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Abstract—We propose a framework to solve an optimal
control problem for a bilinear parabolic partial differential
equation (PDE). We formulate the problem as an abstract
bilinear-quadratic regulator (BQR) problem. A receding hori-
zon control (RHC) algorithm to solve the problem based on
the infinite-dimensional system is proposed and stability of the
algorithm for the solution of the BQR problem is studied. A
successive approximation approach is used to numerically solve
the quadratic optimal control problem subject to the bilinear
PDE model associated with the RHC scheme. Finally, the pro-
posed approach is applied to the current profile control problem
in tokamak plasmas and its effectiveness is demonstrated in
simulations.

I. INTRODUCTION

The control of linear or quasi-linear parabolic diffusion-
reaction partial differential equations (PDE) has been exten-
sively studied using interior control (see [1] and references
therein) or boundary control (see [2] and references therein).
Recently, the control of bilinear parabolic partial differential
equations via actuation of the diffusive coefficient term,
named diffusivity control here, has caught increasing interest.
The diffusive coefficient term in a parabolic PDE is not
necessary fixed or uncontrollable. For example, diffusivity
regulation arises in the control of the current density profile
in magnetically confined fusion plasmas [3], where physical
actuators such as plasma total current, line-averaged density
and non-inductive total power are used to steer the plasma
current density to a desired profile in a designated time
period. By modulating these physical actuators it is possible
not only to vary the amount of non-inductive current driven
into the system (interior control) and the total plasma current
(boundary control) but also to modify the resistivity of the
plasma (diffusivity control).
Receding horizon control (RHC), also named as model

predictive control (MPC), has become an attractive feedback
strategy. In the past two decades, numerous results have been
published on receding horizon control for finite-dimensional
systems. In recent years, some methods have been proposed
to deal with infinite-dimensional systems. Ito and Kunisch
in [4] provided a general framework to control infinite-
dimensional systems using a RHC scheme with guaranteed
stability. Model reduction by inertial manifold theory and
partition of the eigenspectrum of the PDE operator has been
proposed by Christofides and coworkers [5], and a RHC
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scheme aiming at dealing with quasi-linear parabolic PDE
systems with control and state constrains is presented in [6].
In [7], Benner and coworkers have obtained some new results
in using RHC/LQG-based optimal control of an infinite-
dimensional reaction-diffusion system.
Motivated by the increasing interest in bilinear parabolic

PDE control, we focus in this work on the development of
a framework for the design of a receding horizon controller
for this type of systems. We use a successive approximation
algorithm to solve the quadratic optimal control problem
subject to a bilinear PDE system, i.e, the bilinear quadratic
regulator (BQR) problem. By invoking appropriate optimal
conditions for the optimal control problem, a nonlinear two-
point boundary value (TPBV) problem is usually obtained.
Unfortunately, a closed-form solution of such nonlinear
TPBV problem is difficult to be obtained in general. In-
spired by the work on finite-dimensional systems in [8],
we propose a successive approximation approach to solve
the nonlinear TPBV problem for an infinite-dimensional
system. For a linear quadratic optimal control problem,
the analytical solution of the associated TPBV problem is
possible. Moreover, the gain of the resulting optimal control
law is independent of the initial conditions, and the optimal
control is asymptotic stabilizing and robust to disturbances.
As these desired properties no longer hold for the bilinear
case, a receding horizon control framework is proposed
to guarantee asymptotic stability for the proposed control
approach. The two most important theoretical contributions
of this work are the convergence proof of the successive
approximation algorithm implemented to solve the BQR
problem and the stability proof of the proposed receding
horizon control scheme for the bilinear infinite dimensional
system.
This paper is organized as follows. In Section II, we

provide the functional setting and necessary technical terms
that will be used in this paper. A parabolic PDE with
bilinear control is introduced and formulated as an infinite-
dimensional system. The quadratic optimal problem and a
finite-horizon nonlinear RHC scheme to solve it are also
presented in this section. We propose in Section III a
successive approximation method used to numerically solve
the optimal control problem, and the convergence proof of
the algorithm is provided as well. We discuss feasibility
and stability of the proposed nonlinear RHC scheme in
Section IV. Section V illustrates the effectiveness of the
proposed feedback controller in addressing the current profile
control problem in tokamaks. Finally, conclusions and future
work are presented in Section VI.



II. PRELIMINARIES
We define the following functional space

L2(Ω) =
{

f (x)
∣

∣

∣

∣

∫

Ω
f 2(x)dx< ∞

}

, (1)

H1(Ω) =
{

f | f ∈ L2(Ω) and f ′ ∈ L2(Ω)
}

. (2)

Throughout this paper, Rm,n denotes the space of m×n real
matrices. For a matrix A∈Rm,n, AT represents the transpose.
In general, we restrict ourselves to the case of Hilbert spaces,
where inner products, norms, and operator norms are denoted
by 〈·, ·〉, | · |, and ‖ · ‖, respectively. In case of an operator
A, the adjoint operator is denoted by A∗. The term “a.e.”
denotes almost everywhere. For additional information on
semigroups of operators, the reader is referred to [9].

A. Bilinear Parabolic PDEs
Consider an infinite-dimensional system in Hilbert spaces

Z and W defined by the following relationship
dz
dt

= Az+Bzv= f (z(t),v(t)), for t > 0 (3)

with
z(0) = z0, and v ∈U,

where z is the state and z0 ∈Z; A is the generator of a strongly
continuous semigroup on Z; B ∈ L (Z) is a bounded linear
operator; v is the control and U is a closed convex subset
of W ; z(t) is strongly continuous on [0,T ] for all input v ∈
L2([0,T ];U).
We define a finite horizon cost functional associated with

the system (3) as

J(v, t,z) =
1
2
〈z(T ),Sz(T )〉

+
1
2

∫ T

0
(〈z(t),Qz(t)〉+ 〈v(t),Rv(t)〉)dt,

(4)

where S,Q∈ L (Z) and R ∈ L (W ) are self-adjoint, positive
and

〈v(t),Rv(t)〉 ≥ a‖v‖2, ∀v ∈U,and some a> 0. (5)

The optimal control problem is to find a control v! ∈
L2([0,T ],U), which minimizes J(v, t,z), i.e., which drives
the state z(t) close to the zero state in a finite-time horizon.
For the purpose of this introductory discussion, we assume

that for every z0 ∈ Z and v ∈ L2([0,T ],U) there exist a
continuous z(t) = z(t,z0,v), which is a weak solution of (3).
By defining the Hamiltonian H as

H(z,v,Π) =
1
2〈z,Qz〉+

1
2〈v,Rv〉+ 〈Π,(Az+Bzv)〉, (6)

where Π denotes the infinite-dimensional Lagrange multi-
plier, and by invoking the minimum principle, the optimal
problem reduces to solving a nonlinear two-point boundary
value (TPBV) problem [4],











dz
dt

=
∂H
∂Π

, z(0) = z0
dΠ
dt

=−
∂H
∂ z

, Π(T ) = Sz(T ).
(7)

A closed-form solution of the nonlinear TPBV problem (7) is
extremely difficult to obtain, if not impossible, even in a finite
dimensional formulation. It is necessary to find approximate
approaches for solving the optimal problem of the bilinear
PDE systems.

B. Receding Horizon Control Formulation
Referring to system (3), we consider the problem of

asymptotic stabilization of the origin, subject to the control
constraints of v ∈ L2([0,T ],U). The problem will be ad-
dressed within a receding horizon control (RHC) framework
(see [10] for a review of various RHC algorithms for finite-
dimensional systems) where the control v and state z at time
t are conventionally obtained by solving, repeatedly, a finite
horizon constrained optimal control problem of the form,

min
v∈U

J =
1
2

∫ Ti+1

Ti
(〈z(t),Qz(t)〉+ 〈v(t),Rv(t)〉)dt

+
1
2
〈z(Ti+1),s(t)z(Ti+1)〉,

(8)

subject to
dz
dt

= Az+Bzv= f (z,v), t ∈ [Ti,Ti+1], (9)

where s(t) ∈ L (Z) denotes a self-adjoint positive operator.
Let 0 = T0 < T1 < ... < Tn = T describe a grid of equal
intervals on [0,T ] and let ΔT = Ti+1−Ti, i= 0,1, ...,n− 1.

III. A SUCCESSIVE APPROXIMATION
ALGORITHM AND ITS CONVERGENCE

A. An Iterative Scheme
In this section, we propose a successive approximation

approach to solve the TPBV problem (7) for infinite-
dimensional systems by extending the successive approx-
imation approach for finite-dimensional systems in [11].
By expanding our problem (3) up to first-order around the
previous iteration trajectories z(k)(t) and u(k)(t), the system
(3) takes the form

ż(k+1) = Az(k+1) +B(k)v(k+1), (10)

where k is the iteration number and

B(k)(t) = Bz(t)|z=z(k)(t), (11)

with initial condition z(k+1)(0) = z0. The cost function takes
the form

J(k+1) =
1
2
〈z(k+1)(Ti+1),Sz(k+1)(Ti+1)〉

+
1
2

∫ Ti+1

Ti
〈z(k+1)(t),Qz(k+1)(t)〉

+ 〈v(k+1)(t),Rv(k+1)(t)〉dt,

(12)

and the Hamilton is written as
H(z(k+1),v(k+1),Π(k+1))

=
1
2
〈z(k+1)(t),Qz(k+1)(t)〉+

1
2
〈v(k+1)(t),Rv(k+1)(t)〉

+ 〈Π(k+1)(t),(Az(k+1)(t)+B(k)v(k+1)(t))〉.

(13)



For each iteration, we have an abstract linear quadratic
optimal control problem defined by (10) and (12) with the
approximate control law given by

v(k+1)(t) =−R−1(B(k))∗Π(k+1)(t). (14)

As explained above, the optimal problem is characterized
by the following TPBV problem,

{

ż(k+1) =Az(k+1) +B(k)(−R−1)(B(k))∗Π(k+1)(t)
Π̇(k+1) =−Qz(k+1)−A∗Π(k+1),

(15)

along with the boundary conditions

z(k+1)(Ti) = z̄(Ti), Π(k+1)(Ti+1) = Sz(k+1)(Ti+1), (16)

where z̄(Ti) refers to the measured value.
Let us propose the solution form

Π(k+1)(t)! s(k+1)(t)z(k+1)(t), (17)

where s(k+1)(t) ∈ L (Z) is a linear operator. By substituting
(17) into (15), we can obtain the following differential
Riccati equation

ṡ(k+1) =−s(k+1)A−A∗s(k+1)−Q+s(k+1)B(k)R−1(B(k))∗s(k+1),
(18)

with terminal condition

s(k+1)(Ti+1) = S.

Assume that for all z(t) ∈ Z and t ∈ [Ti,Ti+1], (A,Bk) is
stabilizable and Q is appropriately designed, such that the
Riccati equation (18) has a unique positive solution.
Then, the closed-loop system becomes

ż(k+1) = Az(k+1)−B(k)R−1(B(k))∗s(k+1)z(k+1), (19)

with the initial condition z(k+1)(Ti) = z̄(Ti).
The open-loop state trajectories zo(t) are used to evaluate

(11) and start the iterations. The iterative procedure is
stopped when convergence is achieved under given error
tolerance. Finally, by using the convergent solution s(t) of
the Riccati equations (18), we obtain the following feedback
control law

v!(t) =−R−1(Bz!(t))∗s!(t)z!(t). (20)

where ! denotes the converged values of the iteration. The
optimal trajectory z!(t) driven by v!(t) is

ż! = (A−Bz!R−1(Bz!(t))∗s!)z!. (21)

B. Proof of Convergence for the Iterative Scheme
In the rest of this section, it remains to prove the conver-

gence of the proposed successive approximation approach in
solving the optimal control problem. Namely, we will show
the following limits in appropriate functional spaces

lim
k→∞

z(k) = z!, lim
k→∞

s(k) = s!. (22)

The associated spaces are two Banach spaces (see, e.g.,
[12])

B1 =B2 =C([Ti,Ti+1],Z), (23)

with norms ‖z‖B1 = supτ∈[Ti ,Ti+1] ‖z(τ)‖, for any z∈B1 and
‖s‖B2 = supτ∈[Ti,Ti+1] ‖s(τ)‖, for any s ∈ B2, where ‖z‖ =
√

〈z,z〉 and ‖s‖=
√

〈s,s〉.
Remark 1: To show (22), we only need to show that

both
{

z(k)
}

and
{

s(k)
}

are Cauchy sequences. Thus, the
convergence follows due to the completeness of the Banach
spaces. The convergence proof is based on the contraction
mapping theorem for Banach spaces [12], which is motivated
by the convergence proof in [13].
Based on (18) and (19), we obtain differential equations

for the differences z(k+1)− z(k) and s(k+1)− s(k), i.e.,
d
dt

[

z(k+1)− z(k)
]

= A(k)z(k+1)−A(k−1)z(k)

= A(k)
(

z(k+1)− z(k)
)

+
(

A(k)−A(k−1)
)

z(k),
(24)

d
dt

[

s(k+1)− s(k)
]

+
[

s(k+1)− s(k)
]

A(k)

+A(k−1)∗
[

s(k+1)− s(k)
]

+ s(k)
[

A(k)−A(k−1)
]

+
[

A(k)−A(k−1)
]∗
s(k+1) +Q(k)−Q(k−1) = 0,

(25)

where

A(k) = A−B(k)R−1
(

B(k)
)∗
s(k+1), (26)

Q(k) = Q+ s(k+1)B(k)R−1
(

B(k)
)∗
s(k+1). (27)

In order to express the solutions of (24) and (25), we
introduce the transition operator Φ(k)(t,Ti) which solves

Φ̇(k+1)(t,Ti) = A(k)(t)Φ(k+1)(t,Ti), (28)
Φ(k+1)(Ti,Ti) = I. (29)

In the subsequent proof we will use some of the following
properties of the transition operator Φ(·, ·):

Φ(t,τ)Φ(τ,Ti) =Φ(t,Ti), Φ−1(t,τ) =Φ(τ, t). (30)

The following lemma provides solutions for (24) and (25).
Lemma 1: The solutions of (24) and (25) are

z(k+1)− z(k) (31)

=

∫ t

Ti
Φ(k+1)(t,τ)

(

A(k)(τ)−A(k−1)(τ)
)

Φ(k)(τ,Ti)z0dτ,

and

s(k+1)− s(k) =
∫ Ti+1

t
[Φ(k)(τ, t)]∗

×
{

s(k)
[

A(k)−A(k−1)
]

+
[

A(k)−A(k−1)
]∗
s(k+1)

+Q(k)−Q(k−1)
}

Φ(k+1)(τ, t)dτ. (32)
Proof: The integral expression for z(k+1) − z(k) can

be obtained by directly integrating both sides of the linear
system (24). This expression is written in terms of the
transition operator Φ(t,Ti) defined in (28)–(30). We note that
the initial value of the difference term z(k+1)(Ti)−z(k)(Ti)= 0
due to (16). Therefore, only the inhomogeneous term of the
solution appears in (31). Additionally, we use the transition
operator to write z(k)(τ) =Φ(k)(τ,Ti)z0 in (31).



For the integral expression for s(k+1) − s(k), we first use
the definition (28) of the transition operator to compute the
derivative in time

d
dt

{

[Φ(k)(t,Ti)]∗
[

s(k+1)− s(k)
]

Φ(k+1)(t,Ti)
}

= [Φ(k)(t,Ti)]∗[A(k−1)(t)]∗
[

s(k+1)− s(k)
]

Φ(k+1)(t,Ti)

+ [Φ(k)(t,Ti)]∗
[

s(k+1)− s(k)
]

A(k)(t)Φ(k+1)(t,Ti)

+ [Φ(k)(t,Ti)]∗
d
dt

[

s(k+1)− s(k)
]

Φ(k+1)(t,Ti).

(33)

Then, we use (25) to rewrite (33)

d
dt

{

[Φ(k)(t,Ti)]∗
[

s(k+1)− s(k)
]

Φ(k+1)(t,Ti)
}

= [Φ(k)(t,Ti)]∗
{[

A(k−1)−A(k)
]∗
s(k+1) +Q(k−1)

−Q(k) + s(k)
[

A(k−1)−A(k)
]}

Φ(k+1)(t,Ti).

(34)

Integrating both sides from t to Ti+1, we can obtain

[Φ(k)(t,Ti)]∗
[

s(k+1)− s(k)
]

Φ(k+1)(t,Ti)

=

∫ Ti+1

t
[Φ(k)(τ,Ti)]∗

{

s(k)
[

A(k)−A(k−1)
]

+
[

A(k)−A(k−1)
]∗
s(k+1)

+ Q(k)−Q(k−1)
}

Φ(k+1)(τ,Ti)dτ,

(35)

where the final difference term s(k+1)(Ti+1)− s(k)(Ti+1) van-
ishes due to the terminal condition s(k+1)(Ti+1) = S in (18).
In order to cancel [Φ(k)(t,Ti)]∗ and Φ(k+1)(t,Ti) in (35), we
multiply both sides of the equation (35) with [Φ(k)(Ti, t)]∗
(from the left) and Φ(k+1)(Ti, t) (from the right) respectively,
and use (30) to obtain the integral expression for s(k+1)−s(k).

Theorem 2: There exists an appropriate control weight
operator R, such that the sequences {z(k)(t)} and {s(k)(t)}
generated by (18) and (19) are convergent.

Proof: Taking the ‖ ·‖B–norm of z(k+1)−z(k) and s(k)−
s(k−1) derived in Lemma1, we have

∥

∥

∥
z(k+1)− z(k)

∥

∥

∥

B1
≤ µ1

∥

∥

∥
A(k)−A(k−1)

∥

∥

∥

B2
(36)

∥

∥

∥
s(k+1)− s(k)

∥

∥

∥

B2
≤ µ2

∥

∥

∥
A(k)−A(k−1)

∥

∥

∥

B2

+ µ3
∥

∥

∥
Q(k)−Q(k−1)

∥

∥

∥

B2
(37)

where

µ1 = max
Ti≤τ≤t≤Ti+1

∥

∥

∥
Φ(k+1)(t,τ)

∥

∥

∥

∥

∥

∥
Φ(k)(τ,Ti)

∥

∥

∥
‖z0‖ ,

µ2 = max
Ti≤t≤τ≤Ti+1

∥

∥

∥
Φ(k)(τ, t)

∥

∥

∥

(

‖s(k+1)‖+ ‖s(k)‖
)

×
∥

∥

∥
Φ(k+1)(τ, t)

∥

∥

∥
,

µ3 = max
Ti≤t≤τ≤Ti+1

∥

∥

∥
Φ(k)(τ, t)

∥

∥

∥

∥

∥

∥
Φ(k+1)(τ, t)

∥

∥

∥
.

By noting the definitions (26) and (27), and by defining
S (k) ! B(k)R−1B(k)∗ , we obtain the following norm bounds,
∥

∥

∥
A(k)−A(k−1)

∥

∥

∥

B2
=
∥

∥

∥
−S

(k−1)s(k) +S
(k)s(k+1)

∥

∥

∥

B2

≤
∥

∥

∥

(

S
(k)−S

(k−1)
)

s(k+1)
∥

∥

∥

B2

+
∥

∥

∥
S

(k−1)
(

s(k+1)− s(k)
)
∥

∥

∥

B2

(38)

∥

∥

∥
Q(k)−Q(k−1)

∥

∥

∥

B2
≤
∥

∥

∥
s(k+1)− s(k)

∥

∥

∥

B2

∥

∥

∥
S

(k)s(k+1)
∥

∥

∥

B2

+
∥

∥

∥
s(k)

∥

∥

∥

B2

∥

∥

∥
S

(k)−S
(k−1)

∥

∥

∥

B2

∥

∥

∥
s(k)

∥

∥

∥

B2

+
∥

∥

∥
s(k)S (k)

∥

∥

∥

B2

∥

∥

∥
s(k+1)− s(k)

∥

∥

∥

B2
. (39)

Now we connect the terms in (38) and (39) with the factors
∥

∥

∥
z(k+1)− z(k)

∥

∥

∥

B2
and

∥

∥

∥
s(k+1)− s(k)

∥

∥

∥

B2
to obtain

∥

∥

∥
S

(k)−S
(k−1)

∥

∥

∥

B2
≤
∥

∥

∥
B(k)−B(k−1)

∥

∥

∥

B2

∥

∥

∥
R−1B(k)

∗∥
∥

∥

B2

+
∥

∥

∥
B(k−1)R−1

∥

∥

∥

B2

∥

∥

∥
B(k)

∗
−B(k−1)

∗∥
∥

∥

B2

≤

(

∥

∥

∥
B(k)∗

∥

∥

∥

B2
+
∥

∥

∥
B(k−1)

∥

∥

∥

B2

)

‖K‖B2

‖R‖

×
∥

∥

∥
z(k)− z(k−1)

∥

∥

∥

B2
. (40)

Using the norm bound estimates in (36)–(40), we obtain
∥

∥

∥
z(k+1)− z(k)

∥

∥

∥

B1

≤ ν1
∥

∥

∥
s(k+1)− s(k)

∥

∥

∥

B2
+ν2

∥

∥

∥
z(k)− z(k−1)

∥

∥

∥

B2

(41)

where µ1 and µ2 are defined by

ν1 = µ1
∥

∥

∥
S

(k−1)
∥

∥

∥

B2
, (42)

ν2 = µ1‖s(k+1)‖B2

(

∥

∥

∥
B(k)∗

∥

∥

∥

B2
+
∥

∥

∥
B(k−1)

∥

∥

∥

B2

)

‖K‖B2

‖R‖
,

(43)

and
∥

∥

∥
s(k+1)− s(k)

∥

∥

∥

B2

≤ ν3
∥

∥

∥
s(k+1)− s(k)

∥

∥

∥

B2
+ν4

∥

∥

∥
z(k)− z(k−1)

∥

∥

∥

B2

(44)

where

ν3 = µ2
∥

∥

∥
S

(k−1)
∥

∥

∥

B2
µ3

∥

∥

∥
S

(k)
∥

∥

∥

B2

× (
∥

∥

∥
s(k)

∥

∥

∥

B2
+
∥

∥

∥
s(k+1)

∥

∥

∥

B2
), (45)

ν4 =
µ2ν2
µ1

+
µ3ν2
µ1

∥

∥

∥
s(k)

∥

∥

∥

2

B2
∥

∥s(k+1)
∥

∥

B2

. (46)



We note that (44) can be solved with respect to
∥

∥

∥
s(k+1)− s(k)

∥

∥

∥

B2
, i.e.,

∥

∥

∥
s(k+1)− s(k)

∥

∥

∥

B2
≤

ν4
1−ν3

∥

∥

∥
z(k)− z(k−1)

∥

∥

∥

B2
. (47)

By substituting (47) into (41), we obtain
∥

∥

∥
z(k+1)− z(k)

∥

∥

∥

B1
≤
ν2+ν4(ν1−ν2)

1−ν4

∥

∥

∥
z(k)− z(k−1)

∥

∥

∥

B2
.

At this point, it is important to mention that because of
the multiplicative influence of R−1 in equations (43) and (46)
for ν2 and ν4, respectively, if ‖R‖ is large enough, we can
make sure that the coefficients involved are less than one,
i.e.,

max
{
∣

∣

∣

∣

ν4
1−ν3

∣

∣

∣

∣

,

∣

∣

∣

∣

ν2+ν4(ν1−ν2)
1−ν4

∣

∣

∣

∣

}

< 1. (48)

Thus, we can conclude that both {s(k)} and {z(k)} are
Cauchy sequences in the associated Banach spaces, i.e.,
∥

∥

∥
s(k+1)− s(k)

∥

∥

∥

B2
→ 0,

∥

∥

∥
z(k+1)− z(k)

∥

∥

∥

B1
→ 0. Due to the

completeness of the Banach space, any Cauchy sequence in
such a complete space is convergent, thus

lim
k→∞

s(k)(t) = s!(t), (49)

lim
k→∞

z(k)(t) = z!(t). (50)

IV. ASYMPTOTIC STABILITY PROPERTY
The stability properties of the proposed receding horizon

control approach must be theoretically justified. Namely,
assuming that z = 0 is an equilibrium for (3) with v = 0,
we need to prove that such equilibrium can be stabilized by
means of an optimal control formulation with T → ∞.
According to the principle of RHC, the open-loop opti-

mal control problem given by equation (8) will be solved
repeatedly, updated with new measurements z̄(Ti), (i =
0,1,2, ...,n− 1). The closed-loop control v̄(·) is defined by

v̄(τ) = v!(τ; z̄(Ti), [Ti,Ti+1]), τ ∈ [Ti,Ti+1], (51)
where v!(·) in (20) is the solution of the open-loop optimal
problem (8). In this section, we study the stability properties
of the closed-loop system

ż(t) = f (z(t), v̄(t)). (52)
Due to the repeated solution of the optimal problem

described by equations (8) and (9), feasibility is required
at each time t ≥ 0. Here, feasibility of the optimal problem
means that there exists at least one (not necessarily optimal)
control input trajectory v(·) : [Ti,Ti+1] → U , such that the
value of the cost functional (8) is bounded.
Lemma 3: For the nominal system (9) with no distur-

bance, the feasibility of the open-loop control problem (8)
subject to equations (9) at time t = Ti (Ti ≥ 0) implies its
feasibility for all t > Ti.
The proof for Lemma 3 can be achieved by following

an analogous proof for a finite dimensional systems in our
previous work [14].

Theorem 4: Suppose that the open-loop control problem
(4) subject to (3) is feasible at t = 0. Then in the absence
of disturbances, the closed-loop system with the model
predictive control (20) is nominally asymptotically stable.

Proof: According to Lemma 3, feasibility of the open-
loop control problem at each time t > 0 is guaranteed by the
assumption in the theorem.
For z̄(t) = 0, the optimal solution to the optimization

problem (8) is v!(·; z̄(t), [t,Ti+1])→ 0, i.e., v̄!(τ) = 0, ∀ τ ∈
[t, t + ΔT ]. Due to f (0,0) = 0 in (3), then z̄(t) = 0 is an
equilibrium of the closed-loop system (52).
The key point of this proof is that in the absence of

disturbance, driven by control v̄(t), the closed-loop states
z(t) will always follow an open-loop optimal trajectory z!(t)
in (21) controlled by the corresponding v!(t) in (20).
Now we define a function G(z) for the closed-loop system

(52) as follows:

G(z(t)) = 〈z(t),s!(t)z(t)〉, (53)

where for any given z̄(0) ∈ Z, s!(t) is the solution of the
differential Riccati equation (18) after the successive approx-
imation algorithm converges. Then, G(z) has the following
properties:
(1) G(0) = 0 and G(z)> 0 for z -= 0,
(2) along the trajectory of the closed-loop system starting

from z0 ∈ Z, using equations (11), (18) and (19)

Ġ(z) =〈ż,sz〉+ 〈z,sż〉+ 〈z, ṡz〉
=〈z,(sA+A∗s− 2sBzR−1(Bz)∗s)z〉+ 〈z, ṡz〉
=−〈z,(Q+ sBzR−1(Bz)∗s)z〉.

(54)

Since Q, R are positive, we obtain,

Ġ(z)≤−〈z,Qz〉. (55)

Let sm = supt∈[0,T ](‖s!(t)‖) and w= ‖ Q
sm ‖. Because we can

design large enough Q in (18) to make s!(t) monotonously
decreasing and S is positive, s!(t) is positive for all t ∈ [0,T ]
and therefore, sm > 0 and w> 0. Then, since

〈z,Qz〉 ≥ 〈z,s!wz〉= w〈z,s!z〉= wG(z), for a.e. t ∈ [0,T ],
(56)

we can write (55) as

Ġ(z) ≤−wG(z), for a.e. t ∈ [0,T ]. (57)

Multiplying by exp(wt) and integrating on [0,T ] implies that

G(T )≤ exp(−wT )G(0). (58)

As T → ∞, G(T ) → 0 and then z(T ) → 0. Therefore, the
closed-loop system (52) is asymptotically stable.

V. SIMULATION STUDY
In this section, the proposed approach is applied to the

control of the current profile in tokamak plasmas and its
effectiveness is demonstrated in simulations for a disturbance
rejection problem.
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A. Current Profile Evolution Model
A key goal in the control of a magnetic fusion reactor

is to maintain current profiles that are compatible with a
high fraction of the self-generated non-inductive current as
well as with magnetohydrodynamic (MHD) stability at high
plasma pressure. This enables high fusion gain and nonin-
ductive sustainment of the plasma current for steady-state
operation. The dynamics of the poloidal flux ψ is governed in
normalized cylindrical coordinates by a nonlinear parabolic
partial differential equation (PDE) usually referred to as the
magnetic diffusion equation, where the spatial coordinate
corresponds to the minor radius of the torus [3],

∂ψ
∂ t

= h1(x)u1(t)
∂
∂x

(

h4(x)
∂ψ
∂x

)

+ h2(x)u2(t), (59)

with boundary conditions

∂ψ
∂x

∣

∣

∣

∣

x=0
= 0,

∂ψ
∂x

∣

∣

∣

∣

x=1
= k3u3(t), (60)

and where

u1(t) =
(

nave(t)
I(t)

√
Ptot

)3/2
, u2(t) =

√

Ptot(t)
I(t)

, u3(t) = I(t).

We consider the line-averaged density nave(t), the plasma
current I(t), and the total auxiliary power Ptot(t) as the
physical actuators of the system.
The control objective is to drive ψ(x, t) from any arbitrary

initial profile to a prescribed target or desirable profile profile
ψdes(x) at some time T . In this work we assume that
such optimal control problem has been solved off-line for a
nominal initial profile, and we design a feedback controller
based on RHC to track the off-line optimal trajectory when
perturbations are present in the initial profile.

B. Tracking Control Problem Description
To simplify the expression for the system model (59), we

define a bounded linear operator A in an appropriate space
as

A φ = h1(x)u1(t)
∂
∂x

(

h4(x)
∂φ
∂x

)

, (0≤ x≤ 1). (61)

We let uo(t) = [uo1 uo2 uo3]T be a set of open-loop control
trajectories, which are computed off-line, and ψo(t) be the
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Fig. 2. Final time ψ matching comparison.

open-loop state trajectory associated with the open-loop
control uo(t), with a nominal initial state ψo

0 . The open-loop
state trajectory satisfies

ψ̇o = A ψouo1+ h2uo2. (62)

with initial condition ψo(t = 0) = ψo
0 .

Let us define

z(t) = ψ(t)−ψo(t), v(t) = u(t)− uo(t), (63)

where u(t) = [u1 u2 uo3]T is the overall control input and
v(t) = [v1 v2 0]T is the to-be-designed closed-loop control,
which is appended to the open-loop control uo(t). It is worth
noting that the boundary control u3(t) is not considered as a
control input in this optimal tracking control problem. Then,
we can write

dψo

dt
+
dz
dt

= A (ψo+ z)(v1+ uo1)+ h2(v2+ uo2). (64)

By substituting (62) into (64), we obtain

dz
dt

= uo1A z+A zv1+A ψov1+ h2v2. (65)

Defining an linear operators A in its appropriate space as

Az= uo1A z, (66)

and the input operator B as

Bz= [A ψo+A z, h2, 0], (67)

equation (65) can be written as in (3), i.e.,

dz
dt

= Az+Bzv= f (z(t),v(t)). (68)

We state the optimal tracking control problem for the state
system (68) as

min
v∈U

J =
1
2

∫ T

0

(

〈z(t),Qz(t)〉+ vT (t)Rv(t)
)

dt

+〈z(T ),Sz(T )〉,
(69)

where Q, R and S are positive operators.
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Fig. 3. RHC-based optimal tracking control trajectories: (a) I(t), (b) Ptot , (c) nave(t).

C. Simulations
In each open-loop optimal control problem of the non-

linear RHC scheme, we choose Q = 100, S = 10 and R =
diag

{

200
max(uo1)

, 2
max(uo2)

,1
}

, for the cost functional (69), where
max(uoi ) stands for the maximum value of the open-loop
control uoi (t). We use the proposed successive approxima-
tion scheme to compute the optimal control. After several
iterations, the solution of the differential Riccati equation
converges over each time interval, and the controller is
implemented according to (20). In order to test the finite-
horizon nonlinear RHC scheme, we use ΔT = 0.1s as the
measurement sampling time. Each of these intervals is dis-
cretized in steps of 0.01s to solve the Riccati equation (18).
We consider a disturbed initial profile ψ , as shown in

Fig. 1, and compare the performances of both open-loop and
closed-loop controllers in the presence of this disturbance.
Fig. 2 compares the final-time profiles ψ(x,T ), for T =
1.2s, obtained with both the open-loop and the closed-loop
controllers, and the desired target profile ψd(x). Both final-
time profiles are obtained by considering the disturbed initial
profile in Fig. 1. In the case of the open-loop controller, the
control input trajectories computed in [15] for the nominal
initial profile also shown in Fig. 1 are used. In the case of
the closed-loop controller, the control input trajectories are
shown in Fig. 3. It is possible to note from Fig. 2 that the
closed-loop controller can reduce the matching error caused
by the disturbances. It is also possible to note that the match-
ing by the closed-loop controller is not perfect. However, this
does not imply a limitation of the closed-loop controller but
a consequence of the imposed constraints for the actuators
(the R is selected to keep the actuator trajectories within
physical ranges). If the actuator constraints could be reduced,
the control effect would be more observable.

VI. CONCLUSIONS AND FUTURE WORKS
In this paper, we consider the design of a closed-loop

optimal control law for a bilinear parabolic PDE system.
A nonlinear RHC scheme using a convergent successive
approximation approach to solve the finite-horizon optimal
control problem is proposed. The stability analysis for the
proposed scheme is also presented. A simulation study is
carried out for the magnetic flux control problem in tokamak

plasmas, showing that the proposed controller can overcome
to some extent perturbations in the initial conditions. An
optimal control design for bilinear PDE systems with state
and control constraints is part of our future work.
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