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Abstract— The central task of current profile control during
the ramp-up phase of a tokamak discharge is to find the
actuator trajectories that are necessary to achieve certain
desired current profile at some time between the end of the
ramp-up phase and early stage of the flattop phase. The
magnetic diffusion partial differential equation (PDE) models
the dynamics of the poloidal magnetic flux profile, which is
closely related to the toroidal current density profile, and plays
a key role in the model-based control synthesis. Given the initial
and desired target profiles, splines are used in this work to
generate evolutionary curves connecting their boundaries at
both endpoints of the spatial domain. Then, a closed four-edge
frame (initial profile, target profile, two boundary curves) in the
three dimensional space (time, space, poloidal magnetic flux) is
obtained without knowing the transient dynamics inside. The
minimal surface theory is used in this work to define a surface
spanned by the closed four-edge frame, which represents the
desired transient dynamics for the poloidal magnetic flux.
Then, the control task becomes a trajectory tracking problem.
Once the desired transient dynamics is defined, the temporal
and spatial derivatives of the poloidal magnetic flux in the
magnetic diffusion equation can be computed, and the control-
oriented PDE model can be reformulated into an algebraic
equation where the control values at each time instant represent
the to-be-determined unknown variables. Numerical simulation
results show the effectiveness of this approach. This method is
characterized by high speed computation and shows potential
for real-time implementation in a closed-loop receding-horizon
scheme, particularly for long-discharge tokamaks such as ITER.

I. INTRODUCTION

Nuclear fusion is the process by which two nuclei fuse
together to form a heavier nucleus. This process is accom-
panied by a release of energy, which is the result of the mass
“lost” in the reaction. The amount of released energy is given
by Einstein’s famous equation (derived in 1905 as a part of
his special theory of relativity), E = (Mr −Mp)c2, where
E is the energy, Mr the mass of the reactant nuclei, Mp

the mass of the product nuclei, and c the speed of light. To
make a fusion reaction possible, a certain amount of energy
is required to bring two repellant nuclei carrying positive
charges sufficiently close. To overcome the Coulomb barrier,
the kinetic energy of the nuclei is increased by heating. The
temperature required for a thermonuclear fusion reaction to
take place is around 100 million degrees. At much lower
temperatures (about 10 thousand degrees), the electrons and
nuclei separate and create an ionized gas called plasma, also
known as the fourth state of matter. The plasma conducts
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Fig. 1. The total plasma current evolution can be divided in several phases.
In this work we focus on phase I, which includes the ramp-up phase and
the first part of the flattop phase. The control goal is to drive the magnetic
flux profile from some initial arbitrary profile to a predefined target profile
at some time T within the time window [T1, T2] in the flattop phase.
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Fig. 2. The four-edge frame includes the initial magnetic flux distribution
ψ(ρ̂, t0) and the desired target magnetic flux distribution ψd(ρ̂) at the final
time tf . At the boundary ρ̂ = 0 and ρ̂ = 1, we connect ψ0(0) and ψd(0)
to generate smooth transient dynamics for ψ(0, t), and ψ0(1) and ψd(1)
to generate smooth transient dynamics for ψ(1, t).

electricity and responds to magnetic fields, motivating a
magnetic confinement approach to nuclear fusion. One type
of magnetic confinement devices is the Tokamak, where a
torus-shaped intangible bottle is created by magnetic fields
to confine the high-temperature plasma.

During the ramp-up phase of a tokamak discharge (Fig. 1),
multiple external sources (e.g., ohmic heating, neutral beam
injection, radio frequency) can be used to control the spatial
profile of many different plasma variables such as density,
temperature, current, and rotation. Transport models usually
governed by 1-D nonlinear coupled partial differential equa-
tions (PDEs) can be used to predict the plasma dynamics



Fig. 3. Surface integral. The surface S over domain M is expressed
by z = ψ(ρ̂, t), ∀(ρ̂, t) ∈ M. The coordinate of A is (ρ̂0, t0, z0), where
z0 = ψ(ρ̂0, t0). The coordinate of B is (ρ̂0, t0 + dt, z0 + ψt(ρ̂0, t0)dt)),
where ψt(ρ̂0, t0) = ∂ψ

∂t
(ρ̂0, t0), and dρ̂ is the length of the line element

AB. The coordinate of D is
(
ρ̂0 + dρ̂, t0, z0 + ψρ̂(ρ̂0, t0)dρ̂)

)
, where

ψρ̂(ρ̂0, t0) = ∂ψ
∂ρ̂

(ρ̂0, t0), and dρ̂ is the length of the line element

AD. Then, the vector ~AB is (0, dt, ψt(ρ̂0, t0)dt) and the vector ~AD
is
(
dρ̂, 0, ψρ̂(ρ̂0, t0)dρ̂

)
. Therefore, the area of the element �ABCD

is
∣∣∣ ~AB × ~AD

∣∣∣ =
∣∣(−ψρ̂(ρ̂0, t0)dxdy,−ψt(ρ̂0, t0)dρ̂dt, dρ̂dt

)∣∣ =√
1 + ψ2

ρ̂(ρ̂0, t0) + ψ2
t (ρ̂0, t0)dρ̂dt.

with certain degree of accuracy (e.g., [1], [2]). Strong non-
linearities and model uncertainties add to the complexity of
the problem. Different from the prediction problem, where
inputs and initial profiles are given to calculate the time
response, the control problem is to find admissible inputs that
can drive the plasma from given initial profiles to the vicinity
of predefined desired profiles. The solution of this problem is
aimed at saving long trial-and-error periods of time currently
spent by fusion experimentalists trying to manually adjust
the time evolutions of the actuators to achieve the desired
plasma profiles at some time during the early stage of the
flattop phase.

We have recently proposed some advance nonlinear opti-
mization techniques (e.g., extremum-seeking [3] and sequen-
tial quadratic programming [4]) to solve this very challenging
problem, and we have used them for the control of the current
profile evolution during the ramp-up phase of discharge in
the DIII-D tokamak. Instead of solving the PDE-constrained
optimization problem, which is often computationally costly,
we can interpolate the transient dynamics by connecting the
initial and desired final profiles. By choosing two feasible
curves satisfying the spatial boundary conditions to con-
nect the initial and desired final profiles at both boundary
points, an optimal surface spanned by the four-edge frame
(two boundary curves, initial and desired final profiles, see
Fig. 2) can be obtained by solving a 2-D nonlinear elliptical
PDE arising from the minimal surface theory in differential
geometry (see, e.g., [5], [6]). This surface, which represents
the desired transient dynamics, satisfies the boundary con-
ditions and minimizes the dynamic fluctuations. Thus, the
ramp-up-phase final-time optimal control problem becomes
a trajectory tracking problem.

Knowing the desired temporal-spatial evolutions, both
spatial and temporal derivatives of the distributed profiles can

be computed. Thus, at each time instance the transport PDEs
degenerate to algebraic equations at every spatial point where
the control values are the only unknowns. Optimization
problems can be formulated to solve the algebraic equations
by taking into account the control constraints (see, e.g., [7],
[8]). By using this proposed technique, the ramp-up current
profile optimal control problem can be formulated into a
least-square problem with algebraic constraints, which is
much less computationally demanding.

The paper is organized as follows. The optimal control
problem for the current profile system is introduced in
Section II. The transient dynamics defined by the minimal
surface theory is presented in Section III. In Section IV,
algebraic equations for the unknown control values are
formulated at each time instant and are later solved by the
least square method. Simulation studies are presented in
Section V. The paper is closed in Section VI by stating
conclusions and future research remarks.

II. STATEMENT OF THE CONTROL PROBLEM

A. Control-oriented model

To enable model-based control of the current profile at
DIII-D, a control-oriented model for the dynamic evolu-
tion of the poloidal flux profile during and just following
the ramp-up of the plasma current has been recently pro-
posed [9]. During “Phase I” (see Fig. 1), mainly governed
by the ramp-up phase, the plasma current is mostly driven
by induction. In this case, it is possible to decouple the
equation for the evolution of the poloidal flux ψ(ρ̂, t) from
the equation for the evolution of the temperature Te(ρ̂, t).
The magnetic diffusion equation is combined with empirical
correlations obtained at DIII-D for the temperature and non-
inductive current to introduce a simplified dynamic model
describing the evolution of the poloidal flux during the
inductive phase of the discharge.

The current density j, that flows toroidally around the
tokamak and whose profile must be controlled, is related
to spatial derivatives of the poloidal magnetic flux ψ. We let
ρ be an arbitrary coordinate indexing the magnetic surface.
Any quantity constant on each magnetic surface could be
chosen as the variable ρ. We choose the mean geomet-
ric radius of the magnetic surface as the variable ρ, i.e.,
πBφ,oρ

2 = Φ, where Bφ,o is the reference toroidal magnetic
field at the geometric plasma center Ro. The variable ρ̂
denotes the normalized radius ρ

ρb
, and ρb is the radius of

last closed flux surface. The evolution of the poloidal flux in
normalized cylindrical coordinates is given by the magnetic
diffusion equation,

∂ψ

∂t
=

η(Te)
µoρ2

b F̂
2

1
ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
−RoĤη(Te)

< j̄NI · B̄ >

Bφ,o
,

(1)
where t is the time, ψ is the poloidal magnetic flux, η is the
plasma resistivity, Te is the plasma electron temperature, µo
is the vacuum permeability, j̄NI is the non-inductive source
of current density (neutral beam, electron cyclotron, etc.), B̄
is the toroidal magnetic field, and <> denotes flux-surface



average. F̂ , Ĝ, Ĥ are geometric factors, which are functions
of ρ̂. The boundary conditions of (1) are given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

=
µo
2π

Ro

Ĝ
∣∣∣
ρ̂=1

Ĥ
∣∣∣
ρ̂=1

I(t), (2)

where I(t) denotes the total plasma current.
Highly simplified models for the temperature and non-

inductive toroidal current density are chosen for the inductive
phase of the discharge. Based on experimental observations
at DIII-D, the shapes of the profiles are assumed to remain
fixed and equal to the so-called reference profiles, which
are identified from DIII-D discharges associated with the
experiment of interest. The responses to the actuators are
simply scalar multiples of the reference profiles.

The temperature Te is assumed to follow

Te(ρ̂, t) = kTeT
profile
e (ρ̂)

I(t)
√
P

n̄(t)
, (3)

where the reference profile T profilee is identified from DIII-
D through Thomson scattering, and kTe = 1.7295 · 1010

m−3A−1W−1/2. The average density n̄ is defined as n̄(t) =∫ 1

0
n(ρ̂, t)dρ̂, where n denotes the plasma density.

The non-inductive toroidal current density <j̄NI ·B̄>
Bφ,o

is
assumed to follow

< j̄NI · B̄ >

Bφ,o
=kNIparj

profile
NIpar (ρ̂)

I(t)1/2P (t)5/4

n̄(t)3/2
(4)

where the reference profile jprofileNIpar is identified from DIII-
D through a combination of MSE diagnostics and the EFIT
equilibrium reconstruction code, and kNIpar = 1.2139 ·
1018 m−9/2A−1/2W−5/4. The model for Te and <j̄NI ·B̄>

Bφ,o
presented above considers neutral beams as the only source
of current and heating. In the case where more heating
and current sources are considered, equations (3) and (4)
should include the weighted contributions of the different
sources, and reference profiles need to be identified for each
heating and current source. The resistivity η scales with the
temperature Te as η(ρ̂, t) = keffZeff

T
3/2
e (ρ̂,t)

. where Zeff = 1.5,

and keff = 4.2702 · 10−8 Ωm(keV)3/2. By introducing

ϑ1(ρ̂)=
keffZeff

k
3/2
Te µoρ

2
b

1

F̂ 2(ρ̂)(T profilee (ρ̂))3/2
, D(ρ̂)=F̂ ĜĤ,

ϑ2(ρ̂)=RoĤµoρ2
b F̂

2(ρ̂)kNIparj
profile
NIpar (ρ̂), k=

µo
2π

Ro

Ĝ(1)Ĥ(1)
,

the normalized poloidal magnetic flux can be rewritten as

1
ϑ1(ρ̂)

∂ψ

∂t
= u1(t)

1
ρ̂

∂

∂ρ̂

[
ρ̂D(ρ̂)

∂ψ

∂ρ̂

]
− ϑ2(ρ̂)u2(t). (5)

The control inputs u1 and u2 are functions of physical
actuators such as the total power P of the non-inductive
current drive, the total plasma current I , and the average
density n̄, i.e.,

u1(t) = n̄1.5I−1.5P−0.75, u2(t) = P 0.5I−1. (6)

The poloidal magnetic flux at the spatial boundaries is
determined by the Neumann conditions

∂ψ

∂ρ̂
(0, t) = 0,

∂ψ

∂ρ̂
(1, t) = ku3(t), u3(t) = I. (7)

where k is a constant. The initial condition for the magnetic
flux profile is given by ψ(ρ̂, t0) = ψ0(ρ̂).

B. Cost functional and constraints

In practice, the toroidal current density is usually specified
indirectly by the rotational transform ῑ (or the safety factor
q = ῑ−1), which is defined as ῑ(ρ, t) = ∂ψ(ρ,t)

∂Φ . The
constant relationship between Φ and ρ, ρ =

√
Φ

πBφ,o
, and the

definition of the normalized radius ρ̂ allow us to rewrite the
rational transform as ῑ(ρ̂, t) = ∂ψ

∂ρ̂
1

Bφ,oρ2b ρ̂
. Since ῑ is uniquely

defined by the spatial derivative of the magnetic flux ψ, in
this work we define the system output as ι(ρ̂, t) = ∂ψ

∂ρ̂ .
The control objective is to find control inputs P (t) and

I(t) that minimize the cost functional

J=
1
2

∫ 1

0

∣∣ι(ρ̂, tf )−ιd(ρ̂)
∣∣2dρ̂+1

2

∫ tf

t0

(
γII

2+γPP 2+γn̄n̄2
)
dt,

where ιd(ρ̂) is the desired target profile at time tf , and
the positive constants γI , γP and γn̄ are control weighting
factors. The control actuators may need to satisfy constraints
such as:

Magnitude saturation:

 I
(0)
l ≤ I ≤ I(0)

u ,
Pl ≤ P ≤ Pu
n̄l ≤ n̄ ≤ n̄u

 ; (8)

Rate saturation:
∣∣∣∣dI(t)
dt

∣∣∣∣ ≤ I(1)
u ; (9)

Initial and final values: I(t0) = I0, I(tf ) = If . (10)

III. TRANSIENT DYNAMICS DESIGN

A. Edge design

By noting the definition ι(ρ̂, t) = ∂ψ
∂ρ̂ for the system

output, a desired target magnetic flux profile at the final time
tf , i.e. ψ(ρ̂, tf ) = ψd(ρ̂), can be obtained by integrating the
desired output ιd(ρ̂) over [0, ρ̂], (0 ≤ ρ̂ ≤ 1):

ψd(ρ̂) = ψd(0)+
∫ ρ̂

0

ιd(%)d% = ψd(1)−
∫ 1

ρ̂

ιd(%)d%, (11)

where either ψd(0) or ψd(1) need to be fixed to obtain
the desired ψd-curve shown in Fig. 2. We can determine
the left (ψ(0, t0) ψ(0, tf )) and right (ψ(1, t0), ψ(1, tf ))
boundary values by using the compatibility conditions:
ψ(0, t0) = ψ0(0), ψ(1, t0) = ψ0(1), ψ(0, tf ) = ψd(0)
and ψ(1, tf ) = ψd(1). Thus, we add a sequence of points
{ψ(0, Ti)}Ii=1 , Ti ∈ (t0, tf ), between ψ(0, t0) and ψ(0, tf ),
and a sequence of points {ψ(1, Tj)}Jj=1 , Tj ∈ (t0, tf ),
between ψ(1, t0) and ψ(1, tf ) to represent the left and right
boundary evolution conditions (Dirichlet boundary condi-
tions) via spline interpolations. Therefore, we obtain the four-
edge frame shown in Fig. 2, where the surface within this
frame representing the desired transient dynamics still needs
to be defined.



B. Minimal surface

In Fig. 3, we define M = {0 ≤ ρ̂ ≤ 1, t0 ≤ t ≤ tf} in
the ρ̂t-plane with the boundary denoted by ∂M. We define
a three dimensional curve ∂S , E _ F _ G _ H _ E
over ∂M, which can span a surface S in infinite many ways.
In this work, the minimal surface theory is used to define
a unique surface within the frame and minimize transient
fluctuations. We discuss the detailed theory and algorithms
in the rest of this subsection.

We use z = ψ(ρ̂, t) to express the surface S. As shown
in Fig. 3, the minimal surface problem can be stated as the
following optimization problem:

min
ψ(ρ̂,t)

∫∫
M

√
1 + ψ2

ρ̂(ρ̂, t) + ψ2
t (ρ̂, t)dρ̂dt, (12)

subject to: ψ(ρ̂, t)|∂M = g(ρ̂, t) ,
ψ0(ρ̂), ρ̂ ∈ [0, 1], t = t0,

Spline
(
ψ(0, t0), {ψ(0, Ti)}Ii=1 , ψ(0, tf )

)
, Ti ∈ (t0, tf ),

Spline
(
ψ(1, t0), {ψ(1, Tj)}Jj=1 , ψ(1, tf )

)
, Tj ∈ (t0, tf ),

ψd(ρ̂), ρ̂ ∈ [0, 1], t = tf ,

where ∂M is the boundary of the domain M. There are
very few examples of minimal surfaces that can be expressed
analytically. Nonlinear programming (NLP) can be used in
general to find a numerical solution minimizing the area
functional, but it is often computationally costly. Alterna-
tively, by using the Euler-Lagrange equation in the calculus
of variations [6], the minimal surface problem (12) can be
reformulated as a nonlinear elliptic PDE:

∂

∂ρ̂

 ψρ̂√
1 + ψ2

ρ̂ + ψ2
t

+
∂

∂t

 ψt√
1 + ψ2

ρ̂ + ψ2
t

 = 0,

ψ(ρ̂, t)|∂M = g(ρ̂, t). (13)

This is called the minimal-surface equation, which is im-
possible to solve analytically in general and numerical algo-
rithms such as the finite element method (FEM) [10] or the
finite difference method (FDM) [11] can be used to obtain
numerical solutions.

One challenge arising during the implementation of the
minimal surface theory for the definition of the transient
dynamics of the magnetic flux is the satisfaction of the
boundary conditions. In this problem, a Neumann boundary
condition at ρ̂ = 0 must be satisfied. However, such spatial
derivative requirement is not taken into account by the
minimal surface equation (13). To overcome this challenge
we decompose the domain into sub-domains and solve the
minimal surface equation (nonlinear elliptic PDE) over each
sub-domain with overlapping boundaries. In order to define
a transient dynamics satisfying the zero Neumann boundary
condition at ρ̂ = 0, we split the domain into two sub-domains
M = M1 ∪M2, where M1 is a narrow region of width
∆̄ρ̂ along the ρ̂ = 0 boundary (Fig. 3). By properly defining
Dirichlet boundary conditions for M1, it is possible to
approximately satisfy the zero Neumann boundary condition
at ρ̂ = 0.
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IV. CONTROL COMPUTATIONS

A. Scalar analysis

In plasma discharge experiments at the DIII-D tokamak,
the total power P (t), the total plasma current I(t), and the
average density n̄(t) are of order 106W, 106A, and 1019m−3

respectively. The coefficients ϑ1(ρ̂) and ϑ2(ρ̂), which vary
with respect to ρ̂, are of order 10−15 and 1013, respectively.
The poloidal magnetic flux ψ(ρ̂, t), which varies with respect
to both the normalized radius and time, is of order 10−1. The
other variables in (5) are of order 1. Thus, we can estimate
the orders of all the terms in (5) and (6): 1

ϑ1(ρ̂)
∂ψ
∂t ∼ 1014,

u1(t) ∼ 1015, u1(t) 1
ρ̂
∂
∂ρ̂

[
ρ̂D(ρ̂)∂ψ∂ρ̂

]
∼ 1014, u2(t) ∼ 10−3

and ϑ2(ρ̂)u2(t) ∼ 1010. Therefore, the interior control term
ϑ2(ρ̂)u2(t) is small in comparison to other terms in (5).

B. Least square scheme

We consider a grid division (ρ̂i, tj) in the temporal-
spatial domain M = {0 ≤ ρ̂ ≤ 1, 0 ≤ t ≤ tf}:
0 = ρ̂1 < ρ̂2 < . . . < ρ̂i < . . . < ρ̂M = 1 and
t0 = t1 < t2 < . . . < tj < . . . < tN = tf . We assume
that the desired transient dynamics is obtained by solving
the minimal surface equation (13) and is denoted by ψ̃(ρ̂, t)
overM. Then, we can compute the boundary control through
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Fig. 7. Computational derivative.

the Neumann boundary condition (7), u3(tn) = 1
k
∂ψ̃
∂ρ̂ (1, tn),

n = 1, 2, . . . , N .
Based on the results of our order analysis, we let the

interior control u2 = 10−3 and rewrite the PDE system (5)
as the following linear system

1
ρ̂

∂

∂ρ̂

[
ρ̂D(ρ̂)

∂ψ

∂ρ̂

]
u1(t) =

1
ϑ1(ρ̂)

∂ψ

∂t
+ ϑ2(ρ̂)u2(t), (14)

where u1 must be obtained at tn, n = 1, 2, . . . , N . For each
tn, n = 1, 2, . . . , N , the equation (14) can be satisfied at
each spatial node ρ̂m, m = 2, 3, . . . ,M , i.e.,

An2,Mu1(tn) = bn2,M , n = 1, 2, . . . , N, (15)

where

An2,M =


1
ρ̂2

∂
∂ρ̂

[
ρ̂D(ρ̂)∂ψ̃(ρ̂2,tn)

∂ρ̂

]
...

1
ρ̂M

∂
∂ρ̂

[
ρ̂D(ρ̂)∂ψ̃(ρ̂M ,tn)

∂ρ̂

]
 , (16)

bn2,M =


1

ϑ1(ρ̂2)
∂ψ̃(ρ̂2,tn)

∂t + ϑ2(ρ̂2)u2(tn)
...

1
ϑ1(ρ̂M )

∂ψ̃(ρ̂M ,tn)
∂t + ϑ2(ρ̂M )u2(tn)

 . (17)
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Without considering any actuation constraint, we can obtain
the least square solution of the linear system (15) as

un1 = u1(tn) =
{[
An2,M

]T
An2,M

}−1 [
An2,M

]T
bn2,M . (18)

In general, we can formulate the following optimization
problem in the presence of actuation constraints:

min
u1∈U

1
2
β1‖u1‖2 +

1
2

N∑
n=1

β2,n

∥∥An2,Mu1(tn)− bn2,M
∥∥2
,

where u1 = (u1(t1), . . . , u1(tn), . . . , u1(tf ))T , β1 and β2,n

are positive weighting constants and U is the admissible
control set defined by (8)-(10) at t = tn, n = 1, 2, . . . , N.
This is a quadratic programming problem which can be
solved relatively fast.

C. Computational derivatives

The matrices in (15) include both the temporal and spatial
derivatives of the desired transient dynamics ψ̃(ρ̂, t) over
Mm,n = (ρ̂m, tn), m = 1, 2, . . . ,M and n = 1, 2, . . . , N .
Using the discrete values ψ̃(ρ̂m−1, tn), ψ̃(ρ̂m, tn) and
ψ̃(ρ̂m+1, tn) defined on a uniform grid, we can obtain the



0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normalized radius

ι−
pr

of
ile

 

 

Desired ι−profile
Controlled ι−profile at t=t

f

Fig. 10. Controlled ι profile.

spatial second-order difference formulas:

∂ψ̃

∂ρ̂
(ρ̂1, tn) ≈ −3ψ̃(ρ̂1, tn) + 4ψ̃(ρ̂2, tn)− ψ̃(ρ̂3, tn)

2∆ρ̂
,

∂ψ̃

∂ρ̂
(ρ̂m, tn) ≈ ψ̃(ρ̂m+1, tn)− ψ̃(ρ̂m, tn)

2∆ρ̂
, m ∈ [2,M − 1],

∂ψ̃

∂ρ̂
(ρ̂M , tn) ≈ ψ̃(ρ̂M−2, tn)− 4ψ̃(ρ̂M−1, tn) + 3ψ̃(ρ̂M , tn)

2∆ρ̂
,

where ∆ρ̂ is the spatial step length. The term
1
ρ̂
∂
∂ρ̂

[
ρ̂D(ρ̂)∂ψ̃(ρ̂m,tn)

∂ρ̂

]
is computed using similar second-

order difference formulas in terms of the previously obtained
∂ψ̃(ρ̂m,tn)

∂ρ̂ for m = 1, 2, . . . ,M . The temporal difference
formulas are obtained following identical procedure.

V. NUMERICAL EXAMPLE

The geometrical parameters D(ρ̂), ϑ1(ρ̂) and ϑ2(ρ̂) in
model (5) are shown in Fig. 4. The initial and desired profiles
of the magnetic flux ψ(ρ̂, t) are given in Fig. 5. We use
splines to define the boundary evolutions over ∂M, which
are shown in Fig. 6. Then, we generate a triangular grid
division over the domain M = M1 ∪ M2. We solve the
minimal surface equation (13) over the discrete nodes in both
M1 and M2 using the finite element method.

In order to formulate the linear algebraic equation (15), we
compute every term in (5) in terms of both the temporal and
spatial derivatives, which are shown in Fig. 7. We obtain the
control functions shown in Fig. 8 where we let u2(t) = 10−3.
Thus, we can obtain the physical actuators (denoted by
Pa, Ia and na) taking into account the definitions (6) and
(7). Using the obtained actuator functions, we simulate the
PDE system (5) with boundary conditions (6). The obtained
control functions can drive the system to the vicinity of the
desired profile with a similar shape of the desired profile.
This is illustrated in Fig. 9, where desired and actual flux
profiles are compared. The error at the final time tf seems
to be rather constant with respect to space, which implies
that the desired shape for the ι profile is achieved. Fig. 10
compares the desired ι profile with the actual ι profile at
time tf . The rather constant flux error may be used to
redefine ψd(0) (or ψd(1)) during the definition of the desired
magnetic flux target profile.

VI. CONCLUSION

The open-loop finite-time optimal current profile control
problem arising in tokamak plasmas during the ramp-up
phase of the discharge is solved by using the minimal
surface theory and the least square method (or the quadratic
programming method when actuation constraints are taken
into account). The minimal surface theory is used to generate
the desired transient dynamics and then a tracking problem
can be formulated for the current profile control. Knowing
the transient dynamics, every term containing both temporal
and spatial derivatives in the control-oriented PDE model
can be computed using the finite difference method. Thus,
the control-oriented PDE model becomes a set of algebraic
equations where the only unknowns are the control functions
at different instants of time.

Taking into account the control constraints, these algebraic
equations can be reformulated as a quadratic programming
problem. When no actuator constraint needs to be taken into
account, the quadratic programming problem simplifies to a
simple least square problem. Numerical studies demonstrate
that this approach can significantly reduce computational
effort, showing potential for real-time implementation in a
closed-loop receding-horizon scheme, particularly for long-
discharge tokamaks such as ITER.

Simulation results show that the numerical optimization
procedure can generate control trajectories driving the final
ψ-profile to the proximity of a predefined desired profile.
Future work includes the implementation of this method di-
rectly in terms of the ι variable in order to eliminate relatively
spatially-constant matching errors that can appear in the ψ
variable, which are indeed not important. Alternatively, an
iterative scheme can be designed where the matching error is
used to redefine the desired magnetic flux target profile, and
therefore the transient dynamics, for the following iteration.

REFERENCES

[1] F. Hinton and R. Hazeltine, “Theory of plasma transport in toroidal
confinement systems,” Reviews of Modern Physics, vol. 48, no. 2, pp.
239–308, 1976.

[2] J. Blum, Numerical Simulation and Optimal Control in Plasma
Physics. New York: John Wiley &. Sons, 1988.

[3] Y. Ou, C. Xu, E. Schuster, T. Luce, J. Ferron, and M. Walker,
“Extremum-seeking open-loop control of plasma current profile at the
DIII-D tokamak,” Plasma Phys. Control. Fusion, vol. 50, p. 115001
(24pp), 2008.

[4] C. Xu, J. Dalessio, Y. Ou, and E. Schuster, “Pod-based optimal control
of current profile in tokamak plasmas via nonlinear programming,”
Proceedings of the 2008 American Control Conference, 2008.

[5] R. Courant, Dirichlet’s Principle, Conformal Mapping, and Minimal
Surfaces. New York: Interscience Publishers, Inc., 1950.

[6] R. Courant and D. Hilbert, Methods of Mathematical Physics. New
York: Interscience Publishers, Inc., 1953.

[7] S. Boyd and L. Vandenberghe, Convex Optimization. New York:
Cambridge University Press, 2004.

[8] J. Nocedal and S. Wright, Numerical Optimization (2nd edition). New
York: Springer, 2006.

[9] Y. Ou et al., “Towards model-based current profile control at DIII-D,”
Fusion Engineering and Design, vol. 82, pp. 1153–1160, 2007.

[10] P. Ciarlet, The Finite Element Method for Elliptic Problems. New
York: North-Holland, 1979.

[11] W. Schiesser, The Numerical Method of Lines. New York: Academic
Press, 1991.


