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Abstract— A tokamak discharge requires accurate feedback
control of many of the discharge parameters, including plasma
shape. Real-time estimation of the plasma boundary, which
is not directly measurable, is critical for shape control. One
of the available methods for plasma boundary estimation is
based on the equilibrium reconstruction. Equilibrium codes
calculate the distributions of flux and toroidal current density
over the plasma and surrounding vacuum region that best fit
the external magnetic measurements in a least square sense,
and that simultaneously satisfy the MHD equilibrium equation
(Grad-Shafranov equation). Although these codes use direct
measurements of the currents in the plasma and poloidal
coils, they usually neglect the current induced in the vessel
of the tokamak due to the simple fact that they cannot be
directly measured. Kalman filtering theory is employed in this
work to optimally estimate the current in the tokamak vessel.
The real-time version of the EFIT code is modified to accept
the estimated vessel currents with the goal of improving the
equilibrium reconstruction for the DIII-D tokamak.

I. INTRODUCTION

The efficient and safe operation of large fusion devices
relies on accurate knowledge of many of the discharge
parameters. Unfortunately, the values of several discharge
parameters, such as plasma shape and current density dis-
tribution, are not directly measured. However, these values
can be reconstructed from magnetic field and flux measure-
ments. Equilibrium codes, such as EFIT [1], calculate the
distributions of flux and toroidal current density over the
plasma and surrounding vacuum region that best fit, in a
least square sense, the external magnetic measurements, and
that simultaneously satisfy the MHD equilibrium equation
(Grad-Shafranov equation) [2]. Once the flux distribution
is known, it is possible to reconstruct the plasma boundary
for shape control purposes.

The most general approach to the fitting problem treats
all toroidal current sources as unknown values. Thus, in
addition to the plasma toroidal current, the currents in the
external poloidal field (PF) coils (see Fig. 1) can be free
parameters and, potentially, the induced currents in the
vacuum vessel and support structures (see Fig. 1) can be
treated this way as well. There are direct measurements of
the external PF coil currents, but these measurements have
uncertainties which can be properly accounted for in the
least squares fitting procedure by solving for the external
currents using the measurements as constraints. A similar
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Fig. 1. Poloidal cross section of the DIII-D tokamak. The layout highlights
the shaping poloidal field coils, vessel structure, plasma boundary, nested
flux surfaces and magnetic axis.

procedure could be followed for the vessel currents if they
were measurable. Unfortunately, this is not usually the case.

Kalman filtering theory is used in this work to opti-
mally estimate the current in the tokamak vessel. With the
ultimate goal of improving the equilibrium reconstruction
for the DIII-D tokamak, the real-time version of the EFIT
algorithm [3] is modified to accept the estimated vessel
currents. Furthermore, it will be shown that the integration
of Kalman filter estimation into the equilibrium recon-
struction algorithm provides a new way to validate and
refine the plasma dynamic model. The important effect of
vessel or structure currents has been recognized in many
plasma control applications [3]–[6]. Some previous effort
on incorporating an estimate of the vessel current into
the equilibrium reconstruction algorithm has been done at
NSTX [7]. Estimated values for the resistances in each one
of the vessel segments are used to compute the currents
for each vessel segment, given the measured loop voltages.
However, since the discrete loop voltage sensors do not
identically reproduce the voltage over the vessel segments,
the computed vessel currents suffer from relatively large
errors. The Kalman filter is a refinement on the NSTX
approach which provides additional physics for improving



the exactness of the fit, once all the competing physics
constraints have been reconciled.

This paper is organized as follows. In Section II, the im-
portance of the equilibrium reconstruction for plasma shape
control is discussed. Section III describes the Kalman-filter-
based optimal estimation approach for the induced vessel
currents. In this section, the linearized dynamic model of the
plasma is also introduced. How to integrate the estimated
vessel currents into the real-time equilibrium reconstruction
algorithm is addressed in Section IV. Section V presents
some initial results. Finally, conclusions and identified fu-
ture work are presented in Section VI.

II. SHAPE CONTROL WITH EQUILIBRIUM
RECONSTRUCTION

The primary objective of equilibrium reconstruction is
two-fold: (1) substantially improve the accuracy with which
the plasma boundary is estimated, thereby improving con-
trol, (2) obtain reliable (consistent both with known physics
and with available measurements) estimates of internal
parameters, such as the current profile.

Assuming an axisymmetric plasma (the behavior of the
plasma is independent of the toroidal angle coordinateφ)
in a cylindrical coordinate system{r, φ, z}, the equilib-
rium MHD equations (fluid mechanics motion equation +
Maxwell’s equations) reduce to the Grad-Shafranov equa-
tion

∆∗ψp = −µ0rJφ, (1)

which describes the force balance of the tokamak equilib-
rium. The elliptic operator∆∗ is given by

∆∗ψ =
∂2ψ

∂z2
+ r

∂

∂r

(

1

r

∂ψ

∂r

)

,

Jφ is the toroidal component of the current density, and
ψ = ψp + ψext is the total poloidal flux per radian, i.e.,
ψ = ψpol/2π, whereψp is the poloidal flux resulting from
the plasma current andψext is the poloidal flux generated
by current in the sources external to the plasma, like coil
and induced current.

The task of the equilibrium reconstruction is to calculate
the distributions in ther, z plane of the poloidal flux
ψ, and the toroidal current densityJφ, that provide a
least squares best fit to the diagnostic data and which
simultaneously satisfy the Grad-Shafranov equation (1).
The solution to the equilibrium reconstruction problem is
obtained through an iterative algorithm that estimates the
magnetic measurementCm+1 using the fluxψm in the
plasma domainΩm calculated in the previous stepm. The
magnetic measurements usually have two contributions, one
due to the external conductor currentsIc, and the other due
to the plasma currentJφ. The magnetic measurementC at a
generic pointPj is obtained from the current sources placed

at locationsPi’s by means of Green’s functionsG [8],

Cm+1

Pj
=

Nc
∑

i=1

G(Pj , Pi)Ici
+

∫ ∫

Ωm

G(Pj , P )Jφ(P, ψm)dP.

(2)
The estimated magnetic measurementsC ’s generated by
EFIT, at certain locations where magnetic sensors are
placed, are compared with data from those magnetic sen-
sors, to obtain the plasma currentJm+1

φ (ψm) that mini-
mizes the quadratic error

χ2 =

Nmeas
∑

k=1

(

Mk − Ck

σk

)2

, (3)

where Mk, Ck, and σk are the measured values, the
computed values, and the error associated with thek
measurement. The flux function is finally updated solving
the Grad-Shafranov equation (1),

∆∗ψm+1 = −µ0rJ
m+1

φ (ψm). (4)

This procedure is not sufficiently fast for real-time ap-
plications, such as feedback shape control. The real-time
version of EFIT [3] uses a two-loop scheme. A fast loop
performs the least-squares fit (3) using new measured values
from the magnetic sensors in each iteration but using the
last equilibrium flux provided by the solution of (4). The
plasma currentJφ in each iteration is used to compute,
through Green’s functions, the magnetic flux values at a
predefined set of control points (geometrical points at which
the poloidal magnetic flux is regulated), which are fed to
the shape controller. A slow loop, approximately 25 times
slower than the fast loop, solves the equilibrium problem
(4) to update the magnetic fluxψ.

In real-time EFIT [3], the diagnostic data presently
consist of measurements of magnetic flux and field outside
the plasma, plasma plus vessel current from a Rogowskii
loop, field internal to the plasma from a Motional Stark
Effect diagnostic, and current in the poloidal field and ohmic
heating coils. One of the main contributions of this work is
the incorporation of estimated induced vessel currents into
the diagnostic data set. The detailed modifications of the
real-time EFIT algorithm, to take into account the vessel
current estimations as constraints in the fitting procedure,
are presented in Section IV.

III. VESSEL CURRENT ESTIMATION METHOD

A. Plasma Response Model

The system composed of plasma, shaping coils, and
passive structure can be described using circuit equations
derived from Faraday’s Law, and radial and vertical force
balance relations for a particular plasma equilibrium. In
addition, rigid radial and vertical displacement of the equi-
librium current distribution is assumed, and a resistive
plasma circuit equation is specified. The result is a circuit
equation describing the linearized response, around a par-
ticular plasma equilibrium, of the conductor-plasma system



to voltages applied to active conductors [9]. The model
equations for poloidal field (PF) coil current, vessel (passive
conductor) currents, and plasma current are respectively

M∗

ccİc +RcIc +M∗

cv İv +M∗

cpİp = Vc

M∗

vv İv +RvIv +M∗

vcİc +M∗

vpİp = 0

M∗

ppİp +RpIp +M∗

pcİc +M∗

pv İv = Vno

(5)

whereIc, Iv, andIp represent currents in PF coils, vessel,
and plasma, respectively.Vc is the vector of voltages applied
to the PF coils, andVno is the effective voltage applied
to drive plasma current by noninductive sources.Ra, for
a ∈ {c, v, p}, represents the resistance matrix of each one
of the circuits.M∗

ab = Mab + Xab are plasma-modified
mutual inductance, wherea, b ∈ {c, v, p}. Mab is the
usual conductor-to-conductor mutual inductance, andXab

describes a plasma motion-mediated inductance, linearized
around the plasma equilibrium. The plasma response matrix
Xab, representing changes in flux due to plasma motion, are
functions only of the equilibrium current distributioneq and
vacuum magnetic fieldBeq. TheXab matrix is computed
starting with an EFIT equilibrium [1], and added to the
mutual inductanceMab as part of the model construction
process.

In contrast to the dynamic equation (5), the mapping from
currents to outputs (for example, diagnostic data such as
flux loops, magnetic probes, Rogowskii loops) is expressed
explicitly in terms of current deviations from equilibrium
values [10]:

δy = CIc
δIc + CIv

δIv + CIp
, δIp (6)

whereδT = T−Teq, for (T ∈ {Ic, Iv, Ip, y}. The subscript
“eq” denotes values at the equilibrium from which the
model (5)–(6) are derived. In the rest of the paper,δ will
be omitted for simplicity, but it will be implicitly implied
that the output equation is written in terms of deviation
variables. The matricesCIs

, for Is ∈ Ic, Iv, Ip, are defined
as

CIs
=

∂y

∂Is
+
∂y

∂rc

∂rc
∂Is

+
∂y

∂zc

∂zc

∂Is
, (7)

where the first term on the right hand side is the “direct”
response, e.g., given by Green’s function calculations in
the case of magnetic probes or flux loops. The remaining
terms are responses due to motion of the plasma;rc andzc

denote the radial and vertical positions of the plasma current
centroid, i.e., “center of mass” of the current. It is common
to include disturbance terms describing the response to
variations in kinetic and current profile quantities such
as poloidal beta (βp), and normalized internal inductance
(ℓi) [11]. However, disturbance terms are neglected in the
present study.

B. Kalman Filter Estimations

For Kalman filter design purposes, the linearized plasma
response model (5)–(6) is written in state space form

ẋ = Ax+Bu
y = Cx+Du

(8)

where

x =





Ic
Iv
Ip



 , u =





Vc

0
Vno



 .

The system matrices are

A = −M−1R, B = M−1

C =





CIc

CIv

CIp



 , D = 0

where

M =





M∗

cc M∗

cv M∗

cp

M∗

vc M∗

vv M∗

vp

M∗

pc M∗

pv M∗

pp



 , R =





Rc 0 0
0 Rv 0
0 0 Rp



 ,

andR is a diagonal matrix. If the estimation of the vessel
current is the only objective, a simplified model for the
dynamics of the vessel current can be extracted from (5).
The second equation in (5), combined with (6), can be
rewritten as

ẋv = Avxv +Bvuv +Gvw1

y = Cvxv +Dvuv + w2

(9)

where

xv = Iv, uv =









Ic
Ip
İc
İp









.

The new system matrices are

Av = −M∗

vv
−1Rv,

Bv = −M∗

vv
−1

[

0 0 M∗

vc M∗

vp

]

, Gv = Bv

Cv = CIv
, Dv =

[

CIc
CIp

0 0
]

.

The outputy may include flux loops, magnetic probes,
and Rogowskii loops. Process noise or disturbancew1, and
measurement noisew2 has been added to the model (9).
The noise covariance matrices are given by

ε{w1w
T
1 } = Qn, ε{w2w

T
2 } = Rn.

To optimally estimate the vessel currentIv, we implement
a Kalman filter [12]

˙̂x = Avx̂v +Bvuv +K(y − Cvx̂v −Dvuv), (10)

where x̂v is the estimation forxv. Solving the Riccati
equation

0 = AvP + PAT
v +GvQnG

T
v − PCT

v R
−1
n CvP,

we can obtain the Kalman gain matrix

K = PCT
v R

−1
n .

Carefully tuningQn andRn, based on the knowledge of
the system, an optimal estimation of the vessel current can
be obtained.
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Fig. 2. Cross-section of discretized vessel model.

IV. EQUILIBRIUM RECONSTRUCTION WITH
VESSEL CURRENTS

The equilibrium solution consists of values ofψ andJφ

on a rectangular grid which covers the entire area of the
vacuum vessel. The current is modeled as being distributed
among a set of rectangular elements, one centered at each
grid point, with the total number of grid points typically
1000 or more. The large number of grid points allows the
solution to provide a realistic distribution of the current
density, including provision for finite current density at the
discharge edge. In the Grad-Shafranov equation (1), the
toroidal current densityJφ is written as

Jφ = r

(

∂P

∂ψ
+

µ0F

4π2r2
∂F

∂ψ

)

, (11)

whereP is the plasma pressure, and the auxiliary function
F is proportional to the poloidal currentIpol = 2πF/µ0

flowing in the plasma. AlthoughJφ is modeled as being
distributed among a large set of rectangular elements, it is
parameterized by only a small number of free parameters.
Simple polynomial models are used to representP ′ and
FF ′:

∂P

∂ψ
=

np
∑

n=0

αn

[

ψN +
∂ψN

∂z
δz

]n

(12)

µ0F

4π2

∂F

∂ψ
=

nF
∑

n=0

γn

[

ψN +
∂ψN

∂z
δz

]n

(13)

whereαJ = [α0, α1, ..., αnp
], γJ = [γ0, γ1, ..., γnF

], andδz
are the free parameters. The free parameterδz allows the
equilibrium reconstruction to follow the vertical movement
of the discharge. Of the terms containingδz, only those
linear in δz are retained in (12) and (13). We define
Ω = [αJ, γJ, δz] as the set of free parameters in the
parameterizations ofJφ. The normalized flux is defined as
ψN = (ψ − ψm)/(ψb − ψm), whereψm is the poloidal

flux at the magnetic axis (center of the nested magnetic
flux surfaces, see Fig. 1 ), andψb is the poloidal flux at
the plasma boundary. The normalized fluxψN provides
an adjustable mapping from the small number of fitting
parameters to the large number of grid points on ther,z
plane. The discretized plasma current model is written as

Iφ = Ψ × Ω (14)

where there is one row in the matrixΨ for each grid element
and the column values are the coefficients of elements of
αJ and γJ from equations (12) and (13). Theith row of
the matrixΨ is given by

Ψi =[ri, riψNi
, ..., riψ

np

Ni
,

1

ri
,
ψNi

ri
, ...,

ψnF

Ni

ri
, Cδzi

], (15)

where the subindexi denotes that the quantities are evalu-
ated at theith grid point. All terms linearly proportional to
δz are collected intoCδz

. In addition to the plasma toroidal
current, the currents in the external poloidal field (PF) coils,
Ic, have been considered so far as free parameters. The
direct measurements of the external PF coil currents have
uncertainties that are properly accounted for in the least
squares fitting procedure by solving for the external currents
using the available measurements as constraints. The DIII-
D flux loops are wired so that all flux measurements are
made relative to the total flux measured at a single reference
position. This reference flux value (ψref ) has also been
treated then as a free parameter with the measured value
weighted by its uncertainty used as a constraint. In this
work, we add the vessel current to the set of free parameter.
With this purpose, the vessel structure has been discretized
into 28 segments as it is shown in Fig. 2. The 28 vessel
currents,Iv, are considered as free parameters in the fitting
procedure. The optimal vessel current estimations, provided
by the Kalman filter implementation, are incorporated as
an additional constraints after weighting them by their
uncertainties. Thus, the total vector of unknowns for the
fitting problem is now

U = [Ic, Iv,Ω, ψref ]. (16)

Considering the discretization of the toroidal current (14),
and including the discretized vessel currents, (2) can be
rewritten in matrix form as

C = ζ × U. (17)

The diagram in Fig. 3 shows the response matrixζ. Blocks
(a) and (b) in the matrix contain the precalculated Green’s
function coefficients that specify the contribution to the
magnetic measurementC by each of the external coil
currents and induced vessel currents. Block (c) represents
the contribution to the magnetic measurementC by the
plasma current at each grid element. When the magnetic
measurements are calculated at positions where magnetic
diagnostics are placed, we are interested in finding the
vector U that makes these measurements equal to the
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values measured by the sensors, i.e., the diagnostic data
D. Therefore, (17) is rewritten as

D = ζ × U. (18)

Because the number of diagnostic measurements is usually
much larger than the number of fitting parameters, (18) is
not an exact relation. This leads to the requirement that
U be obtained in a least squares sense. After multiplying
both sides of (18) by a weight vectorW , that has one
element for each diagnostic signal equal to the inverse of the
measurement uncertainty (or estimation uncertainty, in the
case of the vessel currents). The solution that minimizes
(3) is obtained by computing the pseudo-inverse of the
weighted response matrix, i.e.,

U = (W · ζ)−1 × (W ·D) (19)

where the operator “·” indicates multiplication of each
column of the matrix by the vector, and the operator “×”
indicates matrix multiplication. The vector of all the ax-
isymmetric current sources,Iaxi = [Ic, Iv, Iφ], is assembled
from the solution forU . From Iaxi the values of flux at
a predefined set of control points are computed through
Green’s functions, and fed into the shape controller. The
flux is updated by solving (4), which ensures the fulfillment
of the Grad-Shafranov equation.

V. RESULTS

We use a data set from experimental discharges at DIII-
D to study the effectiveness of the Kalman filter (10) in
estimating the induced vessel currents. In all the cases
presented in this subsection, we consider that the output
vector of the system (9) is composed only of magnetic flux
and Rogowskii loops.

We estimate the vessel current for shot 118572 in the
interval 4.0 – 4.5 sec. By carefully tuningQn and Rn,
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Fig. 4. Kalman filter estimation (shot 118572), 4.0∼ 4.5 sec.

TABLE I

χ2 COMPARISON FOR SHOTS121858AND 900011

χ2 at 2400 ms
shot PF-coil B-probe flux-loops total

121858 1.58 31.77 6.84 40.218
900011 1.45 17.85 3.73 23.020

the output of the Kalman filter matches the diagnostic
data. Fig 4 shows the results for some of the output
variables; “PCRL03” is one of the Rogowskii loops, and
“PCPSI89NB”, “PCPSI89FB” and “PCPSI7B” are three of
the magnetic flux loops. The figure compares measured
(blue) and estimated (green) values. Due to the good
matching it is difficult to distinguish both signals from the
figure.

We compare now reconstruction results for physical shot
121858, for the time interval 2.0 – 3.0 sec, with and without
using the vessel current estimates. The reconstruction results
obtained using the estimates of the vessel currents are stored
in the virtual shot 900011, while those obtained without us-
ing the vessel currents estimates are simply labeled 121858.
Table I compares the resultingχ2 at t = 2400 ms for both
shots. The PF coilχ2 contains vessel current errors as well
as coil current errors for 900011. We can appreciate thatχ2

is indeed reduced by incorporating the currents of the vessel
segments as free parameters. The similarities between the
vessel currents estimated by the Kalman filter and the real
time EFIT, shown in Fig. 6, suggest that the fitting error
is minimized at a physical solution. Thus, the equilibrium
reconstruction process has been improved.

The flux surfaces and plasma boundary for both shots are
compared in Fig. 5. We expect this similarity for equilibria
in plasma current flattop, since vessel currents are relatively
small at those times. The objective is to validate the method
with these comparisons, then apply the method to situations
where large and changing vessel currents are expected, such
as in plasma current rampup or rampdown.



Fig. 5. Discharge shape comparison for shots 121858 and 900011 at 2400
ms.

VI. CONCLUSIONS

The proposed Kalman filter solution improves on the
physics model used for the fit by adding free parameters
representing currents flowing in the vessel conductors.
This approach also provides additional physics, defined by
the dynamics of the current evolution, that constrain the
currents that flow in these conductors. The advantages of
the Kalman filter estimated currents are that they provide
current estimates to the reconstruction with substantially
reduced noise levels and at the same time are able to track
fast changes in vessel currents.

For the inner vessel segments, the currents estimated by
the Kalman filter and the real-time EFIT show considerable
disagreements. The implementation of the Kalman filter,
in addition to allowing equilibrium reconstruction enhance-
ment, gives us the opportunity of improving the dynamic
models. Using the vessel currents estimated by EFIT as the
output of the dynamic model (9), a system identification
approach can be followed to better estimate the uncertain
parameters in the dynamic model such as the resistances
of the vessel segments. Kalman filter theory arises as a
powerful tool for model reconciliation, which is a very
common, and at the same time difficult, problem in plasma
physics.

REFERENCES

[1] L. L. Lao et al., “Reconstruction of current profile parameters and
plasma shapes in tokamaks,”Nuclear Fusion, vol. 25, pp. 1611–1622,
1985.

[2] J. P. Freidberg,Ideal magnetohydrodynamics. New York: Plenum
Press, 1987.

[3] J. R. Ferron, M. L. Walker, L. L. Lao, H. E. S. John, D. A.
Humphreys, and J. A. Leuer, “Real time equilibrium reconstruction
for tokamak discharge control,”Nuclear Fusion, vol. 38, pp. 1055–
1066, 1998.

[4] G. Ambrosino and R. Albanese, “Magnetic control of plasma current,
position, and shape in tokamaks: a survey or modeling and control
approaches,”IEEE Control Systems Magazine, vol. 25, pp. 76 – 92,
2005.

2000 2500 3000
−2000

−1000

0

1000
vessel current 2

2000 2500 3000
−200

0

200

400

600
vessel current 8

2000 2500 3000
−1000

−500

0

500

1000
vessel current 16

2000 2500 3000
−500

0

500

1000

1500
vessel current 24

Fig. 6. Kalman filter estimatedIv and real-time EFIT computedIv.

[5] Y. Nagayama, M. Naito, Y. Ohki, and K. Miyamoto, “Feedback
control of vertical plasma position in non-circular tokamak,” Nuclear
Fusion, vol. 24, pp. 1243–1249, 1984.

[6] E. A. Lazarus and G. H. Neilson, “Solutions to the tokamakcircuit
equations with force balance for a massless plasma,”Nuclear Fusion,
vol. 27, pp. 383–396, 1987.

[7] S. A. Sabbaghet al., “Equilibrium properties of spherical torus
plasmas in NSTX,”Nuclear Fusion, vol. 41, pp. 1601 – 1611, 2001.

[8] E. W. Weisstein, “Green’s function,” FromMathWorld – A Wolfram
Web Resource, Wolfram Research, Inc., 1999. [Online]. Available:
http://mathworld.wolfram.com/GreensFunction.html

[9] D. A. Humphreys, M. Walker, J. A. Leuer, and J. Ferron, “Initial im-
plementation of a multivariable plasma shape and position controller
on the DIII-D tokamak,”IEEE Conference on Control Applications,
pp. 412 – 418, 2000.

[10] M. L. Walker and D. A. Humphreys, “Valid coordinate systems
for linearized plasma shape response models in tokamaks,”General
Atomics Report, vol. GA-A25042, 2005.

[11] D. A. Humphreys, J. A. Leuer, and M. L. Walker, “Minimal plasma
response models for degin of tokamak equilibrium controllers with
high dynamic accuracy,”Bull. Am. Phys. Soc., vol. 44, pp. 175–182,
1999.

[12] A. Gelb, Ed., Applied optimal estimation. Cambridge, Massa-
chusetts: M.I.T. Press, 1989.


