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Abstract— The next step towards the development of a
nuclear fusion tokamak power plant is the ITER project.
Integrated closed-loop control of the plasma stored energy
and safety factor profile (q-profile) is key to maintaining the
plasma in a stable state and maximizing its performance.
The q-profile evolution in tokamaks is related to the poloidal
magnetic flux profile evolution, which is described by a physics
model called the magnetic diffusion equation. A first-principles-
driven (FPD), nonlinear, control-oriented model of the poloidal
magnetic flux profile evolution is obtained by first combin-
ing the magnetic diffusion equation with simplified physics-
based models of the noninductive current-drives. Secondly, the
electron density, electron temperature, and plasma resistivity
profiles are modeled as uncertain parameters by defining
ranges in which they are expected to be in typical ITER
high performance scenarios. This FPD model is then employed
to synthesize an H∞ feedback algorithm that utilizes ITER’s
auxiliary heating/current-drive sources and the total plasma
current as actuators to control the q-profile and stored energy
in high performance burning plasma scenarios while ensuring
the closed-loop system is robust to the uncertainties in the
plasma parameters. Finally, the effectiveness of the controller
is demonstrated through simulation.

I. INTRODUCTION

The tokamak is a magnetic confinement device used to
heat and confine a reactant gas (a deuterium-tritium mixture),
which is in a plasma state, to produce energy via nuclear
fusion [1]. The next phase of tokamak development is the
ITER project [2]. In order for ITER to meet its performance
objectives, extensive research has been conducted to find
high performance operating scenarios characterized by a high
fusion gain, plasma stability, and a noninductively driven
plasma current [3]. The safety factor profile, or q-profile,
(defined as the ratio between the number of times a magnetic
field line goes toroidally (the long way) around the tokamak
to the number of times it goes around poloidally (the short
way)) affects both the stability and performance of the
plasma. Therefore, closed-loop control of the q-profile to
drive it to a desirable target evolution is key to sustaining
high performance scenarios. To optimize the fusion power
generated by the reactor, the density and temperature pro-
files must also simultaneously be controlled. The volume-
averaged plasma stored energy is related to these kinetic
profiles and can be controlled to regulate the fusion power.
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Recent experiments at DIII-D [4]–[6] represent the first
successful demonstration of first-principles-driven (FPD),
model-based, closed-loop control of the entire q-profile in a
tokamak, where the control strategy employed was a feedfor-
ward + feedback scheme. Other advances towards designing
FPD controllers to control the plasma magnetic profile are
discussed in [7]–[9]. In the DIII-D experiments, the closed-
loop control was chosen to be performed in low confinement
(L-mode) [1] scenarios due to the reduced complexity of the
plasma dynamics in this regime. In this work, we extend the
control strategy employed in [4]–[6] to control the q-profile
and stored energy in high performance, high confinement (H-
mode) [1] burning plasma, i.e., one with a significant number
of fusion reactions occurring, regimes in ITER. A profile
control algorithm based on real-time estimation of linearized
plasma profile response models for ITER is discussed in [10].

High confinement scenarios in tokamaks are characterized
by transport barriers [1] just inside the plasma boundary
that increase the coupling between the magnetic and kinetic
states through the increase of the bootstrap current (a self-
generated current) [11]. In the companion paper [12], a
control-oriented partial differential equation (PDE) model of
the poloidal magnetic flux profile evolution, which is related
to the q-profile, valid for H-mode scenarios is developed.
In this work, the model is utilized to design an integrated
robust feedback control algorithm that employs ITER’s aux-
iliary heating/current-drive sources (three electron cyclotron
(gyrotron) launchers, one ion cyclotron launcher, one total
neutral beam power launcher) and the total plasma current
as actuators to track a desired target q-profile and stored
energy evolution. The controller is designed to be robust to
uncertainties in the electron density, electron temperature,
and plasma resistivity profiles, which are modeled as uncer-
tain parameters by defining ranges in which they are expected
to be in typical ITER high performance scenarios. In the
scenarios considered in this work, the ion cyclotron launcher
is configured to provide only heating power to the plasma.
Therefore, we design the algorithm with a two loop struc-
ture. The first loop utilizes the gyrotron and neutral beam
launchers and the total plasma current to control the q-profile,
and the second loop utilizes the ion cyclotron launcher to
control the stored energy. Finally, the effectiveness of the
controller is demonstrated through simulation with the FPD
model developed in [12].

II. PLASMA STATE EVOLUTION MODELS

Any arbitrary quantity that is constant on each magnetic
flux surface within the tokamak plasma can be used to
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Fig. 1. Plasma parameter uncertainty ranges: (a) electron density, (b) electron temperature, and (c) plasma resistivity. Note: nominal values (solid) and
minimum/maximum values (dash).

index the magnetic flux surfaces. In this work, we choose
the mean effective minor radius, ρ , of the magnetic flux
surface, i.e., πBφ ,0ρ2 = Φ, as the indexing variable, where
Φ is the toroidal magnetic flux and Bφ ,0 is the vacuum
toroidal magnetic field at the geometric major radius R0
of the tokamak. The normalized effective minor radius is
defined as ρ̂ = ρ/ρb, where ρb is the mean effective minor
radius of the last closed magnetic flux surface. Simplified
physics-based models of the noninductive current-drives are
discussed in [12]. The auxiliary noninductive current-drives
are proportional to the current-drive efficiency Te/ne, where
Te and ne are the electron temperature and density profiles,
respectively, and the bootstrap current-drive is proportional
to the inverse of the poloidal magnetic flux gradient profile
multiplied by the kinetic plasma profile gradients.

We begin by defining ranges in which the electron density
and temperature profiles are expected to be in typical ITER
high performance scenarios, which are shown in Figs. 1(a)-
(b). We model these kinetic parameters as a nominal profile
plus a bounded uncertain profile, i.e.,

ne(ρ̂, t) = nnom
e (ρ̂)+nunc

e (ρ̂)δne , (1)
Te(ρ̂, t) = T nom

e (ρ̂)+T unc
e (ρ̂)δTe , (2)

where nnom
e (ρ̂) =

[
nmax

e (ρ̂)+nmin
e (ρ̂)

]
/2, T nom

e (ρ̂) =[
T max

e (ρ̂)+T min
e (ρ̂)

]
/2, nunc

e (ρ̂) =
[
nmax

e (ρ̂)−nmin
e (ρ̂)

]
/2,

and T unc
e (ρ̂) =

[
T max

e (ρ̂)−T min
e (ρ̂)

]
/2, with |δTe | ≤ 1 and

|δne | ≤ 1. The plasma resistivity decreases as the electron
temperature increases, therefore, the minimum resistivity
is defined by the maximum electron temperature, and the
maximum resistivity is defined by the minimum electron
temperature, which are shown in Fig. 1(c). The inverse of
the electron density is related to the electron density in the
same manner. These plasma parameters are modeled as

η(ρ̂, t) = η
nom(ρ̂)+η

unc(ρ̂)δTe , (3)

1/ne(ρ̂, t) = nnom′
e (ρ̂)+nunc′

e (ρ̂)δne , (4)

where ηnom(ρ̂) =
[
ηmax(ρ̂)+ηmin(ρ̂)

]
/2,

nnom′
e (ρ̂) =

[
nmax

e (ρ̂)+nmin
e (ρ̂)

]
/
[
2nmax

e (ρ̂)nmin
e (ρ̂)

]
,

ηunc(ρ̂) =
[
ηmin(ρ̂)−ηmax(ρ̂)

]
/2, and nunc′

e (ρ̂) =[
nmin

e (ρ̂)−nmax
e (ρ̂)

]
/
[
2nmax

e (ρ̂)nmin
e (ρ̂)

]
.

The q-profile is related to the poloidal stream function
ψ , which is closely related to the poloidal magnetic flux
Ψ (Ψ = 2πψ), and is defined as q(ρ̂, t) = −dΦ/dΨ =

−
[
Bφ ,0ρ2

b ρ̂
]
/ [∂ψ/∂ ρ̂]. Therefore, if we are able to control

the poloidal flux gradient profile, which we define as

θ(ρ̂, t)≡ ∂ψ/∂ ρ̂(ρ̂, t), (5)

we will be able to control the q-profile, assuming the
system is controllable. By combining the physics model that
describes the poloidal magnetic flux profile evolution in the
tokamak (the magnetic diffusion equation [13], [14]) with
the noninductive current-drive models [12] and the models
(1)-(4), the PDE governing the evolution of θ is given by

∂θ

∂ t
= [q1(ρ̂)+q4(ρ̂)δTe ]

∂ 2θ

∂ ρ̂2 +[q2(ρ̂)+q5(ρ̂)δTe ]
∂θ

∂ ρ̂

+[q3(ρ̂)+q6(ρ̂)δTe ]θ

+
[
g′1(ρ̂)+h′1(ρ̂)δne + k′1(ρ̂)δTe + l′1(ρ̂)δTeδne

+m′1(ρ̂)δ
2
Te + p′1(ρ̂)δ

2
Te δne

]
Pec1(t)

+
[
g′2(ρ̂)+h′2(ρ̂)δne + k′2(ρ̂)δTe + l′2(ρ̂)δTeδne

+m′2(ρ̂)δ
2
Te + p′2(ρ̂)δ

2
Teδne

]
Pec2(t)

+
[
g′3(ρ̂)+h′3(ρ̂)δne + k′3(ρ̂)δTe + l′3(ρ̂)δTeδne

+m′3(ρ̂)δ
2
Te + p′3(ρ̂)δ

2
Teδne

]
Pec3(t)

+
[
g′4(ρ̂)+h′4(ρ̂)δne + k′4(ρ̂)δTe + l′4(ρ̂)δTeδne

+m′4(ρ̂)δ
2
Te + p′4(ρ̂)δ

2
Teδne

]
Pnbi(t)

−
[
g5(ρ̂)+h5(ρ̂)δne + k5(ρ̂)δTe + l5(ρ̂)δTeδne

+m5(ρ̂)δ
2
Te + p5(ρ̂)δ

2
Teδne

]( 1
θ

)2
∂θ

∂ ρ̂

+
[
g′5(ρ̂)+h′5(ρ̂)δne + k′5(ρ̂)δTe + l′5(ρ̂)δTeδne

+m′5(ρ̂)δ
2
Te + p′5(ρ̂)δ

2
Teδne

]( 1
θ

)
, (6)

with boundary conditions

θ(0, t) = 0 θ(1, t) =−k7I(t), (7)

where t is the time, (·)′ = d/dρ̂ , the parameters qi(ρ̂) for
i = 1, . . . ,6 and g j(ρ̂), h j(ρ̂), k j(ρ̂), l j(ρ̂), m j(ρ̂), and p j(ρ̂)
for j = 1, . . . ,5 are functions of space, k7 is a constant, Peci(t)
for i = 1,2,3 is each gyrotron launcher power, Pnbi(t) is the
total neutral beam power, and I(t) is the total plasma current.

The volume-averaged energy balance in the plasma is
given by

dW̄
dt

=− W̄
τW̄

+Pec1 +Pec2 +Pec3 +Pic +Pnbi−Prad +Pα , (8)



10
−4

10
−2

10
0

10
2

10
4

−40

−20

0

20

Frequency (rad / s)

M
a
g
n
it
u
d
e
 (

d
B

)

Fig. 2. Magnitude of maximum singular value versus frequency of the
linear model (11) along the nonlinear feedforward state and control input
trajectories x f f (t) and u f f (t) for δ = 0 and d = 0.

where W̄ is the volume-averaged stored energy, τW̄ is the
global energy confinement time, Pic is the ion cyclotron
launcher power, Prad is the radiated power, and Pα is the
heating power generated by fusion reactions. The energy
confinement time scaling used in this work is the IPB98(y,2)
scaling law [15].

III. MODEL REDUCTION VIA SPATIAL DISCRETIZATION

To construct a reduced-order model suitable for feedback
control design, the governing PDE (6) is discretized in
space using a finite difference method, where the spatial
domain of interest, ρ̂ ∈ [0,1], is represented as l nodes. After
applying the spatial derivative approximations to (6) and
taking into account the boundary conditions (7), we obtain a
nonlinear, finite dimensional, ordinary differential equation
model defined by

ẋ = w(x,u,δ ), (9)

where x = [θ2,θ3, . . . ,θl−1]
T ∈ Rn×1 is the state vec-

tor, θi is the value of θ at the discrete nodes, u =
[Pec1 ,Pec2 ,Pec3 ,Pnbi, I]T ∈ R5×1 is the control input vector,
δ =

[
δTe ,δne ,δTe δne ,δ

2
Te
,δ 2

Te
δne

]
∈ R5×1 is the uncertain pa-

rameter vector, w ∈ Rn×1 is a nonlinear function of the
model parameters, the system states, the control inputs, and
uncertain parameters, n = l−2, and

θ1(t) = 0 θl(t) =−k7I(t).

Let x f f (t), u f f (t), and δ f f (t) be a set of feedforward
system trajectories, which satisfy

ẋ f f = w(x f f ,u f f ,δ f f ). (10)

We can obtain a model suitable for tracking control design
by defining the perturbation variables x̃(t) = x(t)−x f f (t) and
u f b(t) = u(t)−u f f (t), where x̃(t) is the deviation away from
the feedforward state trajectories and u f b(t) is the output of
the to-be-designed feedback controller. Linearizing (9) with
respect to the state and control input and using (10), we
obtain a linear time-variant (LTV) system given by

˙̃x =
∂w
∂x

∣∣∣∣
(x f f ,u f f )

x̃+
∂w
∂u

∣∣∣∣
(x f f ,u f f )

u f b +d(t), (11)

where ∂w/∂x ∈ Rn×n and ∂w/∂u ∈ Rn×5 are the system
Jacobians, which depend on the uncertain parameters as
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Fig. 3. Relevant control channels: (a) output and (b) input.

Fig. 4. Schematic of q-profile feedback control problem formulation.

well as the feedforward state and input trajectories, and
d(t) = w(x f f ,u f f ,δ )−w(x f f ,u f f ,δ f f ). Figure 2 shows the
maximum singular value versus frequency of the linear
model (11) along the nonlinear feedforward state and control
input trajectories for δ = 0 and d = 0. As shown in the figure,
the dynamic response of the system is weakly dependent on
the feedforward state and input trajectories. Therefore, we
evaluate the Jacobians at a specific feedforward state and
input to obtain a linear time-invariant (LTI) model of the
deviation dynamics given by

˙̃x = Ax̃+Bu f b +d y =Cx̃+Du f b, (12)

with

A = A0 +

5∑
m=1

δmAm B = B0 +

5∑
m=1

δmBm,

C =C0 +

5∑
m=1

δmCm D = D0 +

5∑
m=1

δmDm, (13)

where Ai and Bi for i= 0, . . . ,5 are the Jacobians evaluated at
a specific feedforward state and input, C0 is an n×n identity
matrix, D0 = 0, and C j = 0 and D j = 0 for j = 1, . . . ,5. In
this work, we assume the plasma state is measurable.
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Fig. 5. Singular value diagrams: (a) 1/Wp (dash-dotted) and SDCo (solid) and (b) 1/Wu (dash-dotted) and KSDCo (solid), and (c) µ versus frequency.

A. Model in Robust Control Framework

The transfer function of a linear system with state-space
matrices A, B, C, and D can be written as an upper linear
fractional transformation (LFT) as G(s) = Fu(Ma, [1/s]In) =
D +C(sIn − A)−1B, where Fu denotes the upper LFT, the
matrix Ma is defined as

Ma =

[
A B
C D

]
,

In is an n× n identity matrix, and s denotes the Laplace
variable. The system can be expressed in the conventional
P−∆ control framework by employing the method outlined
in [16], which exploits the structure of the state matrices in
(13). See [4] for an example of this technique. If the plant
P ∈ R(qT+n)×(qT+5), where qT is the rank of the structured
uncertainty matrix ∆ = diag{δ}, is partitioned as

P =

[
P11 P12
P21 P22

]
,

the input-output equations of the system are

y∆ = P11u∆ +P12u f b y = P21u∆ +P22u f b +d, (14)

where P11 ∈ RqT×qT , P12 ∈ RqT×5, P21 ∈ Rn×qT , P22 ∈ Rn×5,
y∆ ∈RqT×1, u∆ ∈RqT×1, y∈Rn×1, d ∈Rn×1, and u f b ∈R5×1.

IV. IDENTIFICATION OF RELEVANT CONTROL CHANNELS

It is desired that the output y be able to track a reference
value r, therefore, we define the tracking error as e = r− y.
As there are only five inputs, we can only independently
control five linear combinations of the output of the sys-
tem, and we employ a singular value decomposition of the
nominal state-space system A0, B0, C0, D0 at a particular
frequency to identify the most relevant control channels. The
relationship between the outputs y and inputs u f b of the
nominal system is expressed as y=G0(s)u f b, where G0(s) =
C0 (sIn−A0)

−1 B0 +D0 is the nominal transfer function.
The real approximation of the nominal input-output rela-

tion at a particular frequency jωdc is expressed as

ŷ = Ĝ0û f b, (15)

where ŷ denotes the decoupled/relevant output, û f b de-
notes the decoupled/relevant input, and Ĝ0 denotes the real
approximation of the complex matrix G0( jωdc) [17]. We
select the frequency to identify the relevant channels at as
ωdc = 10−1 rad/sec., which allows us to utilize the plasma

current to control the q-profile near the plasma boundary
and the gyrotron launchers and the neutral beam injectors to
control the q-profile evolution near the center of the plasma.
In order to weight the tracking performance and control
effort, we introduce the positive definite weighting matrices
Q ∈ Rn×n and R ∈ R5×5, and we define the “weighted”
transfer function G̃0 and its economy size singular value
decomposition as G̃0 = Q1/2Ĝ0R−1/2 = UΣV T , where Σ =
diag(σ1,σ2,σ3,σ4,σ5) ∈ R5×5 is a diagonal matrix of sin-
gular values and U ∈ Rn×5 and V ∈ R5×5 are matrices that
possess the following properties V TV =VV T = I,UTU = I,
where I is a 5×5 identity matrix, and (·)T denotes the matrix
transpose. The input-output relation (15) is now expressed as

ŷ = Q−1/2G̃0R1/2û f b = Q−1/2UΣV T R1/2û f b.

The singular vectors of the basis for the subspace of
obtainable output values (ŷ = Q−1/2UΣŷ∗), and hence the
trackable components of the reference vector r̂, as well as the
corresponding input singular vectors (û f b = R−1/2V û∗f b) are
shown in Fig. 3. As the magnitude of the singular value σi de-
creases, a larger amount of control effort is needed to produce
a significant contribution to the profile. To avoid spending a
lot of control effort for only a small improvement in the
value of the tracking error

(
ê = r̂− ŷ = Q−1/2UΣ(r̂∗− ŷ∗)

)
,

we can partition the singular values into k significant singular
values Σs and 5−k negligible singular values Σns and define
the significant components of the reference, output, and input
vectors as r̂∗s = Σ−1

s UT
s Q1/2r̂ ∈ Rk×1, ŷ∗s = Σ−1

s UT
s Q1/2ŷ ∈

Rk×1, and û∗f bs
= V T

s R1/2û f b ∈ Rk×1, where Us ∈ Rn×k and
Vs ∈ R5×k are the components of U and V associated with
the significant singular values. More details regarding this
technique can be found in [4], [18].

V. INTEGRATED FEEDBACK CONTROLLER SYNTHESIS

We now synthesize an integrated control algorithm to
simultaneously control the q-profile and stored energy evolu-
tions. We use the gyrotron launchers, neutral beam injectors,
and total plasma current to control the q-profile, and we use
the ion cyclotron launcher to control the stored energy.

A. Safety Factor Profile Controller Design

The control goal is to design a feedback controller that
can minimize the tracking error, e = r− y, while using as
little feedback control effort as possible, achieve a set of
specified performance objectives, and robustly stabilize the
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Fig. 6. Time trace of safety factor q at various spatial locations. Note: target (solid), feedforward + feedback (dash), and feedforward (dash-dotted).
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Fig. 7. Safety factor profile q(ρ̂) at various times during the simulations.

system by controlling the relevant channels of the system
(14). This control problem is shown in Fig. 4, where K is
the feedback controller, Z1 =Wpe∗s , Z2 =Wuu∗f bs

, and Wp and
Wu are frequency dependent weight functions used to opti-
mize the closed-loop performance. The nominal performance
condition of the closed-loop system is expressed as[

Z1
Z2

]
=

[
WpSDCO −WpSDCO

WuKSDCO −WuKSDCO

][
r̄∗s
d̄∗s

]
= Tzw

[
r̄∗s
d̄∗s

]
,

where SDCO = (I + Σ−1
s UT

s Q1/2P22R−1/2VsK)−1. Therefore,
the control problem is formulated as

min
K

∣∣∣∣Tzw
∣∣∣∣

∞
, ∀ω. (16)

The feedback controller K found by solving (16) is written
in state-space form as

ẋ f b = A f bx f b +B f be∗s u∗f bs
=C f bx f b +D f be∗s , (17)

where the vector x f b ∈Rp×1 is the internal controller states,
A f b ∈Rp×p, B f b ∈Rp×k, C f b ∈Rk×p, and D f b ∈Rk×k are the
controller system matrices, and p is the number of controller
states. As the uncertainty has a block-diagonal structure, i.e.,
∆ = diag{δ}, we can compute the structured singular value
µ
(
N11( jω)

)
to determine the robust stability of the closed-

loop system, where N11 is the transfer function between
y∆ and u∆. The closed-loop system is robustly stable for
all allowable perturbations if and only if µ

(
N11( jω)

)
< 1,

∀ω [17]. To analyze the performance and robust stability of

200 400 600 800 1000
50

100

150

200

250

300

350

Time (sec.)

E
n
e
rg

y
 (

M
J
)

 

 

Target

Feedforward + Feedback

Feedforward

Fig. 8. Plasma stored energy versus time.

the closed-loop system, the singular value diagrams of the
inverse of the performance weight functions and the achieved
transfer functions SDCO and KSDCO are shown in Figs. 5(a)-
(b) and a plot of µ versus frequency is shown in Fig. 5(c).

B. Plasma Stored Energy Controller Design

The ion cyclotron launcher is used in a feedforward +
feedback scheme, i.e., Pic =Pic f f +Pic f b , where Pic f f and Pic f b
are the feedforward and feedback components, to control the
stored energy. The feedback controller is expressed as

Pic f b = kPiceW̄ + kIic

∫ t

0
eW̄ dt, (18)

where kPic and kIic are the controller gains, eW̄ = W̄tar−W̄ is
the error in the stored energy, and W̄tar is the reference.
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(a) Pec1 (t)
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(b) Pec2 (t)
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(c) Pec3 (t)
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(d) Pnbi(t)
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(e) I(t)

200 400 600 800 1000
0

10

20

30

Time (sec.)

Io
n
 C

y
c
lo

. 
L
a
u
n
c
h
e
r 

P
o
w

e
r 

(M
W

)

 

 

Target

Feedforward + Feedback

Feedforward

(f) Pic(t)
Fig. 9. Control trajectory comparison: (a)-(c) individual gyrotron launcher powers, (d) neutral beam injection power, (e) total plasma current, and (f) ion
cyclotron launcher power. The actuator magnitude limits are shown in solid-green.

VI. SIMULATION TESTING OF CONTROL ALGORITHM

The integrated feedback controller (17)-(18) is now tested
through simulation with the FPD, physics-based model of
the poloidal magnetic flux profile evolution developed in
[12] and the volume-averaged plasma energy balance (8)
tailored to H-mode burning plasma scenarios in ITER. First,
a target q-profile and stored energy evolution is obtained
by executing a feedforward-only simulation with a nominal
set of input trajectories and initial conditions qnom(ρ̂, t0)
and W̄nom(t0), where t0 = 45 sec. is the time just after the
plasma transitions from L-mode to H-mode in this particular
simulated scenario. Second, a different q-profile and stored
energy evolution is obtained by executing a feedforward-
only simulation with a perturbed set of input trajectories
and initial conditions. Finally, the ability of the algorithm
to track the target evolutions is determined by executing a
feedforward + feedback simulation with the perturbed input
trajectories and initial conditions. To ensure the closed-loop
system remains well behaved in the presence of actuator
magnitude saturation, the controller is augmented with an
anti-windup compensator. In each simulation, the volume-
average electron density is linearly ramped up from an initial
value of 〈ne〉V (t0) = 2.4× 1019 m−3 to a final value of
〈ne〉V (86) = 6.6×1019 m−3 and then held constant.

Time traces of q at various spatial locations are shown in
Fig. 6 and a comparison of the target, feedforward + feedback
controlled, and feedforward controlled q-profiles at various
times is shown in Fig. 7. The stored energy and the control
inputs as a function of time are shown in Figs. 8 and 9,
respectively. As shown, the controller is able to drive the q-
profile and stored energy to the target evolutions during both
the transient and steady-state phases of the simulation.

VII. CONCLUSIONS AND FUTURE WORK

An integrated feedback algorithm to control the q-profile
and stored energy evolutions in high performance burning

plasma scenarios in ITER was designed by employing a FPD
model of the system. Our future work includes (i) testing
the controller in the DINA-CH&CRONOS free-boundary
tokamak simulation code [19] and (ii) tailoring the q-profile
controller to the DIII-D tokamak geometry and experimen-
tally testing the algorithm in DIII-D.
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