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Abstract— We present a framework to solve an optimal
control problem for parabolic partial differential equations
(PDEs) with diffusivity-interior-boundary actuators. The pro-
posed approach is based on reduced order modeling (ROM)
and successive optimal control computation. First we simulate
the parabolic PDE system with given inputs to generate data
ensembles, from which we then extract the most energetic
modes to obtain a reduced order model based on the proper
orthogonal decomposition (POD) method and Galerkin pro-
jection. The obtained reduced order model corresponds to a
bilinear system. By solving the optimal control problem of
the bilinear system successively, we update the given initial
optimal inputs iteratively until the convergence is obtained. The
simulation results demonstrate the effectiveness of the proposed
method.

I. INTRODUCTION

Many dissipative physical systems can be modeled by
parabolic equations and the research concerning the asso-
ciated control problems has a long history in the field of
distributed parameter system (DPS) theory (e.g., [1]). Physi-
cal actuation can appear in parabolic PDEs in three different
ways: source terms (interior control), boundary conditions
(boundary control) and diffusivity coefficient (diffusivity
control). Topics concerning interior and boundary control
have been studied extensively (e.g., [2], [3] and references
therein). However, control aspects of PDEs via diffusivity
actuator have been seldom discussed (e.g., [4]). In this paper
we consider an optimal control problem for a parabolic
system with the three types of actuation mechanisms. This
problem arises in the current profile control of magnetically
confined fusion plasmas [5], where three physical actuators
(plasma total current, average density and total power) are
used to steer the plasma to achieve a desired profile in a
designated time period.

The design of optimal control strategies, particularly in
closed-loop, for an infinite dimensional system is often
numerically unfeasible. In this case, reduced order modeling
techniques may become crucial. In this paper, we use the
POD method to obtain a low dimensional dynamical system
(LDDS) for the parabolic PDEs. The POD method is an
efficient ROM technique used to obtain LDDS’s from data
ensembles which arise in numerical simulation or exper-
imental observation. The POD method has been widely
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used and proved successful to discover coherent structures
from complex physical processes (see, e.g., [6], [7]). The
obtained reduced order system in this work is a bilinear
system. For the numerical solution of the optimal control,
we propose an iterative method which is based on the Picard
approximation [8].

This paper is organized as follows. The optimal control
problem of a parabolic system is presented in Section II. In
Section III, we discuss the POD method to obtain reduced
order models. In Section IV, the Galerkin projection method
is discussed based on a test function set composed by
dominant POD modes. In Section V, we propose an iterative
convergent method based on the Picard approximation to
compute the optimal controls. A simulation study is pre-
sented in Section VI. Section VII closes the paper by stating
the conclusions.

II. PROBLEM STATEMENT

We consider a 1D parabolic system over

Ω = {(x, t) : 0 ≤ x ≤ L, t0 ≤ t ≤ tf} ,
which is governed by

∂w

∂t
= ζ(x) (1 + uD(t))

∂2w

∂x2
+ ξ(x)uI(t)

w(0, t) = u
(0)
B (t), w(L, t) = u

(L)
B (t)

w(x, 0) = ϕ(x)

(1)

where w(x, t) represents the system state, uD(t) and uI(t)
the diffusivity and interior controls, respectively, u(0)

B (t)
and u

(L)
B (t) the boundary controls, ϕ(x) the initial pro-

file, ζ(x) and ξ(x) differentiable spatial functions. For the
sake of compatibility, it is necessary to assume u(0)

B (0) =
ϕ(0), u(L)

B (0) = ϕ(L). Generally, specific difficulties in-
volved in Dirichlet control problems result from the fact
that they are not of variational type (e.g., [1]). Therefore,
we homogenize the boundary conditions by introducing the
transformation z(x, t) = w(x, t) − h(x, t), where

h(x, t) =
x

L
u

(L)
B (t) +

L− x

L
u

(0)
B (t). (2)

Then, system (1) can be rewritten as

∂z

∂t
= ζ(x)(1 + uD)

∂2z

∂x2
+ ξ(x)uI(t) − ∂h(x, t)

∂t
,

z(0, t) = 0, z(L, t) = 0, z(x, 0) = ϕ(x) − h(x, 0).
(3)

Remark 1: We assume the existence of first order deriva-
tives for the boundary control functions u(0)

B (t) and u(L)
B (t),

which are necessary for the computation of ∂h
∂t in (3).



We state an optimal control problem for the parabolic
system (3) with the following cost functional

min
u
J =

1
2

∫ L

0

〈ztf (x),Sztf (x)〉dx

+
1
2

∫
Ω

〈z,Qz〉dxdt+
1
2

∫ tf

t0

〈Ru, u〉dt,
(4)

where S and Q are weight operators, R the control weight
matrix, u = (uD, uI , u

(0)
B , u

(L)
B )T the control vector, 〈·, ·〉 the

inner product in appropriately defined functional spaces, and
ztf (x) = z(x, tf ) is the state evaluated at t = tf .

III. POD REDUCED ORDER MODELING

We first solve the parabolic PDE system by using a finite
difference scheme [9] on the grid Ωij = (xi, tj), where i, j
are integers with 1 ≤ i ≤ m; 1 ≤ j ≤ n. The set V =
span{z1, · · · , zn} ⊂ R

m refers to a data ensemble consisting
of the snapshots {zj}nj=1 obtained from the simulation. Let
{ψk}dk=1 be the orthonormal basis of the data ensemble V ,
where d = dimV ≤ m. We then project each of the snapshots
onto the basis ψk,

zj =
d∑
k=1

(zj , ψk)ψk, j = 1, · · · , n, (5)

where (·, ·) denotes the inner product of the space L2([0, L]).
The goal of the POD method is to find an orthonormal basis
such that for some predefined 1 ≤ l ≤ d the following
average index is minimized

min
{ψk}l

k=1

1
n

n∑
j=1

∥∥∥∥∥zj −
l∑

k=1

(zj , ψk)ψk

∥∥∥∥∥
2

,

subject to (ψi, ψj) = δij , 1 ≤ i ≤ l, 1 ≤ j ≤ i,

where ‖z‖ =
√
zT z.

(6)

The solution of (6) can be found in the literature,
e.g., [7], [10]. Defining the correlation matrix K ∈ R

n×n as
Kij = 1

n (zj , zi), for i, j = 1, . . . , n, it follows the following
singular value decomposition result [10]:

Theorem 1: Let λ1 > . . . > λl > . . . > λd > 0
denote the positive eigenvalues of the correlation matrix
K and v1, . . . , vl, . . . , vd the associated eigenvectors, where
d = rank(K). Then, the POD basis functions take the form
of

ψk =
1√
λk

n∑
j=1

(vk)jzj =
1√
λk
Zvk, (k = 1, . . . , d) , (7)

where (vk)j is the j-th component of the eigenvector vk
and Z = (z1, · · · , zn) is the collection of all the snapshots.
Moreover, the error (energy ratio) associated with the ap-
proximation with the first l POD modes is

εl =
1
n

n∑
j=1

∥∥∥∥∥zj −
l∑

k=1

(zTj ψk)ψk

∥∥∥∥∥
2

=
d∑

k=l+1

λk. (8)

IV. POD/GALERKIN METHOD

We introduce in this section the POD/Galerkin projec-
tion method, which is used to obtain a low dimensional
dynamical system approximation of the original parabolic
PDE system. We first define the weak solution of the
homogenized parabolic system (3), which will be used for
the POD/Galerkin projection.

Definition 1 (Weak Solution): Denoting by

V = H1
0 (Ω) =

{
v

∣∣∣∣v, ∂v∂x ∈ L2(Ω), and v|∂Ω = 0
}

the test function space, then the weak solution z(x, t) of the
transformed system (3) satisfies

∫ L

0

∂z

∂t
vdx+

∫ L

0

(1 + uD(t))
∂z

∂x

∂(ζv)
∂x

dx

=
∫ L

0

(
ξ(x)uI(t) − ∂h(x, t)

∂t

)
vdx,

(9)

where z, v ∈ V . This expression is obtained by multiplying
both sides of (3) by a test function v, and by integrating by
parts.

Similar to (5), we use only l(≤ d) modes to implement the
expansion of the transformed variable z(x, t), i.e., z(x, t) 	∑l
k=1 αk(t)ψk(x), and substitute this expression for z(x, t)

and v = ψj (1 ≤ j ≤ l) into the weak form (9). Then, we can

obtain the following finite dimensional system
(
D � ∂

∂x

)
:

l∑
k=1

(ψk, ψj)
dαk
dt

+ (1 + uD)
l∑

k=1

(Dψk,D(ζψj))αk

= uI(t)(ξ, ψj) − u̇
(L)
B

(x, ψj)
L

− u̇
(0)
B

(L− x, ψj)
L

.

(10)

Using the following notations

Mjk = (ψj , ψk) =
∫

Ω

ψj(x)ψk(x)dx = δjk (11)

Kjk = − (D(ζψj),Dψk) = −
∫

Ω

∂(ζψj)
∂x

∂ψk
∂x

dx (12)

Fj = (ξ, ψj) =
∫

Ω

ξ(x)ψj(x)dx (13)

Gj = − 1
L

(L− x, ψj) = − 1
L

∫
Ω

(L− x)ψj(x)dx (14)

Hj = − 1
L

(x, ψj) = − 1
L

∫
Ω

xψj(x)dx, (15)

we obtain a matrix representation

dy
dt

= Ky +Kyu1(t) + Fu2(t) +Gu3(t) +Hu4(t) (16)

where y(t) = (α1(t), . . . , αl(t))T ∈ R
l, M,K ∈

R
l×l, F,G,H ∈ R

l, and u = (u1, u2, u3, u4)T =
(uD, uI , u

(0)
B , u

(L)
B )T ∈ R

4. The vector y(t) is the finite
dimensional approximation, with respect to the obtained
POD modes, of the variable z(x, t) in (3). The initial values
are given by αj(0) = (z(·, 0), ψj)L2 , j = 1, 2, · · · , l.



V. BILINEAR QUADRATIC OPTIMAL CONTROL

The finite horizon optimal control problem defined in (4)
can now be rewritten as

J =
1
2
[y(tf )]TS[y(tf )] +

1
2

∫ tf

t0

(yTQy + uTRu)dt (17)

where the symmetric positive semi-definite matrices S and
Q are the finite dimensional representations of S,Q, and R
is a symmetric positive-definite matrix.

By using the maximum principle, a canonical optimality
condition can be obtained, which is a nonlinear two-point
boundary value problem (18) and usually impossible to be
solved explicitly:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẏ =
∂H
∂p

= Ky − Π(y, t)R−1Π(y, t)Tp,

ṗ = −∂H
∂y

= −Qy −KTp −
(
∂ [Π(y, t)u]

∂y

)T
p,

u∗ = −R−1Π(y, t)Tp, y(t0),p(tf ) are given.
(18)

where H = 1
2 (yTQy + uTRu) + pT (Ky + Π(y, t)u) and

Π(y, t)u � Kyu1(t) + Fu2(t) +Gu3(t) +Hu4(t).
A convergent scheme based on quasi-linearization has

been proposed in [11], [12], and references therein, to solve
the optimality conditions successively. In this paper, we
introduce a different scheme to solve the optimal control
problem, which is based on the Picard approximation [8].
The convergence proof is similar to that of the quasi-
linearization method, and makes use of contraction mapping
theory [13].

A. Algorithm based on Picard Approximation

To deal with the optimal control computation of the
bilinear system (16), we propose a successive approach based
on the Picard approximation,

ẏ(k+1) = Ky(k+1) +Ky(k)u
(k+1)
1

+ Fu
(k+1)
2 +Gu

(k+1)
3 +Hu

(k+1)
4 (19)

y(k)(t0) = y0, (k = 0, 1, 2 · · · ), (20)

where the superscript (k) denotes the iteration number. We
rewrite this expression as a standard linear time varying
system

ẏ(k+1) = A(k)y(k+1) + B(k)(t)u(k+1) (21)

y(k+1)(t0) = y0, (k = 0, 1, 2 · · · ) (22)

where A(k) = A = K, B(k)(t) =
[
Ky(k)(t), F,G,H

]
. The

cost functional (17) becomes

J (k+1) =
1
2
[y(k+1)(tf )]TS[y(k+1)(tf )]T

+
1
2

∫ tf

t0

(
[y(k+1)]TQ[y(k+1)] + [u(k+1)]TR[u(k+1)]

)
dt.

(23)

For each iteration k, we have a standard linear quadratic
optimal control problem defined by (21)–(23). The closed
loop system solution is given by

ẏ(k+1) =
[
A− B(k)R−1B(k)T

P (k+1)
]
y(k+1) (24)

with the approximate optimal control law given by

u(k+1)(t) = −R−1
(
B(k)

)T
P (k+1)y(k+1)(t). (25)

The matrix function P (k+1)(·) is governed by the Riccati
matrix differential equation

Ṗ (k+1) = − P (k+1)A−ATP (k+1) −Q

+ P (k+1)B(k)R−1(B(k))TP (k+1)
(26)

with the terminal condition P (k+1)(tf ) = S. Generally, an
initial guess for y(0)(t) is necessary to evaluate B(k) in (21)
and start the iterations. The procedure is stopped when the
control convergence is achieved under given error tolerance.
Finally, we obtain the following feedback law u∗(t) by using
the convergent solution of the Riccati equation P ∗(t)

u∗(t) = −R−1B(t)TP ∗(t)y(t), (27)

where B(t) = (Ky(t), F,G,H) .
Remark 2: In general, the LDDS based on the POD

method depends on the control inputs, which requires the
LDDS to be updated as the iteration evolves and the control
inputs vary. However, for the problem (3)–(4), the dominant
POD modes are strongly related to the system initial state
and fairly independent of the control inputs. Therefore, it is
not necessary to update the LDDS and control law iteratively
in this particular problem.

B. Convergence Proof

In the rest of this section, it remains to prove the conver-
gence of the proposed Picard approximation in solving the
optimal control problem. Namely, we will show the following
limits in appropriate functional spaces

lim
k→∞

y(k) = y∗, lim
k→∞

P (k) = P ∗. (28)

The associated spaces are two Banach spaces (see, e.g., [11],
[8]) B1 = C([t0, tf ],Rl),B2 = C([t0, tf ],Rl×l), with
norms

‖y‖B1 =
∫ tf

t0

‖y(s)‖ds, ‖P‖B2 =
∫ tf

t0

‖P (s)‖ds, (29)

where ‖y‖ =
√∑l

i=1 y2
i , ‖P‖ =

√∑l
i,j=1 P

2
ij .

Remark 3: To show (28), we only need to show that
both

{
y(k)
}

and
{
P (k)

}
are Cauchy sequences. Thus, the

convergence follows due to the completeness of the Banach
spaces. The convergence proof is based on the contraction
mapping theorem for Banach spaces [13], which is motivated
by the convergence proof in [11], [12].



Based on (24) and (26), we obtain differential equations
for the differences y(k+1) − y(k) and P (k+1) − P (k), i.e.,

d

dt

[
y(k+1) − y(k)

]

= A(k)
(
y(k+1) − y(k)

)
+
(
A(k) − A(k−1)

)
y(k),

(30)

d

dt

[
P (k+1) − P (k)

]
+
[
P (k+1) − P (k)

]
A(k)

+ A(k−1)T
[
P (k+1) − P (k)

]
+ P (k)

[
A(k) − A(k−1)

]

+
[
A(k) − A(k−1)

]T
P (k+1) +Q(k) −Q(k−1) = 0,

(31)

where

A(k) = A− B(k)R−1
(
B(k)

)T
P (k+1), (32)

Q(k) = Q+ P (k+1)B(k)R−1
(
B(k)

)T
P (k+1). (33)

In order to express the solutions of (30) and (31), we
introduce the transition matrix Φ(k)(t, t0) which solves

Φ̇(k+1)(t, t0) = A(k)(t)Φ(k+1)(t, t0), (34)

Φ(k+1)(t0, t0) = I. (35)

In the subsequent proof we will use some of the following
properties of the transition matrix Φ(·, ·):

Φ(t, s)Φ(s, t0) = Φ(t, t0), Φ−1(t, s) = Φ(s, t). (36)

The following lemma provides solutions for (30) and (31).
Lemma 2: The solutions of (30) and (31) are

y(k+1) − y(k) (37)

=
∫ t

t0

Φ(k+1)(t, s)
(
A(k)(s) − A(k−1)(s)

)
Φ(k)(s, t0)y0ds

P (k+1) − P (k) =
∫ tf

t

[Φ(k)(s, t)]T

×
{
P (k)

[
A(k) − A(k−1)

]
+
[
A(k) − A(k−1)

]T
P (k+1)

+Q(k) −Q(k−1)
}

Φ(k+1)(s, t)ds. (38)

Proof: The integral expression for y(k+1) − y(k) can
be obtained by directly integrating both sides of the linear
system (30). This expression is written in terms of the
transition matrix Φ(t, t0) defined in (34)–(36). We note that
the initial value of the difference term y(k+1)(t0)−y(k)(t0) =
0 due to (22). Therefore, only the inhomogeneous term of the
solution appears in (37). Additionally, we use the transition
matrix to write y(k)(s) = Φ(k)(s, t0)y0 in (37).

For the integral expression for P (k+1) − P (k),
we first use the definition (34) of the transition
matrix to compute the derivative in time of

[Φ(k)(t, t0)]T
[
P (k+1) − P (k)

]
Φ(k+1)(t, t0),

d

dt

{
[Φ(k)(t, t0)]T

[
P (k+1) − P (k)

]
Φ(k+1)(t, t0)

}

= [Φ(k)(t, t0)]T [A(k−1)(t)]T
[
P (k+1) − P (k)

]
Φ(k+1)(t, t0)

+ [Φ(k)(t, t0)]T
[
P (k+1) − P (k)

]
A(k)(t)Φ(k+1)(t, t0)

+ [Φ(k)(t, t0)]T
d

dt

[
P (k+1) − P (k)

]
Φ(k+1)(t, t0).

(39)

Then we use (31) to rewrite (39) as

d

dt

{
[Φ(k)(t, t0)]T

[
P (k+1) − P (k)

]
Φ(k+1)(t, t0)

}

= [Φ(k)(t, t0)]T
{[

A(k−1) − A(k)
]T
P (k+1) +Q(k−1)

−Q(k) + P (k)
[
A(k−1) − A(k)

]}
Φ(k+1)(t, t0).

(40)

Integrating both sides from t to tf , we can obtain

[Φ(k)(t, t0)]T
[
P (k+1) − P (k)

]
Φ(k+1)(t, t0)

=
∫ tf

t

[Φ(k)(s, t0)]T
{
P (k)

[
A(k) − A(k−1)

]

+
[
A(k) − A(k−1)

]T
P (k+1)

+ Q(k) −Q(k−1)
}

Φ(k+1)(s, t0)ds,

(41)

where the final difference term P (k+1)(tf ) − P (k)(tf ) van-
ishes due to the terminal condition P (k+1)(tf ) = S of (26).
In order to cancel [Φ(k)(t, t0)]T and Φ(k+1)(t, t0) in (41), we
multiply both sides of the equation (41) with [Φ(k)(t0, t)]T

(from the left) and Φ(k+1)(t0, t) (from the right) respectively,
and use (36) to obtain the integral expression for P (k+1) −
P (k).

Theorem 3: There exists an appropriate control weight
matrix R, such that the sequences {y(k)(t)} and {P (k)(t)}
generated by (24) and (26) respectively are convergent.

Proof: Taking the ‖ · ‖B–norm of y(k+1) − y(k) and
P (k) − P (k−1) derived in Lemma 2, we have∥∥∥y(k+1) − y(k)

∥∥∥
B1

≤ μ1

∥∥∥A(k) − A(k−1)
∥∥∥

B2

(42)∥∥∥P (k+1) − P (k)
∥∥∥

B2

≤ μ2

∥∥∥A(k) − A(k−1)
∥∥∥

B2

+ μ3

∥∥∥Q(k) −Q(k−1)
∥∥∥

B2

(43)

where

μ1 = max
t0≤s≤t≤tf

∥∥∥Φ(k+1)(t, s)
∥∥∥ ∥∥∥Φ(k)(s, t0)

∥∥∥ ‖y0‖ ,

μ2 = max
t0≤t≤s≤tf

∥∥∥Φ(k)(s, t)
∥∥∥(‖P (k+1)‖ + ‖P (k)‖

)

×
∥∥∥Φ(k+1)(s, t)

∥∥∥ ,
μ3 = max

t0≤t≤s≤tf

∥∥∥Φ(k)(s, t)
∥∥∥ ∥∥∥Φ(k+1)(s, t)

∥∥∥ .



By noting the definitions (32) and (33), and by defin-
ing S(k) � B(k)R−1B(k)T

, we obtain the following norm
bounds,∥∥∥A(k) − A(k−1)

∥∥∥
B2

=
∥∥∥−S(k−1)P (k) + S(k)P (k+1)

∥∥∥
B2

≤
∥∥∥(S(k) − S(k−1)

)
P (k+1)

∥∥∥
B2

+
∥∥∥S(k−1)

(
P (k+1) − P (k)

)∥∥∥
B2

(44)

∥∥∥Q(k) −Q(k−1)
∥∥∥

B2

≤
∥∥∥P (k+1) − P (k)

∥∥∥
B2

∥∥∥S(k)P (k+1)
∥∥∥

B2

+
∥∥∥P (k)

∥∥∥
B2

∥∥∥S(k) − S(k−1)
∥∥∥

B2

∥∥∥P (k)
∥∥∥

B2

+
∥∥∥P (k)S(k)

∥∥∥
B2

∥∥∥P (k+1) − P (k)
∥∥∥

B2

. (45)

Now we connect the terms in (44) and (45) with the factors∥∥y(k+1) − y(k)
∥∥

B2
and

∥∥P (k+1) − P (k)
∥∥

B2
to obtain

∥∥∥S(k) − S(k−1)
∥∥∥

B2

≤
∥∥∥B(k) − B(k−1)

∥∥∥
B2

∥∥∥R−1B(k)T
∥∥∥

B2

+
∥∥∥B(k−1)R−1

∥∥∥
B2

∥∥∥B(k)T − B(k−1)T
∥∥∥

B2

≤

(∥∥∥B(k)T
∥∥∥

B2

+
∥∥B(k−1)

∥∥
B2

)
‖K‖B2

‖R‖
∥∥∥y(k) − y(k−1)

∥∥∥
B2

.

(46)

Using the norm bound estimates in (42)–(46), we obtain∥∥∥y(k+1) − y(k)
∥∥∥

B1

≤ ν1

∥∥∥P (k+1) − P (k)
∥∥∥

B2

+ ν2

∥∥∥y(k) − y(k−1)
∥∥∥

B2

(47)

where μ1 and μ2 are defined by ν1 = μ1

∥∥S(k−1)
∥∥

B2
, ν2 =

μ1‖P (k+1)‖B2

(∥∥∥B(k)T
∥∥∥

B2
+‖B(k−1)‖

B2

)
‖K‖B2

‖R‖ , and
∥∥∥P (k+1) − P (k)

∥∥∥
B2

≤ ν3

∥∥∥P (k+1) − P (k)
∥∥∥

B2

+ ν4

∥∥∥y(k) − y(k−1)
∥∥∥

B2

(48)

where ν3 = μ2

∥∥S(k−1)
∥∥

B2
μ3

∥∥S(k)
∥∥

B2
(
∥∥P (k)

∥∥
B2

+
∥∥P (k+1)

∥∥
B2

), ν4 = μ2ν2
μ1

+ μ3ν2
μ1

‖P (k)‖2

B2

‖P (k+1)‖
B2

.We note that

(48) can be solved with respect to
∥∥P (k+1) − P (k)

∥∥
B2

, i.e.,
∥∥∥P (k+1) − P (k)

∥∥∥
B2

≤ ν4
1 − ν3

∥∥∥y(k) − y(k−1)
∥∥∥

B2

. (49)

By substituting (49) into (47), we obtain
∥∥∥y(k+1) − y(k)

∥∥∥
B1

≤ ν2 + ν4(ν1 − ν2)
1 − ν4

∥∥∥y(k) − y(k−1)
∥∥∥

B2

.

If ‖R‖−1 is small enough, we can make sure
that the coefficients involved are less than one, i.e.,
max

{∣∣∣ ν4
1−ν3

∣∣∣ , ∣∣∣ ν2+ν4(ν1−ν2)1−ν4

∣∣∣} < 1. Thus, we can conclude

that both {P (k)} and {y(k)} are Cauchy sequences in
the associated Banach spaces, i.e.,

∥∥P (k+1) − P (k)
∥∥

B2
→
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Fig. 1. Simulation of the parabolic PDE system (3) with pure Dirichlet
boundary conditions using a Crank-Nicolson scheme (top); reconstruction
of the profile evolution by using 7 POD modes, where the approximate error
is ‖Y − YPOD‖∞ = 6.1303 × 10−4 (bottom).
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Fig. 2. The first four energetic POD modes (l = 4) with energy ratio
ε4 ≈ 1 (see equation (8)); The corresponding SVD eigenvalues are λ1 =
592.3216, λ2 = 29.8354, λ3 = 1.9260, λ4 = 0.0522.

0,
∥∥y(k+1) − y(k)

∥∥
B1

→ 0. Due to the completeness of
the Banach space, any Cauchy sequence in such a com-
plete space is convergent, thus limk→∞ P (k)(t) = P ∗(t),
limk→∞ y(k)(t) = y∗(t).

VI. SIMULATION STUDY

We enforce the diffusivity control to satisfy |uD(t)| <
1 for any t ∈ [t0, tf ] = [0, 6]. We use the Crank-
Nicolson numerical scheme (M = 60, N = 80, L =
π) to simulate the system (3) with the following settings:
uD(t) = 0.01e−t, ζ(x) = 1, uI(t) = 1 − e−t, ξ(x) =
x
L

(
1 − x

L

)
, u

(0)
B (t) = sin t + 0.2t, u(L)

B (t) = sin 2t, ϕ(x) =
sinx. The system evolution and the dominant POD modes
are shown in Fig. 1 and Fig. 2, respectively.

By using the first four POD modes (l = 4) we can con-
struct a bilinear system with the following system matrices:

K=

⎛
⎜⎜⎝

−1.07 0.40 −0.36 0.29
0.40 −4.70 1.18 −3.23
−0.36 1.18 −11.30 1.66
0.29 −3.23 1.67 −23.67

⎞
⎟⎟⎠ , F=

⎛
⎜⎜⎝

−1.63
−0.16
−0.05
0.00

⎞
⎟⎟⎠ ,
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Fig. 3. Convergent solution of the Riccati equation after k = 3 iterations,
‖P (3) − P (2)‖∞ = 1.3766 × 10−4.
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Fig. 4. Optimal controls (the third iteration).

G =

⎛
⎜⎜⎝

3.85
2.33
1.79
0.97

⎞
⎟⎟⎠ ,H =

⎛
⎜⎜⎝

4.28
−1.97
1.26
−1.05

⎞
⎟⎟⎠ , y(0) =

⎛
⎜⎜⎝

−6.33
−0.65
0.06
0.03

⎞
⎟⎟⎠ .

For the cost functional (17), we choose Q = I4×4, S =
diag(10, 5, 0.1, 0) and R = diag(400, 200, 150, 80). We
use the proposed iterative scheme to compute the optimal
controls. After the iteration k = 3, the solution of the Riccati
equation converges (Fig. 3). Both the control sequences and
system response are shown in Fig. 4 and Fig. 5. A comparison
of the system evolutions with and without controls is shown
in Fig. 6.

VII. CONCLUSIONS

In this paper we study a controlled parabolic system with
three types of actuation: diffusivity, interior and boundary
control. By using the POD technique, we derive a low
dimensional dynamical system which governs the dominant
dynamics of the original parabolic system. The reduced
order system is of a bilinear form. We propose a convergent
successive scheme based on the Picard approximation to
compute the solution of a finite-time optimal control defined
for the reduced-order bilinear system. Simulation studies
show the effectiveness of the model reduction technique and
the successive optimal control computation.
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