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Abstract— The heat exchange efficiency of electrically con-
ducting fluids can drop dramatically when they interact with
externally imposed magnetic fields. The movement of such
fluids under the presence of imposed transverse magnetic fields
can generate substantial magnetohydrodynamics (MHD) effects
including the need of higher pressure gradients to drive the
fluids and lower heat transfer rates due to the laminarization
of the flows. Active boundary control can be employed to
overcome this disadvantage. We consider in this work a heat
exchange process in a 2D MHD channel flow. An extremum-
seeking scheme is proposed to tune in real time a fixed-structure
boundary controller with the ultimate goal of maximizing th e
outlet temperature of the electrically conducting coolingfluid,
and therefore enhancing the efficiency of the heat exchanger.
A heat transfer solver based on finite difference techniquesis
developed to predict the temperature dynamics within the 2D
MHD channel, where the velocity dynamics is predicted by a
pseudo-spectral solver. Simulation results show the efficiency of
the proposed controller.

I. I NTRODUCTION

The heat transfer properties of electrically conducting
viscous fluids moving in channels or ducts are an important
subject of study in cooling systems within a strong electro-
magnetic environment. The interaction between electrically
conducting fluids and magnetic fields in channel or duct
flows generates significant magnetohydrodynamics (MHD)
effects, which often result in lower heat transfer rates dueto
the laminarization of the flow. As an example, the possible
usage of liquid metals or electrically conducting liquid salts
as self-cooled blankets in magnetic confinement nuclear
fusion reactors has been in consideration for many years.
The main function of the coolant is the absorption of energy
from the neutron flux generated by the fusion reaction and
the transfer of heat to an external energy conversion system.
In addition, if a breeder liquid metal such as liquid-lithium
is considered, the blanket can also carry out the breeding
of tritium, which is part of the fuel used by the reactor.
The electrically conducting fluid flow is affected by the
strong magnetic field used to confine the plasma inside the
reactor. The MHD effects prevent present liquid-metal cool-
ing systems from producing the heat transfer improvements
which might be expected based on the much higher thermal
conductivity and boiling point of the coolant. A good review
of the research in this area can be found in [1].

Boundary control of fluid systems, implemented through
micro electro-mechanical or electro-magnetic actuators and
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Fig. 1. 2D MHD flow between plates.

sensors, can be used to counteract the unfavorable MHD
effects. By introducing unsteadiness, boundary controllers
have the potential of enhancing mixing and consequently
the convection-driven heat exchange rate. Flow control has
attracted much interest and dramatically advanced in recent
years [2], [3], [4]. In particular, boundary control of MHD
flows has been considered for many years [5], [6], [7], [8],
[9], [10]. Research subjects range from strongly coupled
MHD problems, like liquid metal and melted salt flows,
to weakly coupled MHD problems, like salt water flows.
Our prior work includes the development of a feedback
control scheme for mixing enhancement in a 2D MHD
flow [11]. Nevertheless, early research mostly focused on
passive and open loop control, partly due to the complexity of
the coupled MHD equations. Unfortunately the nonlinearities
and uncertainties of the system usually limit the effectiveness
of these open-loop controllers, which are not optimized with
respect to the varying flow conditions. Our previous efforts
in this field also include the development of a fixed-structure
controller for mixing enhancement which is optimally tuned
via extremum-seeking [12]. The addition of heat transfer
analysis further adds to the complexity and the work carried
out on direct enhancement of heat transfer is limited.

We consider in this work the simplified setting shown in
Fig. 1. An electrically conducting fluid with inlet tempera-
ture Ti flows under the presence of an imposed transverse
magnetic field B0 through a section of a 2D channel with
high-temperature walls (Tp andTb), and eventually leaves this
section with a higher outlet temperatureTe after absorbing
internal energy from the walls. This setting can be seen as the
idealization of a heat exchanger within an electromagnetic
environment where an electrically conducting fluid such as
a liquid metal is pumped through pipes with the goal of
removing heat from the surrounding cooling blanket.

Using the outlet heat flux as a to-be-maximized cost
function,we employ extremum seeking to optimally tune in
real time a traveling-wave-like boundary controller in order
to maximize the heat exchange rate in the considered MHD
channel flow. Extremum seeking [13] is a very effective ap-



proach to build real-time feedback controllers based on fixed-
structure control laws with tunable parameters [14], [15].It
is applicable in situations where there is a nonlinearity inthe
control problem, and the nonlinearity has a local minimum
or a maximum. In addition, due to its non-model-based
nature, extremum seeking is well suited to overcome the
limitations described above in terms of uncertainty handling
and is capable of capturing the input-output information of
the otherwise highly complicated relationship between the
control parameters and the heat exchange rate. However,
simulations show that this relationship is highly nonlinear
and sometimes nearly discontinuous, despite an overall trend
can be clearly observed. This poses a serious challenge
for extremum seeking, which essentially needs to recover
gradient information from the probing signal. Previous work
has confirmed that under this circumstances the optimization
problem may not be well-posed [16]. Special measures are
taken to overcome this difficulty, so that the overall trend of
the cost function can be captured regardless of the occasional
discontinuities.

This article is organized as follows. In Section II, we
state the simplified MHD equations for incompressible MHD
flows and present the associated heat exchange problem. In
Section III, the feedback control scheme is discussed, in-
cluding a brief introduction to extremum seeking. In Section
IV, simulation results are presented for the proposed control
scheme in a typical magnetohydrodynamic physical setting.
The complex relation between the cost function and the to-
be-optimized parameters is addressed. Section V closes the
paper stating conclusions and identified future work.

II. PROBLEM STATEMENT

We consider a 2D, incompressible, electrically conducting
fluid flowing between two parallel plates (0<x<d=4π , and
−1<y<1) along thex-direction, as illustrated in Fig. 1,
where an external magnetic fieldB0 is imposed perpen-
dicularly to the plates, i.e., in they-direction. This flow
was first investigated experimentally and theoretically by
Hartmann [17]. The mass fluxQ is fixed. A uniform pressure
gradient Px in the x-direction is required to balance the
boundary drag force and the body force due to the MHD
effects. Space variablesx∗ andy∗, time t∗, velocity field v∗

are converted to their dimensionless forms:x = x∗
L , y = y∗

L ,
t = t∗U0

L , v = v∗
U0

, where L and U0 are the dimensional
reference length and velocity. The velocity field is defined
asv(x,y,t) = U(x,y, t)x̂+V(x,y, t)ŷ, wherex̂ and ŷ are unit
vectors on thex andy directions.

The characteristic numbers appearing in the system equa-
tions, including Reynolds number (inertia/viscosity forces),
magnetic Reynolds number (magnetic advection/diffusion),
Stuart number (magnetic/inertia forces) and Péclet num-
ber (thermal advection/diffusion), are defined as: Re= U0L

ν ,

Rem=µσU0L, N=
σLB2

0
ρU0

, Pe= ρcpU0L
λ . The physical proper-

ties of the fluid, including the mass densityρ , the dynamic
viscosity ν, the electrical conductivityσ , the magnetic
permeabilityµ , the specific heatcp, and the thermal con-
ductivity λ , are all assumed constant.

In this paper, we consider MHD flows at low magnetic
Reynolds numbers, which are also called simplified MHD
(SMHD) flows. Under the assumption Rem≪1, the in-
duced magnetic field is very small when compared with
the imposed magnetic fieldB0, and therefore negligible. The
dynamics of the velocity field in a 2D SMHD channel flow is
described by slightly modified incompressible N-S equations:

∂v
∂ t

=
1

Re
∇2v− (v ·∇)v+ ∇P+N(Ū −U) x̂, (1)

∇ ·v = 0, (2)

whereŪ represents the average speed, defined asŪ =Q/L.
More details on this simplified model can be found in [18].
The validity of using the simplified MHD model has been
verified by many pieces of work [19]. In most engineering
applications, the conditions Re≫1 and Rem≪1 hold. Nu-
merical simulations also confirm that under such physical
settings, full MHD and SMHD give near identical results,
while the former methods has to use much smaller time steps
(characterized by CFL≪1 [20]) than the latter method to
ensure convergence [21]. The dynamics of the temperature
field is described by the heat transfer equation

∂T
∂ t

=
1
Pe

∇2T +(v ·∇)T. (3)

The bottom and top walls are assumed non-slip. Hence,
the velocity boundary conditions for the SMHD system are
given by

U(x,±1,t) = 0, V(x,±1,t) = Vctrl ,

whereVctrl is determined by the proposed boundary control
laws. In the uncontrolled cases,Vctrl = 0. We assume periodic
boundary conditions in the streamwise direction. In this
work we consider a heat transfer process where the heat is
removed from the system through the walls of the channel
by a running fluid, which gives the boundary conditions as
follows:

T(0,y,t) = T0,
∂T
∂x

(d,y,t) = 0,

T(x,±1,t) = T0 +Td
(

1−e−x) .

For simulation purposes, the temperature distribution on the
two walls are defined to roughly emulate the gradual heating
of the fluid, while not introducing much discontinuity near
the two inlet-wall corners.

At the two walls the heat flux is driven by conduction:

Ib = − 1
Pe

∫ L

0

∂T
∂y

∣

∣

∣

∣

y=−1
dx, Ip =

1
Pe

∫ L

0

∂T
∂y

∣

∣

∣

∣

y=1
dx.

The Dirichlet boundary condition at the inlet allows
conduction-driven heat transfer. However, for the case studies
in this work the heat transfer is assumed dominated by
advection. According to the Neumann boundary condition at
the outlet, heat transfer is driven exclusively by advection.
Therefore,

Ie =
∫ 1

−1
(vT)|x=L dy, Ii = Ti

∫ 1

−1
v|x=0dy= QTi .
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Fig. 2. Extremum seeking control scheme. The variablez denotes the Z-
transform variable,h and γ are constants specifying the filters,ω denotes
the frequency of the probing signals,a and b are the amplitudes of the
sinusoidal signals.

The integrated heat flux balance
∫ t0+ti
t0

Ii + Ib + Ip − Iedt
should remain zero for long enoughti . This serves as a basic
consistency criterion for the heat transfer solver. Simulation
results for stable flows agree very well with this equation,
while turbulent flows may show slight disagreement.

III. E XTREMUM SEEKING FEEDBACK CONTROL

We propose a fixed-structure control law given by a
traveling wave as the boundary condition,

V(x,±1, t) = Vctrl = Asin(kx+ θ t), (4)

where the constantA is the maximum amplitude,k is the
wave number, andθ is the angular frequency, which is also
called the phase speed in this work.

The performance of this fixed-structure control law is
largely determined byk andθ , which control the frequency
and moving speed of the control “wave”. For the controller
to excite the vortices, this “wave” needs to be in synchroniza-
tion with the corresponding major unstable mode. Assuming
that the average speed of the vortices isVe, the number
of vortices on one side isNe, which is half of the total
number of vortices since they appear in pairs on two sides,
and the total number of periods of the control “wave” is
Nc, we can determine that the fixed-structure control law
should fulfill the conditionNc=Ne and θ =Ve in order to
excite the major unstable mode. In the case of the parameter
k, the optimal value is an integer related to the number of
major vortices. In this work, we find thatk=1 is usually
the optimal choice as it produces the same number of major
vortices as most fully developed flows do (see Fig. 5 for
a typical flow pattern). However, the value ofθ is more
difficult to determine because it is not an integer. Extremum
seeking has been proved effective for a wide range of linear
and nonlinear optimization problems, making itself an ideal
candidate for optimally tuning in real time the value ofθ in
order to maximize a functional related to heat transfer.

The extremum seeking scheme is illustrated in Fig. 2 as a
block diagram. At each iteration step, the flow is let evolve
with a traveling wave of phase speedθ (k) as boundary
condition. The phase speedθ (k) contains a superimposed
sinusoidal perturbation (modulation). A cost functionJ re-
lated to heat transfer is evaluated using the response of the
system to the phase speedθ (k). The cost function signal is

0.4 0.5 0.6 0.7 0.8

9.9

9.95

10

10.05

10.1

Phase speed θ

C
o

st
 f
u

n
ct

io
n

 J

Fig. 3. Outlet heat flux as a function of phase speed (Re=6000, Ha=1.04).

(a) θ =0.662855

(b) θ =0.663060

Fig. 4. Pressure maps and streamlines for two very close phase speeds.

then filtered by a high-pass filter and multiplied by another
sinusoidal signal of identical frequency (demodulation).The
demodulated signalξ , containing gradient information of
the system, is filtered through a low-pass filter and used to
generate an updated phase speedθ (k+1) to be used during
the next iteration step. Detailed explanation of this scheme
can be found in [13].

The to-be-minimized cost functionJ is defined in this
work as a time-averaged version of the outlet heat advection
Ie. This cost function measures the amount of internal energy
being carried downstream by the flow, which is proportional
to the amount of energy being transferred from the hot walls
to the cooler fluid. Snapshots ofIe values are taken every 20
simulation steps and the standard deviation of the collected
data is calculated using the last 200 samples. Once this
standard deviation decreases below a specific threshold, we
consider the flow statistically steady and the system output
J is computed by integratingIe over the same period of time
used for the standard deviation calculation.

Extremum seeking is very effective in optimizing systems
with cost functions that are continuous and with a well-
defined extremum. However, extremum seeking may not
capture the gradient information and fail if the cost function
is not smooth or even discontinuous. Such situation does
arise in our work, as the cost function has many sudden
changes near the optimal point. The complexity of the cost
function is shown in Fig. 3, where the time-averaged outlet
heat flux is plotted as a function of the phase speedθ .
Although a clear trend can be noticed in the figure, the cost
function seems extremely sensitive to phase speed changes,
especially near the optimal point around 0.6. Let us take,
for instance, two data points in Fig. 3. The steady state
value for Ie drops from 10.0638 to 9.9045 when the phase



Fig. 5. Pressure maps and streamlines for Re= 7500 (t =266, 1590, 2973).

speed changes from 0.662855 to 0.663060. Considering that
the overall range forJ goes from 8.9 (laminar flows) to no
more than 10.1, this sudden drop of cost function can cause
significant challenges during the optimization. The difference
of flow patterns can be clearly seen from the pressure maps
and stream lines in Fig. 4. While the case with higherIe has
four sustaining organized vortices, the case with smallerIe
has seven smaller deformed vortices. However, the boundary
control “wave” has only two full periods in the streamwise
direction. As a result, the vortices cannot be well excited by
the boundary control because of the lack of synchronization.

This discontinuous behavior is largely caused by the
nonlinearity of the flow. To enhance heat exchange, the
boundary control needs to produce large sustaining vortices
in the flow to enhance mixing. Due to its nonlinearity nature,
the development of vortices is seriously affected by the
initial conditions and random numerical noise. It may take
extensive long time for the flow to reach the statistically
steady state. Furthermore, a flow with specific physical
settings may have more than one statistically steady state
and may not converge to the one with highest cost function
value.

To counteract the unfavorable effects of the discontinuity
of the cost function, special techniques are implemented
within the extremum seeking algorithm. First, the perturba-
tion signalacos(ωk) is reduced in the region with significant
discontinuity in order to reduce the possibility of sudden
big changes in the cost function value. Second, a low-pass
filter is added immediately after the plant output. This filter
provides the average of the most recent 5 plant outputs
J(θ (k)) (including the latest plant output). Theis averaging
technique can eliminate most of the discontinuity while
capturing the overall trend, thus increasing the ability ofthe
extremum seeking to stay inside the optimal region.

IV. SIMULATION RESULTS

The velocity-field numerical simulations are carried out
by a modified Navier-Stokes solver. The equations are dis-
cretized using FFT on the streamwise direction and finite
differences on the spanwise direction, which is also calledthe
pseudospectral method. Time integration is done using a frac-
tional step method along with a hybrid Runge-Kutta/Crank-
Nicolson scheme. Linear terms are treated implicitly by
the Crank-Nicolson method and nonlinear terms are treated
explicitly by the Runge-Kutta method. The divergence-free
condition is fulfilled by the fractional step method.

Fig. 6. Temperature maps for Re=7500 (t =266, 1590, 2973).

A separate heat transfer solver is used to simulate
the temperature-field evolution. Due to the limitations of
pseudospectral method for imposing boundary conditions at
the channel inlet and outlet, a finite difference method is
employed to solve the heat exchange problem. The grid is
identical to the one used for the velocity-field pseudospectral
method. The temperature is defined at the same locations
where the streamwise component of the velocity field is
defined. The heat transfer equation is linear, given the fact
that the velocity field is solved separately and known when
the temperature field is solved. This enables implicit time
integration of the heat transfer equation, which is carried
out in this work by the Crank-Nicolson method. To ensure
physical consistency for the heat transfer equation, an upwind
scheme is necessary. Otherwise, meaningless spots hotter
than T0 + Td or colder thanT0 will appear. The Alternating
Direction Implicit (ADI) method is used to avoid solving
a large-scale sparse linear system. For more details on the
implementation of these techniques, see [20].

All the simulations are carried out for the same flow
domain:−1<y<1, 0<x<4π . The same mesh is used in
all the simulations presented in this section (grid points in
the x direction: NX= 150, grid points in they direction:
NY = 128). We considerT0 = 5 and Td = 2 in all cases.
Similarly, we adoptQ = 1.5.

A. MHD flows with no control

When B0=0, the momentum equation (1) reduces to the
standard incompressible Navier-Stokes equation characteriz-
ing the well-known Poiseuille flow. Poiseuille flows in 2D
channels can be linearly stable for low Reynolds numbers, as
infinitesimal perturbations in the flow field are damped out.
The flows turn linearly unstable for high Reynolds numbers
Re>5772 [22], [23]. Such flows usually reach statistically
steady states, which we call fully established flows. Fig. 5
show how a channel flow (Re=7500) develops to a fully
established flow. The pressure maps and streamlines, given
by Fig. 5, illustrate how the vortices evolves in time until
reaching a fully established flow when the initial equilibrium
velocity profile is infinitesimally perturbed att =0.

The flow pattern inside the channel has a major influence
on heat exchange. The temperature maps in Fig. 6 closely
resemble the flow pattern already seen in Fig. 5. As shown
in Fig. 7, the large vortices significantly increase the heat
transfer rateIb andIp at the walls. Since the heat inflowIi is
constant, and the overall heat flux must be balanced, the heat
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Fig. 7. Heat flux at the walls (Re=7500).

outflow Ie must increase, as shown in Fig. 8. The temperature
maps in Fig.6 provide an intuitive explanation of the heat
transfer process. Because of the vortices, the region with
lower temperature stretches closer to the walls, resultingin
a larger temperature gradient and a higher heat transfer rate.
The span of the colder region in the streamwise direction
becomes shorter as the vortices develop, increasing the
overall outlet temperature and consequently the advection-
driven heat transfer rate.

When B0 6=0, Fig. 9(a) shows the heat flux for different
Hartmann numbers Ha=

√
N ·Re. The enstrophy is com-

monly used to quantify the overall turbulence of the velocity
field. In our work we use the averaged enstrophy, defined by

Es =
1
2d

∫ 1

−1

∫ d

0

1
2

(

∂v
∂x

− ∂u
∂y

)2

dxdy. (5)

As shown in Fig. 9(a), the enstrophy decreases as the flow
is stabilized by the imposed magnetic field. The simulation
is started att =0 with the fully established flow achieved
in Fig. 5. We can see that stronger imposed magnetic fields
tend to make the flow more stable. By comparing Fig. 9(a)
with Fig. 9(b) and Fig. 9(c), showing the heat flux both at
the walls and the outlet for different Hartmann numbers, we
can note that the wall heat flux and the enstrophy are highly
correlated. For Ha=1.83, the heat flux is reduced to a very
low level because vortices are completely suppressed.

B. MHD flows with extremum-seeking feedback control

The simulations start with the equilibrium solutions
achieved after the external magnetic fields are imposed.
These flows remain linearly stable indefinitely if no boundary
control is present. The optimal extremum-seeking controller
is expected to drive these flows to states with better outlet
heat exchange rateIe. Simulations are conducted for Case
1: Re=6000, Ha=1.04 and Case 2: Re=7500, Ha=1.83.
The initial phase speed is set to 0.35 for both simulation
cases. The parameters for extremum seeking have to be
carefully chosen to balance the stability and performance
of the optimization process. In this case, we usea = 0.004
for θ < 0.5 anda= 0.002 for 0.5< θ < 0.9, ω = 3, γ = 0.3,
h = 0.8 (see Fig. 2),A = 0.05, k = 1 (see (4)).

As we can see in Fig. 10(a), the boundary control based
on extremum seeking gradually adjusts the phase speed in
order to maximize the heat-transfer-related cost function.
Even though the controller cannot keep the system at the
optimal phase speed all the time, it manages to stabilize
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Fig. 8. Heat flux at the outlet (Re=7500).

the phase speed near the optimum, regardless of significant
amount of randomness in the cost function.

As illustrated in Fig. 10(b), the increase of enstrophy by
several times indicates that unsteadiness is greatly enhanced
by our proposed control scheme. Let us focus on Case 2.
From Fig. 8 we can see that in a fully laminar flow the
heat exchange rate at the outlet is around 8.95 (indicated
as “Stable flow” in Fig. 10(c)), while in a fully developed
flow the heat exchange rate at the outlet is around 9.5,
implying that the vortices in the fully developed flow produce
an increase of 0.55 in the heat exchange rate. However, an
imposed magnetic field with moderate strength (Ha=1.83)
can completely laminarize the flow as shown in Fig. 9(a)
and reduce the heat exchange rate back to 8.95 as shown
in Fig. 9(c). As we can note from Fig. 10(c), the extremum
seeking controller succeeds in increasing the heat exchange
rate at the outlet from 8.95 for the flow stabilized by the
imposed magnetic field to 10.05, which is even higher than
the 9.5 value achieved by the fully developed flow when
no magnetic field is present. The effect of the enhanced
unsteadiness on the heat exchange rate can be clearly seen
in the temperature maps shown in Fig. 11. Due to the large
sustaining vortices, the cool fluid from the inlet quickly
mixes with the hot fluid near the walls, effectively increasing
the heat transfer between the fluid and the walls.

V. CONCLUSION

A boundary feedback control scheme based on a fixed-
structure controlled optimally tuned by extremum seeking
has been proposed for heat exchange enhancement in a 2D
MHD channel flow. Simulation results show that the control
scheme successfully destabilize the otherwise linearly stable
flow, increasing the heat exchange rate between the fluid and
the channel walls. As a consequence, the fluid temperature
at the channel outlet is significantly increased, maximizing
in this way heat extraction. The extremum seeking method
can effectively optimize the parameter of the fixed-based
controller by maximizing a system output whose relationship
with the optimized parameter would be extremely hard to
model. The tuning of the extremum seeking scheme is crucial
for the success of the control scheme. A simple but effective
method based on averaging is used to avoid disruptions
caused by cost function discontinuities during the extremum-
seeking optimization process. Extension to 3D MHD flows
and design of more robust methods to deal with the cost-
function discontinuities are part of our future work.
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Fig. 9. MHD flows with different Hartmann numbers.
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