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Abstract— Electrically conducting fluids are generally fa-

vored as heat transfer media for their excellent heat conduction

and high boiling point. However, the movement of such fluids

under the presence of imposed transverse magnetic fields

can generate substantial magnetohydrodynamics (MHD) effects

including the need of higher pressure gradients to drive the

fluids and lower heat transfer rates due to the laminarization

of the flows. In this work we propose an active boundary control

to overcome some of these unfavorable MHD effects inside a

3D MHD channel flow. Extremum seeking is used to adaptively

tune a fixed-structure boundary controller to maximize in real

time a cost function related to heat transfer. The closed-loop

controller achieves the ultimate goal of increasing overall heat

transfer rate through the channel walls, and therefore enhances

the efficiency of the heat exchanger. The velocity dynamics is

predicted by a pseudo-spectral solver while the temperature

dynamics is predicted by a finite difference solver. Simulation

results show the efficiency of the proposed controller.

I. INTRODUCTION

Liquid metals are often considered as the heat transfer
media in many cooling systems. Due to their excellent phys-
ical properties (high thermal conductivity and high boiling
point), they are often considered for extreme conditions, such
as those characterizing cooling blankets in magnetic fusion
reactors, where high temperatures and strong magnetic fields
are present. The main function of the coolant is in this case
the absorption of energy from the neutron flux generated by
the fusion reactions and the transfer of heat to an external
energy conversion system. In addition, if a breeder liquid
metal such as liquid-lithium is considered, the blanket can
also carry out the breeding of tritium, which is part of the
fuel used by the reactor. However, the interaction between the
electrically conducting fluids and the magnetic fields used to
confine the fuel inside the reactor generates significant MHD
effects, which often result in the need of higher pressure
gradients to pump the fluid and lower heat transfer rates due
to the laminarization of the flow. These MHD effects prevent
present liquid-metal cooling systems from producing the heat
transfer improvements which might be expected based on the
much higher thermal conductivity and boiling point of the
coolant. A good review of the present state of research in
this area can be found in [1].

Boundary control of fluid systems, implemented through
micro electro-mechanical or electro-magnetic actuators and
sensors, can be used to counteract the unfavorable MHD
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effects. By introducing unsteadiness, boundary controllers
have the potential of enhancing mixing and consequently
the convection-driven heat exchange rate. Flow control has
attracted much interest and dramatically advanced in recent
years [2], [3], [4], [5]. In particular, boundary control of
MHD flows has been considered for many years [6], [7],
[8], [9], [10]. Research subjects range from strongly coupled
MHD problems, like liquid metal and melted salt flows,
to weakly coupled MHD problems, like salt water flows.
Nevertheless, early research mostly focused on passive and
open loop control, partly due to the complexity of the
coupled MHD equations. Unfortunately the nonlinearities
and uncertainties of the system usually limit the effectiveness
of these open-loop controllers, which are not optimized with
respect to the varying flow conditions. The addition of heat
transfer analysis further adds to the complexity and the work
carried out on direct enhancement of heat transfer is limited.

Our prior work includes the development of a feedback
control scheme for mixing enhancement in a 2D MHD
flow [11]. The effectiveness of the proposed controller in
enhancing heat transfer was illustrated in [12], where a
simple traveling-wave-like boundary controller was also in-
vestigated for comparison. Numerical simulations confirmed
that the closed-loop control scheme is more effective than the
simple open-loop control law. However, subsequent research
revealed that adaptive tuning of some parameters of the
open-loop controller could result in an much improved
performance in 2D MHD channels [13]. In this work we
extend this approach to 3D MHD channel flows, which pose
a completely new set of challenges.

The geometric setting is given in Fig. 1, with a cross-
section shown in Fig. 2. The channel is considered periodic
in both x and z directions and bounded in the y direction by
the bottom and top walls. An electrically conducting fluid
with constant inlet temperature Ti flows under the presence
of an imposed transverse magnetic field B0 through a section
of a 3D channel with high-temperature walls (Tp and Tb), and
eventually leaves this section with higher outlet temperature
Te after absorbing internal energy from the walls. This
setting can be seen as the idealization of a heat exchanger
within an electromagnetic environment where an electrically
conducting fluid such as a liquid metal is pumped through
pipes with the goal of removing heat from the surrounding
cooling blanket.

To serve the goal of increasing the energy carried down-
stream by the fluid, we employ extremum seeking [14]
to optimally tune a traveling-wave-like boundary controller,
maximizing a cost function related to a heat transfer measure














Fig. 1. 3D MHD flow between plates.
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Fig. 2. 3D MHD flow cross section with temperature boundary conditions.

of the MHD channel flow. Extremum seeking is a very
effective approach to build real-time feedback controllers
based on fixed-structure control laws with tunable param-
eters [15], [16], [17]. Due to its non-model-based nature,
extremum seeking is well suited to overcome the limitations
in our MHD problem in terms of uncertainty handling
and is capable of capturing the input-output information of
the otherwise highly complicated relationship between the
control parameters and the heat exchange rate. Furthermore,
extremum seeking is very effective in adapting to changing
flow conditions in real time. For instance, simulations results
show that extremum seeking can quickly retune the feedback
controller to a new optimal state after the external magnetic
field strength is changed.

This article is organized as follows. In Section 2, we
state the simplified MHD equations for incompressible MHD
flows and present the associated heat exchange problem. In
Section 3, the feedback control scheme is discussed, includ-
ing a brief introduction to extremum seeking. In Section
4, simulation results are presented for the proposed control
scheme in several typical MHD channel flow settings. The
complex relationship between the cost function and the to-
be-optimized parameters is addressed. Section 5 closes the
paper stating conclusions and identifying future work.

II. PROBLEM STATEMENT

We consider a 3D, incompressible, electrically conducting
fluid flowing bounded by two parallel plates (0<x<Lx=2π ,
0<z<Lz=π and 0<y<1), as illustrated in Fig. 1, where
an external magnetic field B0 is imposed perpendicularly
to the plates, i.e., in the wall-normal y direction. This is a
typical Hartmann flow and its behavior has been well studied
over the years [18]. The mass flux Q is fixed. A uniform
pressure gradient Px in the x-direction is required to balance
the boundary drag force and the body force due to the

MHD effects. Space variables x, y, z, time t, velocity v and
magnetic induction B are converted to their dimensionless
forms: x =

x∗
L , y =

y∗
L , z = z∗

L , B =
B
∗

B0
, v =

v
∗

U0
, j = j

∗

U0B0
,

t = t∗U0
L , where L, U0 and B0 are dimensional reference

length, velocity and magnetic field. Variables denoted by the
star notation are dimensional quantities. The vector variables
are defined as v = ux̂+vŷ+wẑ, B = Bu

x̂+Bv
ŷ+Bw

ẑ, where
x̂, ŷ and ẑ are unit vectors in the x, y and z directions.

In this paper, we consider MHD flows at low magnetic
Reynolds numbers (Rem�1), which are also called sim-
plified MHD (SMHD) flows. In these flows the induced
magnetic field is negligible in comparison with the imposed
magnetic field. The 3D SMHD channel flow is described by
modified incompressible Navier-Stokes (N-S) equations and
a Poisson’s equation for the electric potential:
∂v

∂ t
+(v ·∇)v =−∇p+

1
Re

∇2
v+N [(−∇ϕ +v×B0)×B0] ,

∇2ϕ = ∇ · (v×B0) = B0 ·ω,

∇ ·v = 0, (1)

where ω = ∇ × v is the vorticity, B0 = ŷ is the imposed
magnetic field, which is simply a unit vector due to the non-
dimensionalization. A detailed derivation of this model can
be found in [18]. Numerical simulations also confirm that
under such physical settings, full MHD and SMHD give near
identical results, while the former method has to use much
smaller time steps (characterized by CFL�1 [19]) than the
latter method to ensure convergence [20]. Meanwhile, the
dynamics of the temperature field is described by the heat
transfer equation:

∂T
∂ t

=
1
Pe

∇2T +(v ·∇)T. (2)

The characteristic numbers appearing in the system equa-
tions, including Reynolds number Re, magnetic Reynolds
number Rem, Stuart number N and Péclet number Pe, are
defined as Re = U0L

ν , Rem = µσU0L, N =
σLB2

0
ρU0

, Pe = ρcpU0L
λ .

The physical properties of the fluid, including the mass
density ρ , the dynamic viscosity ν , the electrical conductivity
σ , the magnetic permeability µ , the specific heat cp, and the
thermal conductivity λ , are all assumed constant.

The bottom and top walls are assumed non-slip. Hence,
the velocity boundary conditions for the SMHD system are
given by

∂ϕ
∂y

= 0, U =W = 0, V =Vctrl at y = 0 and y = 1,

where Vctrl is determined by the proposed boundary control
laws. In the uncontrolled cases, Vctrl = 0. We assume periodic
boundary conditions in the streamwise direction. Tempera-
ture boundary conditions of either Dirichlet or Neumann type
are specified on all four boundaries, as depicted in Fig. 2. In
this work we consider a heat transfer process where the heat
is removed from the system through the walls of the channel
by a running fluid. The boundary conditions are given as

Ti = T0, Tb = Tp = T0 +Td .
∂Te

∂x
= 0.
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Fig. 3. Extremum seeking scheme. The variable z denotes the Z-transform
variable, h and γ are constants specifying the filters, ω denotes the frequency
of the probing signal, a and b are the amplitudes of the sinusoidal signals.

Heat exchange takes place on all boundaries either by
conduction or transportation. Note that “transportation” here
refers to the internal energy being carried by the moving fluid
mass. On the two walls the overall transportation is always
zero. In fact,

� Lz
0

� Lx
0 (vT )|y=0 dxdz−

� Lz
0

� Lx
0 (vT )|y=1 dxdz=

(T0 +Td)
� Lz

0
� Lx

0 [V (x,0,z)−V (x,1,z)]dxdz = 0 in both un-
controlled and controlled cases. Hence, the heat fluxes at the
bottom and the top are driven by conduction, which can be
determined by the temperature gradient in the y direction:

Ib = − 1
Pe

� Lz

0

� Lx

0

∂T
∂y

����
y=0

dxdz, (3)

Ip =
1

Pe

� Lz

0

� Lx

0

∂T
∂y

����
y=1

dxdz. (4)

According to the Neumann boundary condition at the outlet,
heat transfer is driven exclusively by transportation, i.e., the
outlet heat flux is given by

Ie =

� Lz

0

� 1

0
(vT )|x=L dydz. (5)

The Dirichlet boundary condition at the inlet allows
conduction-driven heat transfer. However, for the case studies
in this work the heat transfer is dominated by transportation,
i.e., the inlet heat flux is written as

Ii = Ti

� Lz

0

� 1

0
U |x=0 dy = QTi. (6)

The integrated heat flux balance
� t0+ti

t0 Ii + Ib + Ip − Iedt
should remain zero for long enough ti. This serves as a basic
consistency criterion for the heat transfer solver. Simulation
results for stable flows agree very well with this equation,
while turbulent flows may show slight disagreement.

III. EXTREMUM SEEKING FEEDBACK CONTROL

We propose a fixed-structure control law given by a
traveling wave as the boundary condition, i.e.,

Vctrl =V (y = 0,1) = Asin [m(x−θ t)] , (7)

where the constant A is the maximum amplitude, m is the
wave number, and θ is the angular frequency, which is also
called the phase speed in this work.

The performance of this fixed-structure control law is
largely determined by m and θ , which control the spatial
frequency and moving speed of the control “wave”. Note
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Fig. 4. Cost functions versus phase speed θ .

that m must take discrete integer values because the pseudo-
spectral method used for the simulation study inherently
requires the boundary conditions to be periodic in the x
direction. Consequently, different values of m can be inves-
tigated separately in a parametric study. Indeed, simulation
results show that a few choices can enhance flow turbulence
and consequently the heat transfer rate. Based on the results
of the parametric study, we adopt m=2 in this work.
Regardless of the choice of m, the control “wave” needs to
be in synchronization with the corresponding flow structures
in order to enhance turbulence. In [13] we discussed a
successful implementation of this strategy in a 2D channel
flow, whose vortices are relatively constant and well-defined.
In 3D channel flows, however, persistent flow structures are
very rare. Nevertheless, the flow structures have a relatively
steady moving speed, both in controlled and uncontrolled
flows. Assuming that the average moving speed of the flow
structures is Ve, we need to achieve θ =Ve in order to
optimally actuate the flow structures. The choice of θ is
more difficult than the choice of m because its value does
not be an integer number. Moreover, many factors affects the
moving speed of the flow structures, including the geometric
settings, the physical properties of the fluid, the mass flux,
the pressure gradient and the boundary control itself. The
presence of significant measurement noise and undetermined
system dynamics further complicates the problem. A clear
understanding of the complex interaction among these factors
is a highly challenging task. The goal of the feedback control
design is to optimize the phase speed θ in real time in order
to maximize a cost function related to heat transfer regardless
of these factors.

It is natural then to seek a scheme that can automatically
adjust the parameter θ in order to drive the system to an
optimal or suboptimal state. One possible additional goal
is to make such scheme robust against unmodeled system
dynamics. With this goal in mind, in this work we follow a
non-model-based approach to the problem where an accurate
representation of the relationship between the boundary
controls and the flow properties is not required. Extremum
seeking, a non-model-based real-time optimization scheme,
has been proved effective for a wide range of linear and
nonlinear optimization problems where no reliable dynamic



system models are available. This makes extremum seeking
an ideal candidate for optimally tuning in real time the value
of θ in order to maximize a functional related to heat transfer.

The block diagram of the extremum seeking method is
illustrated in Fig. 3. At each iteration step k, the flow is
let evolve with a traveling wave of phase speed θ(k) as
boundary condition. The phase speed θ(k) contains a super-
imposed sinusoidal perturbation (modulation). A given cost
function J related to the heat transfer rate of the channel flow
is evaluated using the response of the system to the phase
speed θ(k). The cost function signal is then filtered by a
high-pass filter and multiplied by another sinusoidal signal of
identical frequency (demodulation). The demodulated signal
ξ , containing gradient information of the system, is filtered
through a low-pass filter and used to generate an updated
phase speed θ(k + 1) to be used during the next iteration
step. A detailed explanation of this optimization scheme can
be found in [14].

The to-be-maximized cost function is defined in this work
as the overall wall heat flux Ib + Ip defined in (3)-(4).
Note that for a real application the integrals can just be
approximated by sums of pointwise measurements. This cost
function measures the overall heat flux from the walls to
the fluid. Snapshots of the heat flux are taken every 40
simulation steps and the standard deviation of the collected
data is calculated using the last 40 snapshots. Once this
standard deviation decreases below a specific threshold, we
consider the flow statistically steady and the cost function J
is computed by averaging the heat flux rates over the same
period of time used for the standard deviation calculation.

Extremum seeking is very effective in optimizing systems
with cost functions that are smooth and with a well-defined
extremum. However, extremum seeking may not capture the
gradient information and fail if the cost function is not
smooth or even discontinuous. Such situation does arise
to some extent in our work, as the cost function shows
sudden changes near the optimal point. The complexity of
the cost function is shown in Fig. 4 as a function of the
phase speed θ . The simulations are done with the following
parameters: Re=400 and N=0.1. Although a clear trend can
be noticed from the figure, the cost function seems sensitive
to phase speed changes, especially near the optimal point
(θ ≈3.5). Let us take, for instance, two data points in Fig. 4.
The cost function drops from 9.21 to 8.77 when the phase
speed changes from 3.2088 to 3.2093. This discontinuous
behavior is largely caused by the nonlinearity of the flow.
It may take extensive long time for the flow to reach the
statistically steady state, and, because of this, the standard
deviation criteria may simply fail to detect the convergence
correctly. Furthermore, a flow with specific physical settings
may have more than one statistically steady state and may
not converge to the state with the highest cost function value.
Since the sudden changes in the cost function value can cause
unexpected disruptions during the optimization process, we
have to make careful choices for the extremum seeking
parameters in order to balance the efficiency and the stability
of the extremum seeking algorithm.

Fig. 5. Pressure isosurfaces (p=0.8) and streamline ribbons for an
uncontrolled developed flow (B0=0, Re=400). Color is coded by pressure.

Fig. 6. Temperature maps of a fully developed flow (Re=400).

IV. SIMULATION RESULTS

The velocity-field numerical simulations are carried out
by a modified Navier-Stokes solver, originally written by
T. Bewley [21]. The equations are discretized using Fourier
transforms on the streamwise direction and finite differences
on the wall-normal direction, which is also called the pseu-
dospectral method. Time integration is done using a frac-
tional step method along with a hybrid Runge-Kutta/Crank-
Nicolson scheme. Linear terms are treated implicitly by
the Crank-Nicolson method and nonlinear terms are treated
explicitly by the Runge-Kutta method. The divergence-free
condition is fulfilled by the fractional step method [22].

A separate heat transfer solver is used to simulate the
temperature-field evolution. Due to the limitations of the
pseudospectral method for imposing boundary conditions at
the channel inlet and outlet, a finite difference method is
employed to solve the heat exchange problem. The grid is
identical to the one used for the velocity-field pseudospectral
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Fig. 7. (a) Wall heat flux, (b) RMS fluctuation, (c) Heat flux on the walls.

Fig. 8. Isosurfaces of ωx

method. The temperature is defined at the same locations
where the streamwise component of the velocity field is
defined. The heat transfer equation is linear, given the fact
that the velocity field is solved separately and known when
the temperature field is solved. This enables implicit time
integration of the heat transfer equation, which is carried out
in this work using the Crank-Nicolson method. To ensure
physical consistency for the heat transfer equation, an upwind
scheme is necessary. Otherwise, meaningless spots hotter
than T0 +Td or colder than T0 may appear. The Alternating
Direction Implicit (ADI) method is used to avoid solving
a large-scale sparse linear system. For more details on the
implementation of these techniques, see [19].

All the simulations are carried out for the same flow
domain: 0<x<2π , 0<y<1 and 0<z<π . The same mesh
is used in all the simulations presented in this section
(grid points in the x, y and z directions are identical:
NX=NY=NZ=64). The insensitivity of the results to reso-
lution changes proves the adequacy of the grid. We consider
T0 = 5 and Td = 2 in all cases. Similarly, we adopt Q = 7.0.

A. MHD flows with no control
When B0=0, the momentum equation reduces to the

standard incompressible Navier-Stokes equation characteriz-
ing the well-known Poiseuille flow. Poiseuille flows in 3D
channels can be linearly stable for low Reynolds numbers, as
infinitesimal perturbations in the flow field are damped out.
The flows turn linearly unstable for high Reynolds numbers
[23], [24]. Such flows usually reach statistically steady states,
which we call fully established flows. By using pressure
isosurfaces and streamline ribbons, Fig. 5 shows a typical
fully established channel flow (Re=400).

The flow pattern inside the channel has a significant
influence on heat exchange. The major portion of the flow
structures is characterized by secondary circulations in the
x–z plane. In fact, the temperature map in Fig. 6 suggests
that the hot fluid near the walls is brought into the flow core
by these circulations. As shown in Fig. 7(a), the vortices near
the wall significantly increase the heat transfer rate Ib and
Ip. The differences in the achieved heat transfer levels are
closely related to the disturbance levels of the different flows,
which can be further quantified by the RMS fluctuations in
Fig. 7(b), defined as

1
π

1
2π

�� π

0

� 1

0

� 2π

0
|v(x,y,z, t)− v̄(y, t)|2 dxdydz

� 1
2
, (8)

where v̄(y, t) = 1
π

1
2π

� π
0
� 2π

0 v(x,y,z, t)dxdz. The RMS fluctu-
ation is commonly used to quantify the overall disturbance
of the velocity field.

When B0 �=0, the curve labeled with “Ha=12.6, no con-
trol” in Fig. 7(a) shows the effect of the imposed trans-
verse magnetic field on the heat transfer capability of
the channel for a positive Hartmann number, given by
Ha=B0L

�
σ/ρν =

√
NRe. As shown by the curve labeled

with “Ha=12.6, no control” in Fig. 7(b), the RMS fluctuation
is significantly lower than the pure hydrodynamic flow
(indicated by the curve labeled “Ha=0, no control”) as the
flow is stabilized by the imposed magnetic field. We can see
that stronger imposed magnetic fields tend to make the flow
more stable, resulting in a lower overall heat transfer rate.

Since the heat inflow Ii = QTi is constant, and the overall
heat flux must be balanced, the heat outflow Ie must increase.
By examining the wall heat flux and the outlet heat flux in
Fig. 7(c), we can see that they provide similar information
on the overall heat flux (Note that the curve labeled with
“Ha=0, no control” in Fig. 7(a) is identical to the outlet heat
flux in Fig. 7(c)). Physically, both quantitites can be mea-
sured with proper equipment, which is readily available. For
instance, the wall heat flux can be calculated by measuring
temperature gradients in the y direction using temperature
sensors embedded inside the wall. Outlet heat flux can be
computed by measuring average temperature downstream.
Note that the outlet heat flux contains a significant higher
level of fluctuation. This is the primary reason to choose the
wall heat flux over the outlet heat flux as the cost function.
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Fig. 9. Case 1 results: (a) Phase speed, (b) Cost function, (c) Temperature map at optimal state (Re=400).

B. MHD flows with extremum-seeking feedback control

Before illustrating the effectiveness of the extremum seek-
ing scheme in optimizing the phase speed θ , we investigate
the effect of different values of phase speed on the open-
loop boundary control given by (7). Two values of θ , 2.0
and 3.2, at Re=400, Pe=240 and Ha=12.6 are studied. The
open-loop control increases the wall heat flux to different
levels, according to different the different values of phase
speed. Note that the latter value, θ = 3.2, is very close to
the optimal phase speed as indicated by Fig. 4. As shown
in Fig. 7(a) and Fig. 7(b), the θ = 3.2 phase speed provides
a significantly better result than the θ = 2.0 phase speed in
terms of both wall heat flux and RMS fluctuation. The flow
pattern of the θ = 3.2 case can be seen in Fig. 8, which
shows the isosurfaces of the vorticity component in the x
direction ωx = ∂w/∂y − ∂v/∂ z in the bottom half of the
channel (0<y<0.5). Most of the flow structures stretch in
the x direction, similar to Fig. 5. The θ = 2.0 case has no
such flow structures, indicating that the flow is still laminar
despite the boundary control is applied. This proves that the
phase speed has to be optimized before the boundary control
can generate real turbulence.

Extremum seeking simulations are conducted for two
cases. Case 1: Re=400, Pe=240, Ha=12.6. Case 2:
Re=400, Pe=240, Ha=6.3 → 12.6 at t = 693. The simula-
tions start with the equilibrium solutions achieved after the
external magnetic fields are imposed. The optimal extremum-
seeking controller is expected to drive these flows to states
with higher wall heat flux Ib + Ip. The parameters of the
boundary controller are fixed as A=0.12 and k=1. The
extremum seeking parameters have to be carefully chosen
to balance stability and performance of the optimization
process. In our cases, we use: a=0.12, γ=0.12, ω=3, h=0.8,
b=1.

In Case 1, we investigate several choices of initial phase
speed: 1.0, 2.0 and 4.0. As we can see from Fig. 9(a)
and Fig. 9(b), the extremum seeking algorithm successfully
drives the boundary control to a value that maximizes the
wall heat flux. We can note from Fig. 9(a) that even though
the controller cannot keep the system at the optimal phase

speed all the time, it manages to stabilize the phase speed
near the optimum, regardless of significant amount of ran-
domness in the cost function.

An imposed magnetic field with moderate strength can
completely laminarize the flow and reduce the heat exchange
to a very low level. From Fig. 7(a) we can see that the wall
heat flux in a highly stabilized flow is around 3.8 (curve
labeled with “Ha=12.6, no control”), while the wall heat flux
in a fully developed flow when no magnetic field is present
is around 5.9 (curve labeled with “Ha=0, no control”). This
implies that the elimination of the the vortices due to the
imposition of a magnetic field produces a 36% decrease in
the heat exchange rate. Fig. 9(b) shows that the extremum
seeking controller succeeds in increasing the wall heat flux
to 8.8 (curve labeled with “Ha=12.6, θ = 3.2”), which is
51% higher than the level achieved by the fully developed
flow when no magnetic field is present, and 134% times
higher than level achieved by the completely laminarized
flow due to the presence of the magnetic field. Note that even
though a non-optimal boundary actuation (curve labeled with
“Ha=12.6, θ = 2.0”) cannot overcome the laminarization of
the flow and its associated overall RMS fluctuation level
is below the level associated with the fully developed flow
when no magnetic field is present, it still can increase the
wall heat flux since most of the unsteadiness is introduced
near the walls. The effect of the enhanced unsteadiness on
the wall heat flux can be clearly seen in the temperature maps
shown in Fig. 9(c). A comparison with Fig. 6 indicates that
in a controlled flow the cool fluid from the inlet can mix with
the hot fluid near the walls more efficiently, thus increasing
the heat transfer between the fluid and the walls.

Case 2 emphasizes the capability of the extremum–
seeking–based controller to easily adapt to changing flow
conditions without the need of changing its parameters. This
case assumes a weaker initial external magnetic field than
the one applied to the flow in Case 1, resulting in a smaller
Ha number. The simulation starts with an initial phase speed
of 5.0. The evolution of the phase speed and the wall heat
flux are shown in Fig. 10(a) and Fig. 10(b). We can see that
after a short transient period the phase speed converges to an
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Fig. 10. Case 2 results: (a) Phase speed, (b) Cost function, (c) RMS fluctuation.

optimal value of around 4.0, whose corresponding wall heat
flux is slightly better than that in Case 1. This is expected
because the flow with lower Hartmann number is inherently
less stable. Then, at t=690 (the instance is identified by a red
dashed line) the external magnetic field strength is doubled
(same level as used in Case 1). This sudden alteration of
the physical setting results in a moderate change of the flow
dynamics and the optimal value of the phase speed. As shown
in Fig. 10(a) and Fig. 10(b), the extremum seeking controller
quickly adjusts the phase speed as a response to the change
in the system output value and seeks a new optimal value
that maximizes the wall heat transfer. In Fig. 10(c), the RMS
fluctuation also shows a dramatic change after the external
magnetic field is suddenly increased, which is consistent with
the change in the heat flux.

V. CONCLUSION

A boundary feedback control scheme based on a fixed-
structure controller optimally tuned by extremum seeking
has been proposed for heat exchange enhancement in a 3D
SMHD channel flow. Simulation results show that the control
scheme can successfully destabilize the highly stable flow,
increasing the heat exchange rate between the fluid and the
channel walls. As a consequence, the fluid temperature at
the channel outlet is significantly increased, maximizing in
this way heat extraction. Because of the complexity of the
MHD channel flow, significant discontinuities exist in the
relationship between the to-be-maximized cost function and
the to-be-optimized parameters. The tuning of the extremum
seeking algorithm is crucial for the success of the scheme.

As part of our future research work, extremum-seeking-
based control schemes will be developed using different
actuation mechanisms. More robust methods to deal with the
discontinuity of the cost function will be sought, especially
when multiple parameters are optimized. Since a cost func-
tion with less or none discontinuity behavior is desirable, the
choice of the cost function may also be reviewed.
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[4] O. M. Aamo and M. Krstić, Flow Control by Feedback. Springer,
2002.

[5] M. R. Jovanovic, “Turbulence suppression in channel flows by small
amplitude transverse wall oscillations,” Physics of Fluids, vol. 20,
no. 1, p. 014101, 2008.

[6] A. B. Tsinober, Viscous Drag Reduction in Boundary Layers, ser.
Progress in Astronautics and Aeronautics. Washington, DC: AIAA,
1990, no. 123, ch. MHD Flow Drag Reduction, pp. 327–349.

[7] H. Choi, D. Lee, and J. Lim, “Control of near-wall streamwise vortices
using an electromagnetic force in a conducting fluid,” AIAA Paper, vol.
97-2059, 1997.

[8] T. Berger, J. Kim, C. Lee, and J. Lim, “Turbulent boundary layer
control utilizing the Lorentz force,” Physics of Fluids, vol. 12, p. 631,
2000.

[9] K. S. Breuer, J. Park, and C. Henoch, “Actuation and control of
a turbulent channel flow using Lorentz forces,” Physics of Fluids,
vol. 16, no. 4, pp. 897–907, 2004.

[10] E. Spong, J. Reizes, and E. Leonardi, “Efficiency improvements of
electromagnetic flow control,” Heat and Fluid Flow, vol. 26, pp. 635–
655, 2005.

[11] E. Schuster, L. Luo, and M. Krstić, “MHD channel flow control in
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