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Abstract— The tokamak is a torus-shaped machine in which

a reactant ionized gas (plasma) is confined using magnetic

fields for the purpose of generating energy from nuclear fusion

reactions. In order to be commercially competitive, a tokamak

needs to operate for long periods of time at high-performance

operating points. Those high-performance scenarios are char-

acterized by a steady-state, stable plasma operation, which is

closely related to a property of the plasma that is known as

the safety factor, q. Therefore, control of the q profile is one

of the crucial aspects to the success of tokamaks. Significant

research has been carried out by the fusion community to

find control algorithms for the q profile. Most of that previous

work makes use of approximate linearization and linear control

techniques. In the present work, we propose a nonlinear model-

based controller for the regulation of the q profile using

feedback linearization. This nonlinear control approach may

be applicable to a greater range of operating conditions, and

may be able to reject larger perturbations than previous linear

controllers. The effectiveness of the controller is demonstrated

via a simulation study based on a DIII-D scenario.

I. INTRODUCTION

The main goal of a fusion reactor is to obtain energy
from nuclear reactions between hydrogen isotopes (typically,
deuterium (D) and tritium (T)). These two reactants must
be heated to extremely high temperatures (⇠ 10 million de-
grees) so that their kinetic energy is high enough to overcome
the Coulombic repulsion force that exists between them and
to enable nuclear fusion. Such high temperatures result in
the reactants being in a plasma state. In plasmas, ions and
electrons are separated, what makes these particles capable of
driving electrical current and interacting with magnetic fields.
Such properties of plasmas motivate the development of
magnetic-confinement devices like the tokamak [1]. In these
devices, a high temperature plasma is confined by means
of magnetic fields inside a fixed toroidal volume where
the appropriate conditions for fusion to occur are main-
tained. Much work has been done to find high-performance
operating scenarios characterized by magnetohydrodynamic
(MHD) stability and steady-state operation. Such scenarios
are closely related to the safety factor q [1]. This property
of the plasma is a measure of the pitch of the magnetic
field lines, and plays a fundamental role in plasma stability
and fusion performance. Therefore, active control of the q
profile to maintain a desired operation arises as a key issue
that needs to be solved for the success of tokamak reactors
as efficient means of producing energy.
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Extensive research has been carried out in order to develop
control algorithms for the regulation of the q profile in
tokamaks. In [2], a linearized data-driven model has been
used to synthesize a controller that is applicable to scenarios
in which the data-driven model is representative. Different
controllers based on first-principles-driven models have been
proposed in [3], [4], [5], [6], [7], where model linearization
or quasi-linearization techniques around a nominal operating
point have been utilized. Other first-principles-driven model-
based control design work has produced controllers based on
Lyapunov control theory [8] and backstepping techniques [9].
However, even these pieces of work use plasma-response
models that have been partially linearized.

In this work, a first-principles-driven, control-oriented
model of the q-profile evolution for high-confinement plas-
mas [10] is used. Based on this model, a nonlinear control
algorithm using feedback linearization [11] is proposed. The
main novelty of the proposed controller is that it is not
based on a linearized approximation of the nonlinear model.
Instead, the fact that the system is feedback linearizable is ex-
ploited, i.e., the nonlinear model is algebraically transformed
into a linear model by means of a state-space transformation
and a suitable choice of the control inputs. Feedback lin-
earization allows for using linear control techniques once
the nonlinear model is transformed into a linear model. The
controller is capable of driving the system between consid-
erably different operating points, while linear controllers are
designed to work in a neighborhood of a nominal operating
point. Also, the controller stabilizes the system even in
the presence of large perturbations that drive the system
away from the nominal operating point, where approximately
linearized models may loose validity and model-based linear
controllers may exhibit poor performance.

This work is organized as follows. A model for the q-
profile evolution is introduced in Section II. This model is
spatially discretized by using the finite-differences method
in Section III. The feedback-linearized model is derived in
Section IV. The control law is stated in Section V. Some
simulation results are shown in Section VI to illustrate
the controller performance. Finally, a summary and some
conclusions are stated in Section VII.

II. SAFETY FACTOR EVOLUTION MODEL

Magnetic field lines are normally closed in tokamaks and
confine the plasma in a torus. They describe helical paths
followed by the particles due to the Lorentz force exerted on
them, as shown in Fig. 1. The magnetic field is denoted
as B̄, and its two components are the toroidal (B̄�) and
poloidal (B̄✓) magnetic fields. The magnetic-flux surfaces



are defined by all the points P that have the same poloidal
magnetic flux,  =

R
S B̄✓ · dS, where S is the horizontal

surface bounded by the toroidal ring passing through the
point P . The axisymmetry provided by the toroidal geometry
together with the selection of a spatial coordinate indexing
the nested magnetic-flux surfaces (shown in Fig. 2) reduces
the three-dimensional problem to just one dimension. The
mean effective minor radius, ⇢, is used to index each
magnetic-flux surface. It is related to the toroidal magnetic
flux, �, and to the vacuum toroidal magnetic field at the
geometric major radius R0 of the tokamak, B�,0, by means
of ⇡B�,0⇢2 = �. The mean effective minor radius can be
normalized as ⇢̂ = ⇢/⇢b, where ⇢b is the value of ⇢ at the
last closed magnetic-flux surface. The q profile is related to
the spatial gradient of  as

q(⇢̂, t) =
d�
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where t is the time and  (⇢̂, t) is the poloidal stream
function, which is closely related to the poloidal flux, i.e.,
 = 2⇡ . The evolution of the poloidal magnetic flux can
be described by the magnetic diffusion equation [12],
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where ⌘(Te) is the plasma resistivity, Te(⇢̂, t) is the elec-
tron temperature, µ0 is the vacuum permeability, D (⇢̂) =
F̂ (⇢̂)Ĝ(⇢̂)Ĥ(⇢̂), where F̂ , Ĝ, and Ĥ are spatially varying
geometric factors pertaining to the magnetic configuration of
a particular plasma equilibrium [13], j̄NI is the noninductive
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Fig. 1. Magnetic field configuration in a tokamak. The surface S normal
to the z axis is used to compute the poloidal magnetic flux  at point P .
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Fig. 2. Magnetic flux surfaces in a tokamak. Each magnetic flux surface
is characterized by a constant poloidal magnetic flux.

current density from various sources and h·i denotes the flux-
surface average of a quantity. The boundary conditions are
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where Ip(t) is the total plasma current.
Control-oriented models [10] for the electron density,

electron temperature, plasma resistivity and noninductive
current density are used in this work. The electron density,
ne(⇢̂, t), is modeled as

ne(⇢̂, t) = nprof
e (⇢̂)un(t), (4)

where nprof
e (⇢̂) is a reference profile and un(t) is the line-

averaged electron density.
The electron temperature, Te(⇢̂, t), is given by

Te(⇢̂, t) = kTe(⇢̂)T
prof
e (⇢̂)Ip(t)

�Ptot(t)
✏ne(⇢̂, t)

⇣ , (5)

where kTe(⇢̂) is a time-constant profile, T prof
e (⇢̂) is a refer-

ence profile, Ptot(t) is the total power injected to the plasma
(see its definition below), and the parameters �, ✏ and ⇣ are
constants that describe how Te(⇢̂, t) scales with Ip(t), Ptot(t)
and ne(⇢̂, t). In this work, it is assumed that Te(⇢̂, t) scales
with Ip(t), Ptot(t) and ne(⇢̂, t) in the same way inside and
outside the plasma core [1].

The plasma resistivity, ⌘(Te), is given by

⌘(⇢̂, t) =
ksp(⇢̂)Zeff

T
3/2
e (⇢̂, t)

, (6)

where ksp(⇢̂) is a time-constant profile, and Zeff is the
effective atomic number of the ions in the plasma, which is
assumed constant and independent of the spatial coordinate.

Two sources of noninductive current are considered, the
current injected by auxiliary sources (electron-cyclotron
launchers, neutral beam injectors, etc.), and the self-
generated bootstrap current. Therefore, j̄NI is expressed as
j̄NI(⇢̂, t) =

PNaux
i=1 j̄aux,i(⇢̂, t) + j̄BS(⇢̂, t), where j̄aux,i is the

noninductive current density generated by the i-th auxiliary
source for a total of Naux auxiliary sources, and j̄BS is
the noninductive current density produced by the bootstrap
effect. The noninductive current density contribution of the
i-th auxiliary source is modeled as

hj̄aux,i · B̄i
B�,0

= jprof
aux,i(⇢̂)

Te(⇢̂, t)�i

ne(⇢̂, t)
Paux,i(t), (7)

where jprof
aux,i(⇢̂) is a reference profile for the noninductive

current density deposition, �i is a constant related to the
current-drive efficiency, and Paux,i is the injected power. The
bootstrap current contribution is modeled in this work as [14]
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where the time-constant profiles ↵(⇢̂), L31(⇢̂), L32(⇢̂) and
L34(⇢̂) depend on the magnetic equilibrium configuration.



The total injected power is expressed as Ptot(t) =Pi=Naux
i=1 Paux,i(t)+Pohm(t)�Prad(t)+P 0

fus(t), where Pohm(t)
is the ohmic heating power, Prad(t) is the radiated power
and P 0

fus(t) is the part of the fusion power that remains in
the plasma. The ohmic heating power is given by Pohm(t) =
Rp(t)Ip(t)2, where Rp(t) is the total plasma resistance. The
radiated power is modeled as Prad(t) =

R 1
0 Qrad(⇢̂, t)

dV
d⇢̂ d⇢̂,

where Qrad = kbremZeff ne(⇢̂, t)2
p
Te(⇢̂, t), V is the vol-

ume enclosed by a magnetic surface within the plasma,
and kbrem is the Bremsstrahlung radiation coefficient. In
burning plasmas, the fusion power also contributes to
the total injected power. Such contribution is modeled
as P 0

fus(t) =
R 1
0 Q0

fus(⇢̂, t)
dV
d⇢̂ d⇢̂, where Q0

fus(⇢̂, t) =
Q↵nD(⇢̂, t)nT(⇢̂, t)h�⌫iDT, where Q↵ = 3.52 MeV, nD(⇢̂, t)
and nT(⇢̂, t) are the D and T densities, respectively, that
are related to the electron density by the quasi-neutrality
condition, ne(⇢̂, t) ⇡ 2nD(⇢̂, t) ⇡ 2nT(⇢̂, t) (assuming 50:50
D-T mix), and h�⌫iDT is the D-T reactivity, which is a
nonlinear function of the D-T temperature [15], that is
assumed to be the same as Te.

The magnetic diffusion equation (2) and the boundary
conditions (3) can be rewritten as
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where, just to simplify notation, the time and space depen-
dencies have been dropped. In (9), f⌘ , faux,i and fBS are
functions of ⇢̂ and their shape is determined by the reference
profiles and spatial functions introduced in (5)–(4). Also,
in (10), kIp = µ0R0/(2⇡Ĝ(1)Ĥ(1)). The time dependent
functions u⌘ , uaux,i and uBS, written as

u⌘ = I�3�/2
p P

�3✏/2
tot u�3⇣/2

n ,
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are the “virtual” inputs to the system. Defining the poloidal
flux gradient profile, ✓, as

✓(⇢̂, t) , @ 

@⇢̂
(⇢̂, t), (12)

we can express q in (1) in terms of ✓ as

q(⇢̂, t) = �B�,0⇢
2
b ⇢̂

✓(⇢̂, t)
. (13)

Taking derivative with respect to ⇢̂, (9) can be rewritten as
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where the definition of ✓ in (12) is used and, to simplify
notation, (·)0 , @/@⇢̂. The boundary conditions become

✓|⇢̂=0 = 0, ✓|⇢̂=1 = �kIpIp. (15)

The first term in (14), related to u⌘ , can be written after
application of the chain rule several times as
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III. SPATIAL DISCRETIZATION OF THE SAFETY FACTOR
EVOLUTION MODEL

The finite-differences method is used to discretize (16)
in the spatial domain, ⇢̂ 2 [0, 1]. The number of nodes is
denoted as N + 1, and the values of ✓ at the nodes are
denoted as ✓m, where m = 0, 1, ..., N . After discretization,
the original partial differential equation (16) is transformed
into a set of ordinary differential equations (ODE) given by
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for m = 1, 2, ..., N � 1, where �⇢̂ = 1/N , and ✓̇m and
hm
(.) denote the values of @✓/@t and h(.), respectively, when

evaluated at ⇢̂ = ⇢̂m = m�⇢̂. By introducing the terms
↵m = hm
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and �m = hdiff,1/�⇢̂2 � hdiff,2/(2�⇢̂), (17) is rewritten as
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Using the introduced notation, the boundary conditions be-
come

✓0 = 0, ✓N = �kIpIp. (19)

IV. FEEDBACK LINEARIZATION OF THE DISCRETIZED
SAFETY FACTOR EVOLUTION MODEL

The ODE system (18), together with the boundary condi-
tions (19), compose the discretized nonlinear model for the
q-profile evolution. It can be expressed in matrix form as

˙̂
✓ = G(✓̂)u =

j=3+NauxX

j=1

gj(✓̂)uj , ŷ = h(✓̂) = ✓̂, (20)



where ✓̂ = [✓1, ✓2, ..., ✓N�1, ✓N ]T 2 RN⇥1 is
the state vector, G(✓̂) 2 RN⇥(3+Naux), u =
[u⌘, uaux,1, ..., uaux,Naux , uBS , İp]T 2 R(3+Naux)⇥1 is the
input vector, and ŷ is the output vector. Also, gj(✓̂) is the
j-th column in G(✓̂) and uj is the j-th component of u.
Many tokamaks are gaining the capability of reconstructing
✓(⇢̂, t) at different spatial locations in real time. Then, it is
assumed that ✓̂ is measurable, and the output of the system
is chosen to be the same as the state, as expressed in (20).

It can be said that the system (20) is feedback linearizable
in a region D ⇢ RN⇥1 if and only if its associated vector
relative degree, denoted as r = (r1, r2, ..., rN ), is such that
the sum of all its components fulfills r1+r2+ ...+rN = N ,
for all ✓̂ 2 D. A state-space transformation ẑ = T (✓̂) and
an input choice for u can be sought in this case to exactly
linearize the system. From the definition of vector relative
degree [11], it follows that 3 + Naux must be equal to N ,
which implies that it is necessary to use a discretization
grid with a number of nodes that is determined by the
number of virtual inputs to the system. This condition makes
G(✓̂) a square matrix. Moreover, also from the definition
of the vector relative degree, it is found that ri = 1, for
i = 1, 2, ..., N, if and only if the matrix A(✓̂) given by

A(✓̂) =

2

6664

Lg1h1(✓̂) Lg2h1(✓̂) ... LgNh1(✓̂)
Lg1h2(✓̂) Lg2h2(✓̂) ... LgNh2(✓̂)

...
...

. . .
...

Lg1hN (✓̂) Lg2hN (✓̂) ... LgNhN (✓̂)

3

7775
, (21)

is invertible for all ✓̂ 2 D, where hi(✓̂) is the j-th component
of h, for j = 1, ..., N , i = 1, ..., N . Using the definition of
Lie Derivative, and the output choice ŷ = ✓̂,

Lgjhi(✓̂) =
@hi(✓̂)

@✓̂
gj(✓̂) = gij(✓̂), (22)

i.e., A(✓̂) = G(✓̂), and it can be concluded that the sys-
tem (20) is feedback linearizable if and only if G(✓̂) is
invertible for all ✓̂ 2 D. As G(✓̂) is square, G(✓̂) has to be
a full rank matrix to be invertible. This depends, obviously,
on the control capability of the auxiliary sources, that must
have different enough deposition profiles jprof

aux,i to allow for
the control of N different nodes, i.e., the related functions
haux,i must form linearly independent columns and add rank
in G(✓̂). Also, the invertibility of G(✓̂) is subject to the
diffusive and bootstrap related terms, which are functions of
hm

diff,1, hm
diff,2, hm

diff,3, hm
BS,1 and hm

BS,2, and the state ✓̂. Based
on typical values of these functions, and the typical values of
✓̂ found in tokamaks that define the region of interest D, it
is found that DIII-D tokamak yields a model with invertible
G(✓̂), and therefore a model which is feedback linearizable
in such D. Due to the mildness of the required conditions, it
is indeed reasonable to conclude that if a similar modeling
approach is followed, most tokamak designs will also yield
models that are feedback linearizable in D. Therefore, by
choosing

u = G�1(✓̂)v, (23)

the system (20) renders linear,

˙̂
✓ = v, ŷ = ✓̂, (24)

with ẑ = ✓̂ (i.e., the change of coordinates ẑ = T (✓̂) is
just an identity transformation). (24) is an exactly, feedback-
linearized version of (20) which is valid for all ✓̂ 2 D.

V. FEEDBACK LINEARIZATION CONTROL LAW

The control objective is to drive the system (20), or its
feedback-linearized version (24), to a desired plasma state
defined by a target q profile. This target q profile is related
to a target ✓ profile by (13). This target ✓ profile is denoted
as ✓ref(⇢̂, t), and ✓̂ref is a vector containing the N values of
✓ref(⇢̂, t) at ⇢̂m = m�⇢̂, for m = 1, 2, ..., N . By setting

v = �Kp

✓
(✓̂ � ✓̂ref) +

1

Ti

Z t

t0

(✓̂ � ✓̂ref) dt

◆
+ ˙̂
✓ref, (25)

a state-feedback controller with design parameters Kp and
Ti is used to control the feedback-linearized system (24).
In (25), t is the current time and t0 is the initial time.
Plugging (25) into (23), the nonlinear control law for u is

u= �G�1(✓̂)


Kp

✓
(✓̂�✓̂ref)+

1

Ti

Z t

t0

(✓̂�✓̂ref)dt
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+ ˙̂
✓ref

�
, (26)

and defining an error vector as e = ✓̂�✓̂ref, the state equation
in (24) becomes

ė = �Kp

✓
e+

1

Ti

Z t

t0

e dt

◆
. (27)

This ensures that e ! 0 exponentially as t ! 1, i.e., ✓̂ !
✓̂ref exponentially fast. So, if ✓̂ is known at a particular time
step, u can be computed from (26), and then the real inputs
to the system can be obtained from (11), i.e., Ip, un and
Paux,i (for i = 1, ..., Naux).

In real experiments, control of the electron density ne is a
quite challenging problem. Therefore, in order to reproduce
real experiments with the highest possible accuracy in the
simulation studies presented in this work, it is assumed that
ne is not controllable but measurable, what implies that un(t)
is not an input to the system, but just a known magnitude.
It is important to note that the dimension of the “virtual”
input vector u is 3+Naux, while there are only 1+Naux real
inputs (Ip and Paux,i, for i = 1, ..., Naux). Also, the actuators
have physical constraints. Thus, in general, it is not possible
to reach any “virtual” input vector u with the existing real
inputs to the system, i.e., the system is overconstrained. To
deal with this problem, the nonlinear least-squares method
is utilized to find the values of Ip, Paux,1,..., Paux,Naux that
minimize the quadratic error of the nonlinear set of equations

u+G�1(✓̂)


Kp

✓
e+

1

Ti

Z t

t0

e dt

◆
+ ˙̂
✓ref

�
= 0,

where u = u(Ip, Paux,1, ..., Paux,Naux) 2 R(3+Naux)⇥1 is the
nonlinear function given by (11). More details about the
nonlinear least-squares method can be found in [16].
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(e) t = 4.75 s (feedback off)
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Fig. 3. Comparison of q profiles at various times for the target profile (red circular markers), the closed-loop simulation (blue solid) and open-loop
simulation (magenta dashed-dotted). The effect of turning off the controller can be noted in (e). Track recovery of the target profile by turning the feedback
controller back on can be appreciated in (f).

VI. SIMULATION RESULTS IN A DIII-D SCENARIO

In this section, the control law (26) is tested through
simulations based on the model described in Section II. The
reference profiles and spatial functions (F̂ , Ĝ, Ĥ , kTe , ksp,
jprof

aux,i, L31, L32, L34, ↵ and nprof
e ) used in the simulations

correspond to a particular DIII-D scenario [10]. However, it
must be noted that the controller synthesis is independent
of the scenario used for this simulation study. For the
temperature model, based on experimental Te evolution, �
= 1, ✏ = 0.5 and ⇣ = -1 are chosen. The other constants
of the model are taken as B�,0 = 1.65 T, R0 = 1.69 m,
⇢b = 0.82 m and Zeff = 1.75. The DIII-D auxiliary sources
considered in this work are 6 electron cyclotrons (EC) and
7 neutral beam injectors (NBI), i.e., NEC = 6, NNBI = 7
and Naux = 13, and their efficiency is taken as �i = 1 for
EC’s and �i = 0.5 for NBI’s. Each EC power is denoted as
as PEC,i, for i = 1, ..., 6, and each NBI power as PNBI,i, for
i = 1, ..., 7. The maximum power achievable by each EC is
0.5 MW, while the maximum power achievable by each NBI
is 2 MW. It is also considered that P 0

fus(t) can be neglected,
as the plasma in DIII-D (and in any other present tokamak)
does not produce a significant amount of fusion power.

A set of simulations is executed with the purpose of testing
the reference tracking capability of the controller. First,
a feedforward-only (open-loop) simulation is run with the
input trajectories and initial conditions achieved in DIII-D
shot 150320. For the closed-loop simulation study a target
q profile is created by modifying the nominal q-profile
evolution obtained in the feedforward-only simulation. When
t 2 [0.5, 4] s, the target q profile is chosen around 65% larger
than the nominal q profile obtained in the feedforward-only
simulation, and after t = 4 s, the target q profile is held

constant in time. By keeping the target q profile constant after
t = 4 s, the controller is tested in an even more demanding
situation because the target q profile is still further from
the nominal open-loop q-profile evolution and it may not
even be achievable due to the overconstrained nature of the
system. Once the target q profile is computed, a feedforward
+ feedback (closed-loop) simulation is executed in which
the controller attempts to drive the system to the target q
profile. A comparison of the q-profile evolution in open loop
(feedforward only) and closed loop (feedforward+feedback),
together with the target q profile, is shown in Fig. 3.
Time traces of q at various spatial locations are shown in
Fig. 4, where also the open-loop, closed-loop and target q
profiles are compared. Fig. 5 shows the evolution of the
control inputs in both open-loop and closed-loop simulations.
Good reference tracking is achieved in closed loop, despite
using a target q profile which is considerably higher than
the feedforward-only q profile. The controller is turned off
at t 2 [4.25, 4.75] s (shaded region) to show how the
system evolves with no control, and to test the controller
capability to recover target tracking when it is turned on
again at t = 4.75 s. It is found that the controller is able
to recover target tracking with quite good performance after
being turned on. It can be noted that the inner plasma region
(⇢̂  0.2, approximately) is the one that shows a slower
response to control actuation. This could be critical because
the minimum q value, which plays a fundamental role in
MHD stability, is normally found in such region. However,
good reference tracking is also achieved for the inner region.
It must be noted that the trajectory for the plasma current
requires values of Ip that may be too low for operation
in DIII-D or any other tokamak device. This is naturally
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Fig. 4. Time traces of q at various spatial points for the target profile (red dashed), the closed-loop simulation (blue solid) and open-loop simulation
(magenta dashed-dotted). The effect of turning off the controller can be noted in between t = 4.25 s and t = 4.75 s (shaded region). Track recovery of the
target profile by turning the controller back on can be appreciated after t = 4.75 s.
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Fig. 5. Actuator trajectories during closed-loop (blue solid) and open-loop (magenta dashed-dotted) simulations. Note that the closed-loop and open-loop
trajectories coincide between t = 4.25 s and t = 4.75 s (shaded region), as a result of turning off the feedback control. Also note that the value for Ip(t)
may be unrealistic for operation in real devices as the result of choosing a probably non-physical target q-profile evolution for simulation-only purposes.

due to the fact that the target q profile is too demanding,
with high values of q, specially at ⇢̂ ⇡ 1. The choice of a
demanding, probably non-physical, target q profile responds
only to the purpose of showing the controller performance
in simulations.

VII. SUMMARY AND CONCLUSIONS

A new control approach has been presented for the q-
profile evolution in tokamaks. Using feedback linearization
for the first time ever, the nonlinear model of the q-profile
evolution has been transformed into a linear system which
is valid in a region of interest D without approximately
linearizing the model. By means of a simulation study for a
DIII-D scenario, it has been demonstrated that this controller
is able to drive the system between different target profiles
that are considerably distant. Such performance may be
difficult to match with previous linear controllers synthe-
sized from approximately linearized models. Although the
simulation study has been carried out for a high-confinement
DIII-D scenario, the controller synthesis is independent of
the scenario and the device.
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