization, for instance, using optimal control [12], backstep-
ping [10], [26], spectral decomposition/pole placement [7],
[24], Lyapunov design/passivity [1], [3], or nonlinear model
reduction/in-domain actuation [2].
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The area of conducting fluids moving in magnetic fields,
even though rich in applications, has only been recently
considered and is under development. There are some recent
results in stabilization of magnetohydrodynamic flows, for
instance using nonlinear model reduction [4], open-loop
control [8] and optimal control [11]. Applications include
drag reduction [17], mixing enhancement for cooling sys-
tems [18], or estimation of velocity, pressure and electromag-
netic fields [27]. Some experimental results are available as
well, showing that control of such flows is technologically
feasible; actuators consist of magnets and electrodes [9],
[17], [23]. Mathematical studies of controllability of magne-
tohydrodynamic flows have been done, though they do not
provide explicit controllers [6], [22].

This paper is based on our previous work for stabilization
of the velocity field in a 3-D channel flow [10]. Our controller
is designed for the continuum MHD model. Since the system
is spatially invariant [5], control synthesis is done in the
wave number space after application of a Fourier transform.
Large wave numbers are found to be stable and left un-
controlled whereas for small wave numbers control is used.
For these wave numbers, control is used to put the system
in a strict-feedback form; this is necessary for application
of the backstepping method for stabilization of parabolic
PDE’s [21]. Writing the velocity field in some appropriate
coordinates, the resulting system is very similar to the Orr-
Sommerfeld-Squire system of PDE’s for non-conducting flu-
ids and presents the same difficulties (non-normality leading
to a large transient growth mechanism [13], [19]). Thus,
applying the same ideas as in [10], we use backstepping not
only to guarantee stability but also to decouple the system in
order to prevent transients. The control gains are computed
solving linear hyperbolic PDEs—a much simpler task than,
for instance, solving nonlinear Riccati equations. Actuation
of velocity and electric potential is done at only one of
the channel walls. Full state knowledge is assumed, but the
controller can be combined with a dual observer for MHD
channel flow [27] to obtain an output feedback controller.

The paper is organized as follows. Section II introduces the
governing equations of our system. The equilibrium profile
is presented in Section III and the linearized plant in wave
number space introduced in Section IV. Section V presents
the design of the control laws to guarantee stability of the
closed-loop system and finishes stating our main result.

II. MODEL

Consider an incompressible conducting fluid enclosed
between two plates, separated by a distance L, under the
influence of a pressure gradient ∇P and a magnetic field
B0 normal to the walls, as shown in Figure 1. Under the



Fig. 1. Hartmann Flow.

assumption of a very small magnetic Reynolds number

ReM = νρσU0L� 1, (1)

where ν is the viscosity of the fluid, ρ the density of the
fluid, σ the conductivity of the fluid, and U0 the reference
velocity (maximum velocity of the equilibrium profile), the
dynamics of the magnetic field can be neglected and the
dimensionless velocity and electric potential field is governed
by the inductionless MHD equations [15].

We set nondimensional coordinates (x, y, z), where x is
the streamwise direction (parallel to the pressure gradient),
y the wall normal direction (parallel to the magnetic field)
and z the spanwise direction, so that (x, y, z) ∈ (−∞,∞)×
[0, 1]× (−∞,∞)1. The governing equations are

Ut =
4U
Re

− UUx − V Uy −WUz − Px +Nφz

−NU , (2)

Vt =
4V
Re

− UVx − V Vy −WVz − Py , (3)

Wt =
4W
Re

− UWx − VWy −WWz − Pz −Nφx

−NW , (4)
4φ = Uz −Wx , (5)

where U , V and W denote, respectively, the streamwise,
wall-normal and spanwise velocities, P the pressure, φ the
electric potential, Re = U0L

ν is the Reynolds number and
N = σLB2

0
ρU0

the Stuart number. Since the fluid is incompress-
ible, the continuity equation is verified

Ux + Vy +Wz = 0 . (6)

The boundary conditions for the velocity field are

U(t, x, 0, z) = 0, U(t, x, 1, z) = Uc(t, x, z), (7)
V (t, x, 0, z) = 0, V (t, x, 1, z) = Vc(t, x, z), (8)
W (t, x, 0, z) = 0, W (t, x, 1, z) = Wc(t, x, z), (9)

where Uc(t, x, z), Vc(t, x, z) and Wc(t, x, z) denote, re-
spectively, the actuators for streamwise, wall-normal and
spanwise velocity in the upper wall. Assuming perfectly
conducting walls, the electric potential must verify

φ(t, x, 0, z) = 0, φ(t, x, 1, z) = Φc(t, x, z), (10)

1Our approach can be extended to finite, periodic channels with only
some changes; see e.g. [25] for techniques involved.

where Φc(t, x, z) is the imposed potential (electromagnetic
actuation) in the upper wall. The nondimensional electric
current, j(t, x, y, z), a vector field that is computed from the
electric potential and velocity fields as follows,

jx(t, x, y, z) = −φx −W, (11)
jy(t, x, y, z) = −φy, (12)
jz(t, x, y, z) = −φz + U, (13)

where jx, jy , and jz denote the components of j.
We assume that all actuators can be independently actuated

for every (x, z) ∈ R2. Note that no actuation is done inside
the channel or at the bottom wall.

III. EQUILIBRIUM PROFILE

The equilibrium profile for system (2)–(5) with no control
can be calculated following the same steps that yield the
Poiseuille solution for Navier-Stokes channel flow. Thus, we
assume a steady solution with only one nonzero nondimen-
sional velocity component, Ue(y), that depends only on the
y coordinate. Substituting Ue(y) in equation (2), one finds
that it verifies the following equation,

0 =
Ue

yy(y)
Re

− P e
x −NUe(y) , (14)

whose nondimensional solution is, setting P e such that the
maximum velocity (centerline velocity) is unity,

Ue(y) =
sinh(H(1− y))− sinhH + sinh(Hy)

2 sinhH/2− sinhH
, (15)

V e = W e = φe = 0, (16)

P e =
N sinhH

2 sinhH/2− sinhH
x, (17)

jxe = jye = 0, jze = Ue(y). (18)

where H =
√
ReN = B0L

√
σ
ρν is the Hartmann number.

In Fig. III(left) we show Ue(y) for different values of H .
Since the equilibrium profile is nondimensional the centerline
velocity is always 1. For H = 0 the classic parabolic
Poiseuille profile is recovered. In Fig. III(right) we show
Ue

y (y), proportional to shear stress, whose maximum is
reached at the boundaries and grows with H .

IV. THE PLANT IN WAVE NUMBER SPACE

Define the fluctuation variables

u(t, x, y) = U(t, x, y)− Ue(y), (19)
p(t, x, y) = P (t, x, y)− P e(y) (20)

where Ue(y) and P e(y) are, respectively, the equilibrium ve-
locity and pressure given in (15) and (17). The linearization
of (2)–(4) around the Hartmann equilibrium profile, written
in the fluctuation variables (u, V,W, p, φ), is

ut =
4u
Re

− Ue(y)ux − Ue
y (y)V − px +Nφz

−Nu , (21)

Vt =
4V
Re

− Ue(y)Vx − py , (22)

Wt =
4W
Re

− Ue(y)Wx − pz −Nφx −NW . (23)
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Fig. 2. Streamwise equilibrium velocity Ue(y) (left) and Ue
y (y) (right), for different values of H . Solid, H = 0; dash-dotted, H = 10; dashed, H = 50.

The equation for the potential is

4φ = uz −Wx , (24)

and the fluctuation velocity field verifies the continuity
equation,

ux + Vy +Wz = 0 , (25)

and the following boundary conditions

u(t, x, 0, z) = W (t, x, 0, z) = V (t, x, 0, z) = 0, (26)
u(t, x, 1, z) = Uc(t, x, z), (27)
V (t, x, 1, z) = Vc(t, x, z), (28)
W (t, x, 1, z) = Wc(t, x, z), (29)
φ(t, x, 0, z) = 0, φ(t, x, 1, z) = Φc(t, x, z). (30)

To guarantee stability, our design task is to design feed-
back laws Uc, Vc, Wc and Φc, so that the origin of the
velocity fluctuation system is exponentially stable. Full state
knowledge is assumed.

Since the plant is linear and spatially invariant [5], we use
a Fourier transform in the x and z coordinates (the spatially
invariant directions). The transform pair (direct and inverse
transform) is defined as

f(kx, y, kz)=
∫ ∞

−∞

∫ ∞

−∞
f(x, y, z)e−2πi(kxx+kzz)dzdx, (31)

f(x, y, z)=
∫ ∞

−∞

∫ ∞

−∞
f(kx, y, kz)e2πi(kxx+kzz)dkzdkx. (32)

Note that we use the same symbol f for both the original
f(x, y, z) and the image f(kx, y, kz). In hydrodynamics kx

and kz are referred to as the “wave numbers.”
The plant equations in wave number space are

ut =
−α2u+ uyy

Re
− β(y)u− Ue

y (y)V − 2πkxip

+2πkziNφ−Nu, (33)

Vt =
−α2V + Vyy

Re
− β(y)V − py, (34)

Wt =
−α2W +Wyy

Re
− β(y)W − 2πkzip

−2πkxiNφ−NW (35)

where α2 = 4π2(k2
x + k2

z) and β(y) = 2πikxU
e(y).

The continuity equation in wave number space is ex-
pressed as

2πikxu+ Vy + 2πkzW = 0, (36)

and the equation for the potential is

−α2φ+ φyy = 2πi (kzu− kxW ) . (37)

The boundary conditions are

u(t, kx, 0, kz) = W (t, kx, 0, kz)=V (t, kx, 0, kz)=0,(38)
u(t, kx, 1, kz) = Uc(t, kx, kz), (39)
V (t, kx, 1, kz) = Vc(t, kx, kz), (40)
W (t, kx, 1, kz) = Wc(t, kx, kz), (41)
φ(t, kx, 0, kz) = 0, φ(t, kx, 1, kz) = Φc(t, kx, kz). (42)

V. CONTROL DESIGN

We design the controller in wave number space. Note that
(33)–(42) are uncoupled for each wave number. Therefore, as
in [10], [26], the range k2

x + k2
z ≤M2, which we refer to as

the controlled wave number range, and the range k2
x + k2

z >
M2, the uncontrolled wave number range, can be studied
separately. If stability for all wave numbers is established,
stability in physical space follows (see [26]). The number
M , which will be computed in Section V-B, is a parameter
that ensures stability for uncontrolled wave numbers.

We define χ, a truncating function, as

χ(kx, kz) =
{

1, k2
x + k2

z ≤M2,
0, otherwise. (43)

Then, we reflect that we don’t use control for large wave
numbers by setting

Uc(t, x, z)
Vc(t, x, z)
Wc(t, x, z)
Φc(t, x, z)

 =
∫ ∞

−∞

∫ ∞

−∞


Uc(t, kx, kz)
Vc(t, kx, kz)
Wc(t, kx, kz)
Φc(t, kx, kz)


×χ(kx, kz)e2πi(kxx+kzz)dkzdkx. (44)

Next we design stabilizing control laws for small wave
numbers and analyze uncontrolled wave numbers.



A. Controlled wave number analysis

Consider k2
x + k2

z ≤M2. Then χ = 1, so there is control.
Using the continuity equation (36) and taking divergence of
(33)–(35), a Poisson equation for the pressure is derived,

−α2p+ pyy = −4πkxiU
e
y (y)V +NVy. (45)

Evaluating equation (34) at y = 0 one finds that

py(kx, 0, kz) =
Vyy(kx, 0, kz)

Re

= −2πi
kxuy0 + kzWy0

Re
, (46)

where we use (36) for expressing Vyy at the bottom in terms
of uy0 = uy(kx, 0, kz) and Wy0 = Wy(kx, 0, kz). Similarly,
evaluating equation (34) at y = 1 we get

py(kx, 1, kz) =
Vyy(kx, 1, kz)

Re
− (Vc)t − α2 Vc

Re

= −2πi
kxuy1 + kzWy1

Re

−(Vc)t − α2 Vc

Re
, (47)

where we use (36) for expressing Vyy at the top wall in
terms of uy1 = uy(kx, 1, kz) and Wy1 = Wy(kx, 1, kz) and
the controller Vc.

Equation (45) can be solved in terms of integrals of the
state and the boundary terms appearing in (46) and (47).

p = −4πkxi

α

∫ y

0

Ue
y (η) sinh (α(y − η))V (kx, η, kz)dη

+N
∫ y

0

sinh (α(y − η))
α

Vy(kx, η, kz)dη

+2πi
cosh (α(1− y))

α sinhα
kxuy0 + kzWy0

Re

+
4πkxi cosh (αy)

α sinhα

∫ 1

0

Ue
y (η) cosh (α(1− η))

×V (kx, η, kz)dη −N
cosh (αy)
α sinhα

∫ 1

0

cosh (α(1− η))

×Vy(kx, η, kz)dη − 2πi
cosh (αy)
α sinhα

kxuy1 + kzWy1

Re

−cosh (αy)
α sinhα

(
(Vc)t + α2 Vc

Re

)
. (48)

We proceed as in [26] and [10] and use the controller Vc,
which appears inside the pressure solution (48), to make
the pressure strict-feedback (spatially causal in y), which is
a necessary structure for the application of a backstepping
boundary controller [21]. Since the first three lines in (48)
are already spatially causal, we need to cancel the fourth,
fifth and sixth lines of (48). Set

(Vc)t = α2 Vc

Re
+ 2πi

kx(uy0 − uy1) + kz(Wy0 −Wy1)
Re

+4πkxi

∫ 1

0

Ue
y (η) cosh (α(1− η))V (kx, η, kz)dη

−N
∫ 1

0

cosh (α(1− η))Vy(kx, η, kz)dη, (49)

which can be written as

(Vc)t = α2 Vc

Re
+ 2πi

kx(uy0 − uy1) + kz(Wy0 −Wy1)
Re

−NVc +
∫ 1

0

cosh (α(1− η))V (kx, η, kz)

×
(
N + 4πkxiU

e
y (η)

)
dη. (50)

Then, the pressure is written in terms of a strict-feedback
integral of the state V and the boundary terms uy0, Wy0

(proportional to the skin friction at the bottom) as follows

p = −4πkxi

α

∫ y

0

Ue
y (η) sinh (α(y − η))V (kx, η, kz)dη

−2πi
cosh (αy)− cosh (α(1− y))

Reα sinhα
(kxuy0 + kzWy0)

+N
∫ y

0

sinh (α(y − η))
α

Vy(kx, η, kz)dη. (51)

Similarly, solving for φ in terms of the control Φc and the
right hand side of its Poisson equation (37),

φ =
2πi
α

∫ y

0

sinh (α(y − η)) (kzu(kx, η, kz)

−kxW (kx, η, kz)) dη +
sinh (αy)
sinhα

Φc(kx, ky)

−2πi sinh (αy)
α sinhα

∫ 1

0

sinh (α(1− η)) (kzu(kx, η, kz)

−kxW (kx, η, kz)) dη. (52)

As in the pressure, an actuator (Φc in this case) appears
inside the solution for the potential. The last two lines of (52)
are non-strict-feedback integrals and need to be cancelled to
apply the backstepping method. For this we use Φc by setting

Φc(kx, ky) =
2πi
α

∫ 1

0

sinh (α(1− η)) (kzu(kx, η, kz)

−kxW (kx, η, kz)) dη. (53)

Then the potential can be expressed as a strict-feedback
integral of the states u and W as follows

φ =
2πi
α

∫ y

0

sinh (α(y − η)) (kzu(kx, η, kz)

−kxW (kx, η, kz)) dη. (54)

Introducing the expressions (51) and (54) in (33) and (35),
we get

ut =
−α2u+ uyy

Re
− β(y)u− Ue

y (y)V −Nu− 4π2kx

×cosh (αy)− cosh (α(1− y))
Reα sinhα

(kxuy0 + kzWy0)

−8πk2
x

α

∫ y

0

Ue
y (η) sinh (α(y − η))V (kx, η, kz)dη

−2πikxN

∫ y

0

sinh (α(y − η))
α

Vy(kx, η, kz)dη

−4π2kzN

α

∫ y

0

sinh (α(y − η))

× (kzU(kx, η, kz)− kxW (kx, η, kz)) dη, (55)

Wt =
−α2W +Wyy

Re
− β(y)W −NW − 4π2kz



×cosh (αy)− cosh (α(1− y))
Reα sinhα

(kxuy0 + kzWy0)

−8πkxkz

α

∫ y

0

Ue
y (η) sinh (α(y − η))V (kx, η, kz)dη

−2πikzN

∫ y

0

sinh (α(y − η))
α

Vy(kx, η, kz)dη

+
4π2kxN

α

∫ y

0

sinh (α(y − η))

× (kzU(kx, η, kz)− kxW (kx, η, kz)) dη. (56)

We have omitted the equation for V since, from (36) and
using the fact that V (kx, 0, kz) = 0, V is computed as

V = −2πi
∫ y

0

(kxU(kx, η, kz) + kzW (kx, η, kz)) dη. (57)

Now we use the following change of variables and its
inverse,

Y = 2πi (kxu+ kzW ) , ω = 2πi (kzu− kxW ) , (58)

u =
2πi
α2

(kxY + kzω) , W =
2πi
α2

(kzY − kxω) .(59)

Defining ε = 1
Re and the following functions

f = 4πikx

{
Ue

y (y)
2

+
∫ y

η

Ue
y (σ)

sinh (α(y − σ))
α

dσ

}
+Nα sinh (α(y − σ)) , (60)

g = −αcosh (αy)− cosh (α(1− y))
Re sinhα

, (61)

h1 = 2πikzU
e
y , (62)

h2 = −Nα sinh (α(y − η)) , (63)

equations (55)–(56) expressed in terms of Y and ω are

Yt = ε
(
−α2Y + Yyy

)
− β(y)Y −NY + gYy0

+
∫ y

0

f(kx, y, η, kz)Y (kx, η, kz)dη , (64)

ωt = ε
(
−α2ω + ωyy

)
− β(y)ω −Nω

+h1(y)
∫ y

0

Y (kx, η, kz)dη

+
∫ y

0

h2(y, η)ω(kx, η, kz)dη , (65)

where we have used the inverse change of variables (59) to
express uy0 and Wy0 in terms of Yy0 = Yy(kx, 0, kz) as
follows

Yy0 = 2πi (kxuy0 + kzWy0) , (66)

with boundary conditions

Y (t, kx, 0, kz) = ω(t, kx, 0, kz) = 0, (67)
Y (t, kx, 1, kz) = Yc(t, kx, kz) (68)
ω(t, kx, 1, kz) = ωc(t, kx, kz), (69)

where

Yc = 2πi (kxUc + kzWc) , (70)
ωc = 2πi (kzUc − kxWc) . (71)

Equations (64)–(65) are a coupled, strict-feedback plant,
with integral and reaction terms. As in [10], a variant of

the design presented in [21] can be used to stabilize the
system using a double backstepping transformation. The
transformation maps, for each kx and kz , the variables (Y, ω)
into the variables (Ψ,Ω), that verify the following family of
heat equations (parameterized in kx, kz)

Ψt = ε
(
−α2Ψ + Ψyy

)
− β(y)Ψ−Nψ, (72)

Ωt = ε
(
−α2Ω + Ωyy

)
− β(y)Ω−NΩ, (73)

with boundary conditions

Ψ(kx, 0, kz) = Ψ(kx, 1, kz) = 0, (74)
Ω(kx, 0, kz) = Ω(kx, 1, kz) = 0. (75)

The transformation is defined as follows,

Ψ = Y −
∫ y

0

K(kx, y, η, kz)Y (kx, η, kz)dη, (76)

Ω = ω −
∫ y

0

Γ1(kx, y, η, kz)Y (kx, η, kz)dη

−
∫ y

0

Γ2(kx, y, η, kz)ω(kx, η, kz)dη. (77)

Following [10], [21], [26], the functions K(kx, y, η, kz),
Γ1(kx, y, η, kz), and Γ2(kx, y, η, kz) are found as the solu-
tion of the following partial integro-differential equations,

εKyy = εKηη + (β(y)− β(η))K − f

+
∫ y

η

f(η, ξ)K(y, ξ)dξ, (78)

εΓ1yy = εΓ1ηη + (β(y)− β(η)) Γ1 − h1 +
∫ y

η

Γ2(y, ξ)

×h1(ξ)dξ +
∫ y

η

f(η, ξ)Γ1(y, ξ)dξ, (79)

εΓ2yy = εΓ2ηη + (β(y)− β(η)) Γ2 − h2

+
∫ y

η

h2(ξ, η)Γ2(y, ξ)dξ. (80)

Equations (78)–(80) are hyperbolic partial integro-
differential equation in the region T = {(y, η) : 0 ≤
y ≤ 1, 0 ≤ η ≤ y}. Their boundary conditions are

K(y, y) = −g(0)
ε
, (81)

K(y, 0) =

∫ y

0
K(y, η)g(η)dη − g(y)

ε
, (82)

Γ1(y, y) = 0, (83)

Γ1(y, 0) =

∫ y

0
Γ1(y, η)g(η)dη

ε
, (84)

Γ2(y, y) = 0, Γ2(y, 0) = 0. (85)

Remark 1: Equations (78)–(85) are well-posed and can be
solved symbolically, by means of a successive approximation
series, or numerically [10], [21]. Note that (78) and (80) are
autonomous. Hence, one must solve first for K(kx, y, η, kz)
and Γ2(kx, y, η, kz). Then the solution for Γ2 is plugged in
Equation 79 which then can be solved for Γ1(kx, y, η, kz).



Control laws Yc and Wc are found evaluating (76)–(77) at
y = 1 and using (68)–(69) and (74)–(75), which yields

Yc(t, kx, kz) =
∫ 1

0

K(kx, 1, η, kz)Y (kx, η, kz)dη, (86)

ωc(t, kx, kz) =
∫ 1

0

Γ1(kx, 1, η, kz)Y (kx, η, kz)dη

+
∫ 1

0

Γ2(kx, 1, η, kz)ω(kx, η, kz)dη. (87)

Using (58)–(59) to write (86)–(87) in (u,W ), we get

Uc =
∫ 1

0

KUu(kx, 1, η, kz)u(kx, η, kz)dη

+
∫ 1

0

KUW (kx, 1, η, kz)W (kx, η, kz)dη, (88)

Wc =
∫ 1

0

KWu(kx, 1, η, kz)u(kx, η, kz)dη

+
∫ 1

0

KWW (kx, 1, η, kz)W (kx, η, kz)dη,(89)

where 
KUu

KUW

KWu

KWW

 = A


K(kx, y, η, kz)
Γ1(kx, y, η, kz)

0
Γ2(kx, y, η, kz)

 , (90)

and where the matrix A is defined as

A = −4π2

α2


k2

x kxkz kxkz k2
z

kxkz k2
z −k2

x −kxkz

kxkz −k2
x k2

z −kxkz

k2
z −kxkz −kxkz k2

x

 . (91)

Stability in the controlled wave number range follows from
stability of (72)–(73) and the invertibility of the transforma-
tion (76)–(77). We get the following result, whose proof we
sketch (see [10] for more details).

Proposition 5.1: For k2
x + k2

z ≤M2, the equilibrium u ≡
V ≡ W ≡ 0 of system (33)–(42) with control laws (50),
(53), (88)–(89) is exponentially stable in the L2 norm, i.e.,∫ 1

0

(
|u|2 + |V |2 + |W |2

)
(t, kx, y, kz)dy

≤ C1e−2εt

∫ 1

0

(
|u|2 + |V |2 + |W |2

)
(0, kx, y, kz)dy, (92)

where C1 ≥ 0.
Proof: From equations (72)–(73) we get, using a

standard Lyapunov argument,∫ 1

0

(
|Ψ|2 + |Ω|2

)
(t, kx, y, kz)dy

≤ e−2εt

∫ 1

0

(
|Ψ|2 + |Ω|2

)
(0, kx, y, kz)dy, (93)

and then from the transformation (76)–(77) and its inverse
(which is guaranteed to exist [21]), we get that∫ 1

0

(
|Y |2 + |ω|2

)
(t, kx, y, kz)dy

≤ C0e−2εt

∫ 1

0

(
|Y |2 + |ω|2

)
(0, kx, y, kz)dy, (94)

where C0 > 0 is a constant depending on the kernels K, Γ1

and Γ2 and their inverses. Then writing (u,W ) in terms of
(Y, ω) and bounding the norm of V by the norm of Y (using
Y = −Vy and Poincare’s inequality), the result follows.

B. Uncontrolled wave number analysis
When k2

x +k2
z > M , plant verifies the following equations

ut =
−α2u+ uyy

Re
− β(y)u− Ue

y (y)V − 2πkxip

+2πkziNφ−Nu , (95)

Vt =
−α2V + Vyy

Re
− β(y)V − py , (96)

Wt =
−α2W +Wyy

Re
− φW − 2πkzip− 2πkxiNφ

−NW , (97)

the Poisson equation for the potential

−α2φ+ φyy = 2πi (kzu− kxW ) (98)

the continuity equation

2πikxu+ Vy + 2πkzW = 0, (99)

and Dirichlet boundary conditions

u(t, kx, 0, ky) = V (t, kx, 0, ky) = W (t, kx, 0, ky) = 0,(100)
u(t, kx, 1, ky) = V (t, kx, 1, ky) = W (t, kx, 1, ky) = 0,(101)
φ(t, kx, 0, ky) = φ(t, kx, 1, ky) = 0. (102)

Using (58), one gets the following equations for Y and ω.

Yt = ε
(
−α2Y + Yyy

)
− β(y)Y − 2πkxiU

e
y (y)V

+α2p−NY, (103)
ωt = ε

(
−α2ω + ωyy

)
− β(y)ω − 2πkziU

e
y (y)V

−α2Nφ−Nω. (104)

The Poisson equation for the potential is, in terms of ω,

−α2φ+ φyy = ω. (105)

Consider the Lyapunov function

Λ =
∫ 1

0

|u|2 + |V |2 + |W |2

2
dy, (106)

where we write
∫ 1

0
f =

∫ 1

0
f(kx, y, kz)dy. The function Λ

is the L2 norm (kinematic energy) of the velocity field.
Denote by f∗ the complex conjugate of f . Substituting Y

and ω from (59) into (106), we get

Λ =
∫ 1

0

4π2

[
k2

x|Y |2 + k2
z |ω|2 + kxkz(Y ∗ω + Y ω∗)

2α4

+
k2

z |Y |2 + k2
x|ω|2 − kxkz(Y ∗ω + Y ω∗)

2α4

]
dy

+
∫ 1

0

|V |2

2
dy

=
∫ 1

0

|Y |2 + |ω|2 + α2|V |2

2α2
dy. (107)

Define then a new Lyapunov function,

Λ1 = α2Λ =
∫ 1

0

|Y |2 + |ω|2 + α2|V |2

2
dy. (108)



The time derivative of Λ1 can be estimated as follows,

Λ̇1 = −2εα2Λ1 − ε

∫ 1

0

(
|Yy|2 + |ωy|2 + α2|Vy|2

)
−N

∫ 1

0

(
|Y |2 + |ω|2

)
− α2N

∫ 1

0

φ∗ω + φω∗

2

+
∫ 1

0

πiUe
y (y)V ∗(2kxY + kzω)

−
∫ 1

0

πiUe
y (y)V (2kxY

∗ + kzω
∗)

+α2

∫ 1

0

P ∗Y + PY ∗ − P ∗y V − PyV
∗

2
. (109)

For bounding (109), we use the following two lemmas.
Lemma 5.1:

−α2

∫ 1

0

φ∗ω + φω∗

2
≤

∫ 1

0

|ω|2. (110)

Proof: The term we want to estimate is

−α2

∫ 1

0

φ∗ω + φω∗

2
. (111)

Substituting α2φ from (105), (111) can be written as

−
∫ 1

0

φ∗yyω + φyyω
∗

2
+

∫ 1

0

|ω|2. (112)

Therefore, we need to prove that∫ 1

0

(
φ∗yyω + φyyω

∗) ≥ 0. (113)

Substituting ω from equation (105) into (113), we get∫ 1

0

(
φ∗yyω + φyyω

∗)
=

∫ 1

0

|φyy|2 − α2

∫ 1

0

(
φ∗yyφ+ φyyφ

∗)
=

∫ 1

0

|φyy|2 + α2

∫ 1

0

|φy|2, (114)

which is nonnegative.
Lemma 5.2:

|Ue
y (y)| ≤ 4 +H. (115)

Proof: Computing Ue
y (y) from (15),

Ue
y (y) = H

cosh(Hy)− cosh(H(1− y))
2 sinhH/2− sinhH

. (116)

Calling g1(y) = cosh(Hy)−cosh(H(1−y)), since g′1(y) =
H (sinh(Hy) + sinh(H(1− y))) is always positive for y ∈
(0, 1), the maximum must be in the boundaries. Therefore

|Ue
y (y)| ≤ g2(H) = H

coshH − 1
sinhH − 2 sinhH/2

. (117)

One can rewrite g2 as

g2 = H
sinhH/2

coshH/2− 1
. (118)

Since g2(0) = 4, it suffices to verify that g′2(H) ≤ 1.

g′2(H) =
g3
g4

=
sinhH/2−H2/2

coshH/2− 1
. (119)

This is equivalent to verify that g3 ≤ g4. Since g3(0) =
g4(0) = 0, it is enough that g′3 ≤ g′4, which follows from

g′3 = H/2 (coshH/2− 2H) ≤ H/2(sinhH/2) = g′4, (120)

because coshx− 4x ≤ sinhx.
Integrating by parts and applying Lemma 5.1,

Λ̇1 ≤ −2εα2Λ1 − ε

∫ 1

0

(
|Yy|2 + |ωy|2 + α2|Vy|2

)
+

∫ 1

0

πiUe
y (y)V ∗(kxY + kzω)

−
∫ 1

0

πiUe
y (y)V (kxY

∗ + kzω
∗)−N

∫ 1

0

|Y |2.(121)

Using Lemma 5.2 to bound Ue
y in (121),

Λ̇1 ≤ −2ε
(
1 + α2

)
Λ1 −N

∫ 1

0

|Y |2dy

+2π (4 +H)
∫ 1

0

(|V |(|kx||Y |+ |kz||ω|) dy

≤
(
4 +H − 2ε

(
1 + α2

))
Λ1 (122)

where we have applied Young’s and Poincare’s inequalities.
Hence, if α2 ≥ 4+H

2ε ,

Λ̇1 ≤ −2εΛ1. (123)

Dividing (123) by α2 and using (108), we get that

Λ̇ ≤ −2εΛ, (124)

and stability in the uncontrolled wave number range follows
when k2

x + k2
z ≥M2 for M (conservatively) chosen as

M ≥ 1
2π

√
(H + 4)Re

2
. (125)

We summarize the result in the following proposition.
Proposition 5.2: For k2

x + k2
z ≥ M2 where M ≥

1
2π

√
(H+4)Re

2 , the equilibrium u ≡ V ≡ W ≡ 0 of the
uncontrolled system (95)–(102) is exponentially stable in the
L2 sense, i.e.,∫ 1

0

(
|u|2 + |V |2 + |W |2

)
(t, kx, y, kz)dy

≤ e−2εt

∫ 1

0

(
|u|2 + |V |2 + |W |2

)
(0, kx, y, kz)dy.(126)

C. Main result
Substituting (50), (53) and (88)–(89) in (44), and using

the Fourier convolution theorem, we get the control laws in
physical space, which can be expressed compactly as Uc

Wc

Φc

 =
∫ ∞

−∞

∫ 1

0

∫ ∞

−∞
Σ(x− ξ, η, z − ζ)

×
(

u(ξ, η, ζ)
W (ξ, η, ζ)

)
dξdηdζ, (127)

where

Σ(ξ, η, ζ) =
∫ ∞

−∞

∫ ∞

−∞
Σ(kx, η, kz)

×χ(kx, kz)e2πi(kxξ+kzζ)dkzdkx, (128)



and

Σ=

 KUu(kx, 1, η, kz) KUW (kx, 1, η, kz)
KWu(kx, 1, η, kz) KWW (kx, 1, η, kz)
2πikz sinh(α(1−η))

α − 2πikk sinh(α(1−η))
α

. (129)

Control law Vc is a dynamic feedback law computed as
the solution of the following forced parabolic equation

(Vc)t =
(Vc)xx + (Vc)zz

Re
−NVc + g(t, x, z), (130)

where g(t, x, z) is defined as

g =
∫ ∞

−∞

∫ ∞

−∞

[ ∫ 1

0

gV (x− ξ, η, z − ζ)V (ξ, η, ζ)dη

+gW (x− ξ, z − ζ) (Wy(ξ, 0, ζ)−Wy(ξ, 1, ζ))

+gu(x− ξ, z − ζ) (uy(ξ, 0, ζ)−uy(ξ, 1, ζ))

]
dξdζ, (131)

and

gu =
∫ ∞

−∞

∫ ∞

−∞
2πi

kx

Re
χ(kx, kz)e2πi(kxξ+kzζ)dkzdkx,(132)

gV =
∫ ∞

−∞

∫ ∞

−∞
cosh (α(1− η))

(
N + 4πkxiU

e
y (η)

)
×χ(kx, kz)e2πi(kxξ+kzζ)dkzdkx, (133)

gW =
∫ ∞

−∞

∫ ∞

−∞
2πi

kz

Re
χ(kx, kz)e2πi(kxξ+kzζ)dkzdkx.(134)

As in [10], [26], considering all wave numbers and using
Proposition 5.1 and Proposition 5.2, the following result
holds regarding the convergence of the closed-loop system.

Theorem 1: Consider the system (21)–(42) with control
laws (127)–(134). Then the equilibrium profile u ≡ V ≡
W ≡ 0 is asymptotically stable in the L2 norm, i.e.,∫ ∞

−∞

∫ 1

0

∫ ∞

−∞

(
u2 + V 2 +W 2

)
(t, x, y, z)dxdydz

≤C2e−2εt

×
∫ ∞

−∞

∫ 1

0

∫ ∞

−∞

(
u2 + V 2 +W 2

)
(0, x, y, z)dxdydz.(135)

where C2 = max{C1, 1} ≥ 0.
We have assumed in the above result that the closed loop

linearized system is well-posed and that the velocity and
electromagnetic field equations have at least L2 solutions.
See [20] for some mathematical considerations on the well-
posedness of MHD problems.

Control laws (127)–(134) of Theorem 1 require full-state
knowledge. In [27] we presented an observer for estimation
of velocity and electromagnetic fields of the Hartmann flow,
based on boundary measurement of pressure, current and
skin friction. Such an observer can be used together with
the control laws (127)–(134) to obtain an output feedback
stabilizing boundary controller that only needs boundary
measurements.
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