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Abstract— We present a PDE observer that estimates the
velocity, pressure, electric potential and current fields in a
magnetohydrodynamic (MHD) channel flow, also known as
Hartmann flow. This flow is characterized by an electrically
conducting fluid moving between parallel plates in the presence
of an externally imposed transverse magnetic field. The system
is described by the inductionless MHD equations, a combination
of the Navier-Stokes equations and a Poisson equation for
the electric potential under the so-called MHD approximation
in a low magnetic Reynolds number regime. Our observer
consists of a copy of the linearized MHD equations, combined
with linear injection of output estimation error, with observer
gains designed using backstepping. Pressure, skin friction and
current measurements from one of the walls are used for output
injection. For zero magnetic field or non-conducting fluid, the
design reduces to an observer for the Navier-Stokes Poiseuille
flow, a benchmark for flow control and turbulence estimation.
The observer design for non-discretized 3-D MHD or Navier-
Stokes channel flow has so far been an open problem.

I. INTRODUCTION

Recent years have been marked by dramatic advances in
active flow control, but developments have had little effect
on conducting fluids moving in magnetic fields. There are
some recent results in stabilization though, for instance using
nonlinear model reduction [4], open-loop control [8] and op-
timal control [12]. Other applications have been considered,
for example mixing enhancement for cooling systems [20].
Some experimental results are available, showing that control
of such flows is technologically feasible; actuators consist of
magnets and electrodes [9], [19], [25]. Mathematical studies
of controllability of magnetohydrodynamic flows have been
done, though they do not provide explicit controllers [6],
[24]. Despite being a subject of practical interest, there are no
previous results in estimation of velocity and electromagnetic
fields for conducting fluids.

In this paper, we consider an incompressible MHD chan-
nel flow, also known as the Hartmann flow, a benchmark
model for applications such as cooling systems (computer
systems, fusion reactors), hypersonic flight, propulsion and
laser applications. In this flow, an electrically conducting
fluid moves between parallel plates and is affected by an
imposed transverse magnetic field. When a conducting fluid
moves in the presence of a magnetic field, it produces an
electric field due to charge separation and subsequently an
electric current. The interaction between this created electric
current and the imposed magnetic field originates a body
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force, called the Lorentz force, which acts on the fluid itself.
The velocity and electromagnetic fields are mathematically
described by the MHD equations [18], which are the Navier-
Stokes equation coupled with the Maxwell equations.

Our observer obtains an estimate of the whole velocity,
pressure, electric potential and current fields, derived only
from wall measurements. Obtaining such an estimate can
be of interest in itself, depending on the application. For
example, the absence of effective state estimators modeling
turbulent fluid flows is considered one of the key obstacles
to reliable, model-based weather forecasting. In other appli-
cations in which active control is needed to achieve a given
engineering objective, such as drag reduction [19], designs
usually assume unrealistic full state knowledge, therefore a
state estimator is necessary for effective implementation.

This paper extends our previous work for estimation of
the velocity field in a 2-D channel flow [28]. Our observer
is designed for the continuum MHD model. The main idea
of the design is to apply the dual backstepping method for
observers [23] to the estimator error system; this system is
similar to the Orr-Sommerfeld-Squire system of PDE’s and
presents the same difficulties (non-normality leading to a
large transient growth mechanism [15], [21]). Thus, applying
the same ideas as in [10], we use output injection not only
to guarantee stability but also to decouple the system in
order to prevent transients. The output injection gains can be
computed solving linear hyperbolic PDEs—a much simpler
task than, for instance, solving nonlinear Riccati equations.
The observer needs measurements of pressure, skin friction
and current at only one of the channel walls.

If the fluid is not conductive, or there is no magnetic field,
the problem reduces to the Poiseuille channel flow problem
and our observer design still holds. Frequently cited as a
paradigm for transition to turbulence [21], the Poiseuille
flow is a benchmark for flow control and turbulence esti-
mation. There are many results in channel flow stabilization,
for instance, using optimal control [14], backstepping [27],
spectral decomposition/pole placement [7], [26], Lyapunov
design/passivity [1], [3], or nonlinear model reduction/in-
domain actuation [2]. Observer designs are more scarce;
apart from the continuum backstepping approach [28], pre-
vious works were in the form of an Extended Kalman
Filter for the spatially discretized Navier-Stokes equations,
employing high-dimensional algebraic Riccati equations for
computation of observer gains [11], [13].

The paper is organized as follows. Section II introduces the
governing equations of our system. The equilibrium profile
is presented in Section III and the observer structure is
introduced in Section IV. Section V presents the design of
the output injection gains to guarantee convergence of the
observer estimates. We finish the paper with some concluding



Fig. 1. Hartmann Flow.

remarks in Section VI.

II. MODEL

Consider an incompressible conducting fluid enclosed
between two plates, separated by a distance L, under the
influence of a pressure gradient ∇P and a magnetic field
B0 normal to the walls, as shown in Figure 1. Under the
assumption of a very small magnetic Reynolds number

ReM = νρσU0L� 1, (1)

where ν is the viscosity of the fluid, ρ the density of the
fluid, σ the conductivity of the fluid, and U0 the reference
velocity (maximum velocity of the equilibrium profile), the
dynamics of the magnetic field can be neglected and the
dimensionless velocity and electric potential field is governed
by the inductionless MHD equations [17].

We set nondimensional coordinates (x, y, z), where x is
the streamwise direction (parallel to pressure gradient), y
the wall normal direction (parallel to magnetic field), z the
spanwise direction, and where (x, y, z) ∈ (−∞,∞)×[0, 1]×
(−∞,∞). In these coordinates the governing equations are

Ut =
4U
Re

− UUx − V Uy −WUz − Px +Nφz

−NU , (2)

Vt =
4V
Re

− UVx − V Vy −WVz − Py , (3)

Wt =
4W
Re

− UWx − VWy −WWz − Pz −Nφx

−NW , (4)
4φ = Uz −Wx , (5)

where U , V and W denote, respectively, the streamwise,
wall-normal and spanwise velocities, P the pressure, φ the
electric potential, Re = U0L

ν is the Reynolds number and
N = σLB2

0
ρU0

the Stuart number. Since the fluid is incompress-
ible, the continuity equation is verified

Ux + Vy +Wz = 0 . (6)

The boundary conditions for the velocity field are

U(t, x, 0, z) = U(t, x, 1, z) = 0, (7)
V (t, x, 0, z) = V (t, x, 1, z) = 0, (8)
W (t, x, 0, z) = W (t, x, 1, z) = 0, (9)

and assuming perfectly conducting walls, φ verifies

φ(t, x, 0, z) = φ(t, x, 1, z) = 0. (10)

The nondimensional electric current, j(t, x, y, z), is a vector
field that can be directly computed from the electric potential
and velocity fields as follows,

jx(t, x, y, z) = −φx −W, (11)
jy(t, x, y, z) = −φy, (12)
jz(t, x, y, z) = −φz + U, (13)

where jx, jy , and jz denote the components of j.
Remark 1: If we set N = 0 (zero magnetic field, or

nonconducting fluid) in equations (2)–(5), they reduce to the
classical Navier-Stokes equations without body forces. Then
equations (2)–(4), (6) and (7)–(9) describe a pressure driven
channel flow, the so-called Poiseuille flow.

III. EQUILIBRIUM PROFILE

The equilibrium profile for system (2)–(5) can be cal-
culated assuming a steady solution with only one nonzero
nondimensional velocity component, Ue, that depends only
on the y coordinate. Substituting Ue in equation (2), one
finds that it verifies the following equation,

0 =
Ue

yy(y)
Re

− P e
x −NUe(y) , (14)

whose solution is, setting P e such that the maximum velocity
(centerline velocity) is 1,

Ue(y) =
sinh(H(1− y))− sinhH + sinh(Hy)

2 sinhH/2− sinhH
, (15)

V e = W e = φe = 0, (16)

P e =
N sinhH

2 sinhH/2− sinhH
x. (17)

where H =
√
ReN = B0L

√
σ
ρν is the Hartmann number.

In Fig. III(left) we show Ue(y) for different values of H .
Since Ue(y) is nondimensional the centerline velocity is
always 1. For H = 0 the classic parabolic Poiseuille profile
is recovered. In Fig. III(right) we show the equilibrium
velocity gradient, Ue

y (y), proportional to shear stress, whose
maximum is reached at the boundaries and grows with H .

IV. OBSERVER

Define the fluctuation variable

u(t, x, y) = U(t, x, y)− Ue(y), (18)

where Ue(y) is the equilibrium of the Hartmann flow, as
defined in (15). The linearization of (2)–(4) around the
Hartmann equilibrium profile, using (18), is

ut =
4u
Re

− Ue(y)ux − ue
y(y)V − Px +Nφz

−Nu , (19)

Vt =
4V
Re

− Ue(y)Vx − Py , (20)

Wt =
4W
Re

− Ue(y)Wx − Pz −Nφx −NW . (21)

We design the observer for the linearized equations. It
consists of a copy of (19)–(21) and (5)–(10), to which we
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Fig. 2. Streamwise equilibrium velocity (left) and gradient of streamwise equilibrium velocity (right), for different values of H . Solid, H = 0; dash-dotted,
H = 10; dashed, H = 50.

add output injection of the pressure P , the potential flux φy

(proportional to current), and both uy and Wy (proportional
to friction) at the bottom wall.

Denoting the observer (estimated) variables by a hat, the
equations for the estimated velocity field are

ût =
4û
Re

− Ue(y)ûx − Ue
y (y)V̂ − P̂x +Nφ̂z

−Nû−QU , (22)

V̂t =
4V̂
Re

− Ue(y)V̂x − P̂y −QV , (23)

Ŵt =
4Ŵ
Re

− Ue(y)Ŵx − P̂z −Nφ̂x

−NŴ −QW . (24)

The additional Q terms in the observer equation are related
to output injection and defined as follows. QU

QV

QW

 =
∫ ∞

−∞

∫ ∞

−∞
L(x− ξ, y, z − ζ)

×


P (ξ, 0, ζ)− P̂ (ξ, 0, ζ)
uy(ξ, 0, ζ)− ûy(ξ, 0, ζ)
Wy(ξ, 0, ζ)− Ŵy(ξ, 0, ζ)
φy(ξ, 0, ζ)− φ̂y(ξ, 0, ζ)

 dξdζ, (25)

where L is an output injection kernel matrix designed to
ensure convergence. The estimated potential is computed
from

4φ̂ = ûz − Ŵx , (26)

and the observer verifies the continuity equation,

ûx + V̂y + Ŵz = 0 , (27)

and Dirichlet boundary conditions,

û(t, x, 0, z) = Ŵ (t, x, 0, z) = V̂ (t, x, 0, z) = 0, (28)
û(t, x, 1, z) = Ŵ (t, x, 1, z) = V̂ (t, x, 1, z) = 0, (29)

φ̂(t, x, 0, z) = φ̂(t, x, 1, z) = 0. (30)

As inputs to the observer, appearing in (25), one needs
measurements of pressure, skin friction and current in the

Fig. 3. An array of current sensors in the lower wall.

lower wall. For obtaining these measurements, pressure, skin
friction and current sensors have to be embedded into one of
the walls. Pressure and skin friction sensors are common in
flow control, while for current measurement one could use
an array of discrete current sensors, as depicted in Figure 3.

V. OBSERVER DESIGN AND CONVERGENCE ANALYSIS

Substracting (22)–(24) from (19)–(21) we obtain the error
equations, with states Ũ = u−û = U−Û , Ṽ = V −V̂ , W̃ =
W − Ŵ , P̃ = P − P̂ , φ̃ = φ− φ̂,

Ũt =
4Ũ
Re

− Ue(y)Ũx − Ue
y (y)Ṽ − P̃x +Nφ̃z

−NŨ +QU , (31)

Ṽt =
4Ṽ
Re

− Ue(y)Ṽx − P̃y +QV , (32)

W̃t =
4W̃
Re

− Ue(y)W̃x − P̃z −Nφ̃x −NW̃ +QW . (33)

The observer error verifies the continuity equation,

Ũx + Ṽy + W̃z = 0 , (34)

while the potential error is governed by

4φ̃ = Ũz − W̃x. (35)

The boundary conditions for the error states are

Ũ(t, x, 0, z) = Ṽ (t, x, 0, z) = W̃ (t, x, 0, z) = 0, (36)
Ũ(t, x, 1, z) = Ṽ (t, x, 1, z) = W̃ (t, x, 1, z) = 0, (37)
φ̃(t, x, 0, z) = φ̃(t, x, 1, z) = 0. (38)



To guarantee observer convergence, our design task is to
design the output injection gains L defined in (25) so that
the origin of the error system is exponentially stable.

Since the observer error plant is linear and spatially
invariant [5], we use a Fourier transform in the x and z
coordinates (the spatially invariant directions). The transform
pair (direct and inverse transform) is defined as

f(kx, y, kz) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y, z)e−2πi(kxx+kzz)dzdx, (39)

f(x, y, z) =
∫ ∞

−∞

∫ ∞

−∞
f(kx,y,kz)e2πi(kxx+kzz)dkzdkx.(40)

Note that we use the same symbol f for both the original
f(x, y, z) and the image f(kx, y, kz). In hydrodynamics kx

and kz are referred to as the “wave numbers.”
The observer error equations in Fourier space are

Ũt =
−α2Ũ + Ũyy

Re
− βŨ − Ue

y Ṽ − 2πkxiP̃

+LUPP0 + LUUUy0 + LUWWy0 + LUφφy0

+2πkziNφ̃−NŨ, (41)

Ṽt =
−α2Ṽ + Ṽyy

Re
− βṼ − P̃y + LV PP0

+LV UUy0 + LV WWy0 + LV φφy0, (42)

W̃t =
−α2W̃ +Wyy

Re
− βW̃ − 2πkziP̃

+LWPP0 + LWUUy0 + LWWWy0 + LWφφy0

−2πkxiNφ̃−NW̃ , (43)

where α2 = 4π2(k2
x + k2

z), β = 2πikxU
e, the L’s are the

entries of L in Fourier space (note that the convolutions in
(25) become products in Fourier space). We have written
for short P0 = P̃ (kx, 0, kz), Uy0 = Ũy(kx, 0, kz), Wy0 =
W̃y(kx, 0, kz), φy0 = φ̃y(kx, 0, kz).

The continuity equation in Fourier space is expressed as

2πikxŨ + Ṽy + 2πkzW̃ = 0, (44)

and the equation for the potential is

−α2φ̃+ φ̂yy = 2πi
(
kzŨ − kxW̃

)
. (45)

Note that (41)–(45) is uncoupled for each wave number.
Therefore, as in [28], the range k2

x + k2
z ≤ M2, which we

refer to as the observed wave number range, and the range
k2

x + k2
z > M2, the unobserved wave number range, can

be studied separately. If stability for all wave numbers is
established, stability in physical space follows (see [27]).
The number M , to be computed, ensures stability for the
unobserved wave number range.

We define χ, a truncating function, as

χ(kx, kz) =
{

1, k2
x + k2

z ≤M2,
0, otherwise. (46)

Then, we reflect that we don’t use output injection for
unobserved wave numbers by writing

L = χ(kx, y, kz)R(kx, y, kx). (47)

The matrix R is, like L, defined as

R =

 RUP RUU RUW RUφ

RV P RV U RV W RV φ

RWP RWU RWW RWφ

 , (48)

and using R we can write the observer error equations as

Ũt =
−α2Ũ + Ũyy

Re
− βŨ − Ue

y Ṽ − 2πkxiP̃ + χ(kx, kz)

×
{
RUPP0 +RUUUy0 +RUWWy0 +RUφφy0

}
+2πkziNφ̃−NŨ, (49)

Ṽt =
−α2Ṽ + Ṽyy

Re
− βṼ − P̃y + χ(kx, kz)

×
{
RV PP0 +RV UUy0 +RV WWy0R

V φφy0

}
, (50)

W̃t =
−α2W̃ +Wyy

Re
− βW̃ − 2πkziP̃ + χ(kx, kz)

×
{
RWPP0 +RWUUy0 +RWWWy0 +RWφφy0

}
−2πkxiNφ̃−NW̃ . (51)

A. Observed wave number analysis
Consider k2

x + k2
z ≤M2. Then χ = 1, so output injection

is present. Using the continuity equation (44) and taking
divergence of (49)–(51), the following Poisson equation for
the pressure is derived,

−α2P̃ + P̃yy = Υ− 4πkxiU
e
y (y)Ṽ +NVy, (52)

where Υ contains all the terms due to output injection,

Υ = P0

(
2πikxR

UP +RV P
y + 2πkzR

WP
)

+Uy0

(
2πikxR

UU +RV U
y + 2πkzR

WU
)

+Wy0

(
2πikxR

UW +RV W
y + 2πkzR

WW
)

+φy0

(
2πikxR

Uφ +RV φ
y + 2πkzR

Wφ
)
. (53)

We want to make (52) independent of the output injection
terms, for which we need Υ = 0. Hence, we set

RV P (kx, y, kz) = RV P (kx, 0, kz)− 2πi
∫ y

0

(
kxR

UP

+kzR
WP

)
(kx, η, kz)dη, (54)

RV U (kx, y, kz) = RV U (kx, 0, kz)− 2πi
∫ y

0

(
kxR

UU

+kzR
WU

)
(kx, η, kz)dη, (55)

RV W (kx, y, kz) = RV W (kx, 0, kz)− 2πi
∫ y

0

(
kxR

UW

+kzR
WW

)
(kx, η, kz)dη, (56)

RV φ(kx, y, kz) = RV φ(kx, 0, kz)− 2πi
∫ y

0

(
kxR

Uφ

+kzR
Wφ

)
(kx, η, kz)dη, (57)

which means that, in physical space, ∇ · L = 0.
Equation (52) can be solved as

P̃ = −4πkxi

α

∫ y

0

Ue
y (η) sinh (α(y − η)) Ṽ (kx, η, kz)dη

+cosh (αy)P0 +
sinh (αy)

α
P̃y(kx, 0, kz)

+N
∫ y

0

sinh (α(y − η))
α

Ṽy(kx, η, kz)dη. (58)



Evaluating equation (50) at y = 0 one finds that

P̃y(kx, 0, kz) = Υ0 − 2πi
kxUy0 + kzW̃y0

Re
, (59)

where

Υ0 = P0R
V P (kx, 0, kz) + Uy0R

V U (kx, 0, kz)
+Wy0R

V W (kx, 0, kz) + φy0R
V φ(kx, 0, kz),(60)

and again we want that the pressure be independent of the
output injection terms. Hence, we set

RV P (kx, 0, kz) = RV U (kx, 0, kz) = RV W (kx, 0, kz)
= RV φ(kx, 0, kz) = 0. (61)

Then, the pressure can be expressed as a strict-feedback [16]
functional of the state Ṽ and measurements,

P̃ = −4πkxi

α

∫ y

0

Ue
y (η) sinh (α(y − η)) Ṽ (kx, η, kz)dη

+cosh (αy)P0 − 2πi
sinh (αy)
Reα

(kxUy0 + kzWy0)

+N
∫ y

0

sinh (α(y − η))
α

Ṽy(kx, η, kz)dη. (62)

Similarly, solving for φ in terms of the measurement φy0

and the right hand side of its Poisson equation (45) yields

φ̃ =
2πi
α

∫ y

0

sinh (α(y − η))
(
kzŨ(kx, η, kz)

−kxW̃ (kx, η, kz)
)
dη +

sinh (αy)
α

φy0. (63)

Introducing (62)–(63) in (49) and (51) we get

Ũt =
−α2Ũ + Ũyy

Re
− βŨ − Ue

y (y)Ṽ −NŨ

+P0

(
RUP − 2πkxi cosh (αy)

)
+Uy0

(
RUU − 4π2k2

x

αRe
sinh (αy)

)
+Wy0

(
RUW − 4π2kxkz

αRe
sinh (αy)

)
+φy0

(
RUφ +N

2πkzi

α
sinh (αy)

)
−8πk2

x

α

∫ y

0

Ue
y (η) sinh (α(y − η)) Ṽ (kx, η, kz)dη

−2πikxN

∫ y

0

sinh (α(y − η))
α

Ṽy(kx, η, kz)dη

−4π2kzN

α

∫ y

0

sinh (α(y − η))

×
(
kzŨ(kx, η, kz)− kxW̃ (kx, η, kz)

)
dη, (64)

W̃t =
−α2W̃ +Wyy

Re
− βW̃ −NW̃

+P0

(
RWP − 2πkzi cosh (αy)

)
+Uy0

(
RWU − 4π2kxkz

αRe
sinh (αy)

)
+Wy0

(
RWW − 4π2k2

z

αRe
sinh (αy)

)

+φy0

(
RWφ −N

2πkxi

α
sinh (αy)

)
−8πkxkz

α

∫ y

0

Ue
y (η) sinh (α(y − η)) Ṽ (kx, η, kz)dη

−2πikzN

∫ y

0

sinh (α(y − η))
α

Ṽy(kx, η, kz)dη

+
4π2kxN

α

∫ y

0

sinh (α(y − η))

×
(
kzŨ(kx, η, kz)− kxW̃ (kx, η, kz)

)
dη. (65)

Note that we have omitted the equation for Ṽ since, from
(44) and using the fact that Ṽ (kx, 0, kz) = 0, Ṽ is computed
from Ũ and W̃ , we have

Ṽ =−2πi
∫ y

0

(
kxŨ(kx, η, kz) + kzW̃ (kx, η, kz)

)
dη. (66)

We now use output injection terms to cancel the boundary
terms, while still leaving some additional gains to stabilize
the system. Thus, we define

RUP = 2πkxi cosh (αy) , (67)
RWP = 2πkzi cosh (αy) , (68)

RUU =
4π2k2

x

αRe
sinh (αy) + Π1(kx, y, kz), (69)

RWU =
4π2kxkz

αRe
sinh (αy) + Π2(kx, y, kz), (70)

RUW =
4π2kxkz

αRe
sinh (αy) + Π3(kx, y, kz), (71)

RWW =
4π2k2

z

αRe
sinh (αy) + Π4(kx, y, kz), (72)

RUφ = −N 2πkzi

α
sinh (αy) , (73)

RWφ = N
2πkxi

α
sinh (αy) , (74)

where the gains Π1, Π2, Π3 and Π4 are to be defined
later. From (54)–(57), (61) and (67)–(74), we get a explicit
expression for the remaining entries of R.

We introduce now the new variables

Y = 2πi
(
kxŨ + kzW̃

)
, ω = 2πi

(
kzŨ − kxW̃

)
. (75)

Defining ε = 1
Re and the following functions

f = 4πikx

{
Ue

y

2
+

∫ y

η

Ue
y (σ)

sinh (α(y − σ))
α

dσ

}
+Nα sinh (α(y − σ)) , (76)

h1 = 2πikzU
e
y , (77)

h2 = −Nα sinh (α(y − η)) , (78)

equations (64)–(65) expressed in terms of Y and ω are

Yt = ε
(
−α2Y + Yyy

)
− βY −NY

−4π2

α2

(
k2

xΠ1 + kxkzΠ2 + kxkzΠ3 + k2
zΠ4

)
Yy0

−4π2

α2

(
kxkzΠ1 + k2

zΠ2 − k2
xΠ3 − kxkzΠ4

)
ωy0

+
∫ y

0

f(kx, y, η, kz)Y (kx, η, kz)dη , (79)



ωt = ε
(
−α2ω + ωyy

)
− βω −Nω

−4π2

α2

(
kxkzΠ1 − k2

xΠ2 + k2
zΠ3 − kxkzΠ4

)
Yy0

−4π2

α2

(
k2

zΠ1 − kxkzΠ2 − kxkzΠ3 + k2
xΠ4

)
ωy0

+h1(y)
∫ y

0

Y (kx, η, kz)dη

+
∫ y

0

h2(y, η)ω(kx, η, kz)dη , (80)

where Yy0 = Y (kx, 0, kz) and ωy0 = ω(kx, 0, kz). We set
the gains Π1, Π2, Π3 and Π4 in the following way

Π1

Π2

Π3

Π4

 = A−1


l(kx, y, 0, kz)

0
θ1(kx, y, 0, kz)
θ2(kx, y, 0, kz)

 . (81)

The matrix A is defined as

A = −4π2

α2


k2

x kxkz kxkz k2
z

kxkz k2
z −k2

x −kxkz

kxkz −k2
x k2

z −kxkz

k2
z −kxkz −kxkz k2

x

 , (82)

and since det(A) = −1 its inverse appearing in equation
(81) is well-defined, whereas the functions l(kx, y, η, kz),
θ1(kx, y, η, kz), and θ2(kx, y, η, kz) in (81) are to be found.
Using (81), equations (79)–(80) become

Yt = ε
(
−α2Y + Yyy

)
− βY −NY + l(kx, y, 0, kz)Yy0

+
∫ y

0

f(kx, y, η, kz)Y (kx, η, kz)dη, (83)

ωt = ε
(
−α2ω + ωyy

)
− βω −Nω + θ1(kx, y, 0, kz)Yy0

+θ2(kx, y, 0, kz)ωy0 + h1

∫ y

0

Y (kx, η, kz)dη

+
∫ y

0

h2(y, η)ω(kx, η, kz)dη. (84)

Equations (83)–(84) are a coupled, strict-feedback plant,
with integral and reaction terms. A variant of the design in
[23] can be used to find l(kx, y, 0, kz), θ1(kx, y, 0, kz) and
θ2(kx, y, 0, kz) using a double backstepping transformation.
The transformation maps, for each kx and kz , the variables
(Y, ω) into the variables (Ψ,Ω), that verify the following
family of heat equations (parameterized in kx, kz).

Ψt = ε
(
−α2Ψ + Ψyy

)
− βΨ−Nψ, (85)

Ωt = ε
(
−α2Ω + Ωyy

)
− βΩ−NΩ, (86)

Ψ(kx, 0, kz) = Ψ(kx, 1, kz) = 0, (87)
Ω(kx, 0, kz) = Ω(kx, 1, kz) = 0. (88)

The transformation is defined as follows,

Y = Ψ−
∫ y

0

l(kx, y, η, kz)Ψ(kx, η, kz)dη, (89)

ω = Ω−
∫ y

0

θ1(kx, y, η, kz)Ψ(kx, η, kz)dη

−
∫ y

0

θ2(kx, y, η, kz)Ω(kx, η, kz)dη. (90)

Following [22], [23], the functions l(kx, y, η, kz),
θ1(kx, y, η, kz), and θ2(kx, y, η, kz) are found as the solution
of the following partial integro-differential equations,

εlηη = εlyy − (β(y)− β(η)) l − f

+
∫ y

η

f(y, ξ)l(ξ, η)dξ, (91)

εθ1ηη = εθ1yy − (β(y)− β(η)) θ1(y, η)− h1

+h1

∫ y

η

l(ξ, η)dξ +
∫ y

η

h2(y, ξ)θ1(ξ, η)dξ, (92)

εθ2ηη = εθ2yy − (β(y)− β(η)) θ2 − h2

+
∫ y

η

h2(y, ξ)θ2(ξ, η)dξ. (93)

Equations (91)–(93) are hyperbolic partial integro-
differential equation in the region T = {(y, η) : 0 ≤
y ≤ 1, 0 ≤ η ≤ y}. Their boundary conditions are

l(kx, y, y, kz) = l(kx, 1, η, kz) = 0, (94)
θ1(kx, y, y, kz) = θ1(kx, 1, η, kz) = 0, (95)
θ2(kx, y, y, kz) = = θ2(kx, 1, η, kz) = 0. (96)

Remark 2: Equations (91)–(96) are well-posed and can
be solved in several ways (see [22], [23] for techniques).
Note that both Equation 91 and Equation 93 are au-
tonomous. Hence, one must solve first for l(kx, y, η, kz)
and θ2(kx, y, η, kz). Then the solution for l is plugged into
Equation 92 which then can be solved for θ1(kx, y, η, kz).
The observer gains are then found setting η = 0 in the
kernels l(kx, y, η, kz), θ2(kx, y, η, kz) and θ1(kx, y, η, kz).

Stability in the observed wave number range follows from
stability of (85)–(86) and the invertibility of the transforma-
tion (89)–(90). The proof uses the same argument as in [22],
slightly modified to account for a complex-valued kernel.
See [27] for a detailed explanation.

B. Unobserved wave number analysis

When k2
x+k2

z > M , there is no output injection, as χ = 0.
Using the change of variables (75) and following the same
steps as in Section V-A, one gets the following equations for
Y and ω in the unobserved wave number range.

Yt = ε
(
−α2Y + Yyy

)
− βY − 2πkxiU

e
y Ṽ + α2P̃

−NY, (97)
ωt = ε

(
−α2ω + ωyy

)
− βω − 2πkziU

e
y Ṽ − α2Nφ̃

−Nω. (98)

The Poisson equation for the potential is, in terms of ω,

−α2φ̃+ φyy = ω. (99)

Consider the Lyapunov function

Λ =
∫ 1

0

|Y |2 + |ω|2 + α2|Ṽ |2

2
dy (100)

= α2

∫ 1

0

|Ũ |2 + |Ṽ |2 + |W̃ |2

2
dy, (101)

where we write, for short,
∫ 1

0
f =

∫ 1

0
f(kx, y, kz)dy.



Denote by f∗ the complex conjugate of f . The time
derivative of Λ can be estimated as follows,

Λ̇ = −2εα2Λ− ε

∫ 1

0

(
|Yy|2 + |ωy|2 + α2|Ṽy|2

)
−N

∫ 1

0

(
|Y |2 + |ω|2

)
− α2N

∫ 1

0

φ̃∗ω + φ̃ω∗

2

+
∫ 1

0

πiUe
y (y)Ṽ ∗(kxY + kzω)

−
∫ 1

0

πiUe
y (y)Ṽ (kxY

∗ + kzω
∗)

+α2

∫ 1

0

P ∗Y + PY ∗ − P ∗y Ṽ − PyṼ
∗

2
. (102)

For bounding (102), we use the following two lemmas.
Lemma 5.1:

−α2

∫ 1

0

φ̃∗ω + φ̃ω∗

2
≤

∫ 1

0

|ω|2. (103)

Proof: The term we want to estimate is

−α2

∫ 1

0

φ̃∗ω + φ̃ω∗

2
. (104)

Substituting α2φ from (99), (104) can be written as

−
∫ 1

0

φ̃∗yyω + φ̃yyω
∗

2
+

∫ 1

0

|ω|2. (105)

Therefore, we need to prove that∫ 1

0

(
φ̃∗yyω + φ̃yyω

∗
)
≥ 0. (106)

Substituting ω from equation (99) into (106), we get∫ 1

0

(
φ̃∗yyω + φ̃yyω

∗
)

=
∫ 1

0

|φ̃yy|2 − α2

∫ 1

0

(
φ̃∗yyφ̃+ φ̃yyφ̃

∗
)

=
∫ 1

0

|φ̃yy|2 + α2

∫ 1

0

|φ̃y|2, (107)

which is nonnegative.
Lemma 5.2:

|Ue
y (y)| ≤ 4 +H. (108)

Proof: Computing Ue
y (y) from (15),

Ue
y (y) = H

cosh(Hy)− cosh(H(1− y))
2 sinhH/2− sinhH

. (109)

Calling g1(y) = cosh(Hy)−cosh(H(1−y)), since g′1(y) =
H (sinh(Hy) + sinh(H(1− y))) is always positive for y ∈
(0, 1), the maximum must be in the boundaries. Therefore

|Ue
y (y)| ≤ g2(H) = H

coshH − 1
sinhH − 2 sinhH/2

. (110)

One can rewrite g2 as

g2 = H
sinhH/2

coshH/2− 1
. (111)

Since g2(0) = 4, it suffices to verify that g′2(H) ≤ 1.

g′2(H) =
g3
g4

=
sinhH/2−H2/2

coshH/2− 1
. (112)

We need g3 ≤ g4. Since g3(0) = g4(0) = 0, it is enough to
prove g′3 ≤ g′4, which comes from the fact that

g′3 = H/2 (coshH/2− 2H) ≤ H/2(sinhH/2) = g′4, (113)

because coshx− 4x ≤ sinhx.
Integrating by parts and applying Lemma 5.1,

Λ̇ ≤ −2εα2Λ− ε

∫ 1

0

(
|Yy|2 + |ωy|2 + α2|Ṽy|2

)
+

∫ 1

0

πiUe
y (y)Ṽ ∗(kxY + kzω)−N

∫ 1

0

|Y |2.

−
∫ 1

0

πiUe
y (y)Ṽ (kxY

∗ + kzω
∗) (114)

Using Lemma 5.2 to bound Ue
y in (114),

Λ̇ ≤ −2ε
(
1 + α2

)
Λ−N

∫ 1

0

|Y |2dy

+2π (4 +H)
∫ 1

0

(
|Ṽ |(|kx||Y |+ |kz||ω|

)
dy

≤
(
4 +H − 2ε

(
1 + α2

))
Λ (115)

where we have applied Young’s and Poincare’s inequalities.
Hence, if α2 ≥ 4+H

2ε

Λ̇ ≤ −2εΛ, (116)

and stability in the unobserved wave number range follows
when k2

x + k2
z ≥M for M (conservatively) chosen as

M ≥ 1
2π

√
(H + 4)Re

2
. (117)

C. Main result
As in [27], considering all wave numbers, the following

result holds regarding the convergence of the observer.
Theorem 1: Consider the system (19)–(21) and (6), with

boundary conditions (7)–(10), and the system (22)–(30), and
suppose that both have classical solutions. Then, the L2

norms of Ũ , Ṽ , W̃ converge to zero, i.e.,

lim
t→∞

∫ ∞

−∞

∫ 1

0

∫ ∞

−∞

(
Ũ2(t) + Ṽ 2(t) + W̃ 2(t)

)
dxdydz = 0.

(118)
Note that convergence of estimated pressure and electric

potential follows from the convergence of velocity estimates.
Since we are dealing with a linearized version of the plant,

this theorem has to be carefully interpreted when applied to
the nonlinear system. For a fully developed MHD flow, with
a Reynolds number possibly above the critical value but not
too far above it, the observer is guaranteed to be convergent
to the real velocity field, provided its initial estimates are not
too far from the actual initial profile.

Remark 3: Since the true original plant is nonlinear, we
can postulate a nonlinear observer. This observer will have
the same structure and gains as the linearized observer, but
adding the nonlinear terms. In this we follow the design
philosophy of the Extended Kalman Filter, where gains



are computed for the linearized case and then used for a
nonlinear version of the observer. Only the equations for the
estimated velocity field need to be modified, as follows

Ût =
4Û
Re

− Û Ûx − V̂ Ûy − Ŵ Ûz − P̂x +Nφ̂z

−NÛ −QU , (119)

V̂t =
4V̂
Re

− Û V̂x − V̂ V̂y − Ŵ V̂z − P̂y −QV , (120)

Ŵt =
4Ŵ
Re

− ÛŴx − V̂ Ŵy − ŴŴz − P̂z −Nφ̂x

−NŴ −QW . (121)

In Equation (119)–(121), the Q terms are the same as
for the linear observer. Thus the linear gains are used for
the nonlinear observer. This observer will produce closer
estimates of the states in a larger range of initial conditions.

VI. CONCLUDING REMARKS

The convergence result stated in Theorem 1 guarantees
asymptotic convergence of the estimated states to the actual
values of the linearized plant. For this to be true for the
nonlinear plant, the estimates have to be initialized close
enough to the real initial values and the MHD system has
to stay in a neighborhood of the equilibrium at all times.
Following [11], we may consider the mean turbulent profile
instead of considering the exact laminar equilibrium profile.
This amounts to changing Ue in definition (15). Since Ue

appears in Equations (76)–(78), which are used to compute
output injection gains in Equations (91)–(93), the observer
gains will change (quantitatively) for the turbulent mean pro-
file. Then Theorem 1 still holds and guarantees convergence
of estimates under the same assumptions, meaning now that
the state has to stay close enough to the mean turbulent
profile at all times. The use of the nonlinear observer of
Remark 3 will allow larger discrepancies between the state
and the profile while still producing valid estimates.

In case that N = 0, meaning that either there is
no imposed magnetic field or the fluid is nonconducting,
Equations (2)–(4) are the Navier-Stokes equations and the
observer reduces to a velocity/pressure estimator for a 3D
channel flow. This result can be seen as dual to the channel
flow control problem, which was solved in [10] using similar
tools. Some physical insight can be gained analyzing this
case. In the context of hydrodynamic stability theory, the
linearized observer error system written in (Y, ω) variables
verify equations identical to the classical Orr-Sommerfeld-
Squire equations. This are Equations (83)–(84) for observed
wave numbers and Equations (97)–(98) for unobserved wave
numbers. As in [10], we use the backstepping transforma-
tions (89)–(90) not only to stabilize (using gain l) but also
to decouple the system (using gains θ1, θ2) in the small
wave number range, where non-normality effects are more
severe. Even if the linearized system is stable, non-normality
produces large transient growths [21], which enhanced by
nonlinear effects may allow the error system to go far
away from the origin, producing inaccurate estimates. This
warrants the use of extra gains to map the system into two
uncoupled heat equations (85)–(86).
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