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Abstract— The Advanced Tokamak (AT) operating mode
is the principal focus of the DIII-D tokamak. In order to
be prepared for the higher control demands arising in AT
scenarios, current efforts are focused on the development of
an integrated multivariable controller to take into account the
highly coupled influences of equilibrium shape, profile, and
stability control. The first step of this project is the design of
the shape and vertical controller which will be integrated in the
future with control of plasma profiles. The time-scale properties
of the system allow the separation of the vertical stabilization
problem, approached by the authors in prior work, from the
shape control problem, which is the focus of this paper.

Ensured the vertical stability of the plasma, in this work
we implement an anti-windup compensator that keeps the
given nominal shape controller well-behaved in the presence
of rate and magnitude constraints at the input of the nonlinear
plant. The anti-windup synthesis problem is to find a nonlinear
modification of the nominal linear controller that prevents
undesirable oscillations but leaves the nominal closed loop
unmodified when there is no input saturation.

I. INTRODUCTION

Demands for more varied shapes of the plasma and re-
quirements for high performance regulation of the plasma
boundary and internal profiles are the common denominator
of the Advanced Tokamak (AT) operating mode in DIII-D
[1]. This operating mode requires multivariable control tech-
niques [2] to take into account the highly coupled influences
of equilibrium shape, profile, and stability control. Current
efforts are focused on providing improved control for ongo-
ing experimental operations, preparing for future operational
control needs, and making advances toward integrated control
for Advanced Tokamak (AT) scenarios.

Vertical and Shape Control: The initial step toward in-
tegrating multiple individual controls is implementation of
a multivariable shape and vertical controller for routine
operational use which can be extended to integrate other
controls. The long term goal is to integrate the shape and
vertical control with control of plasma profiles such as
pressure, radial E-field, and current profiles using feedback
commands to actuators such as gas injectors, pumps, neutral
beams (NB), electron cyclotron heating (ECH), and electron
cyclotron current drive (ECCD).
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The problem of vertical and shape control in tokamaks
was and is still extensively studied in the fusion community.
A recent summary of the existing work in the field can be
found in [3]. Several solutions for the design of the nominal
controller were proposed for different tokamaks using varied
control techniques based on linearized models. However,
only a few of them [4] take into account the control voltage
constraint in the design of the nominal controller.

Our approach is different in concept. The input constraints
are not taken into account at the moment of designing
the nominal controller. The goal is not the design of the
nominal controller but the design of an anti-windup com-
pensator that blends any given nominal controller, which is
designed to fulfil some local (saturation is not considered)
performance criterion, with a nonlinear feedback designed
to guarantee stability in the presence of input saturation but
not necessarily tuned for local performance. This nonlinear
modification of the nominal controller also aims at keeping
the nominal controller well-behaved and avoiding undesirable
oscillations. The anti-windup augmentation must in addition
leave the nominal closed loop unmodified when no saturation
is present.

Shape Control Methodology: The shape control method-
ology at DIII-D is based on “isoflux control”. The isoflux
control method, now in routine use on DIII-D, exploits the
capability of the real time EFIT plasma shape reconstruction
algorithm to calculate magnetic flux at specified locations
within the tokamak vacuum vessel. Real time EFIT can
calculate very accurately the value of flux in the vicinity of
the plasma boundary. Thus, the controlled parameters are the
values of flux at prespecified control points along with the
X-point r and z position. By requiring that the flux at each
control point be equal to the same constant value, the control
forces the same flux contour to pass through all of these
control points. By choosing this constant value equal to the
flux at the X-point, this flux contour must be the last closed
flux surface or separatrix. The desired separatrix location is
specified by selecting one of a large number of control points
along each of several control segments. An X-point control
grid is used to assist in calculating the X-point location by
providing detailed flux and field information at a number of
closely spaced points in the vicinity of the X-point.



(a) (b)Fig. 1. Nonlinear Power Supplies.

Several problems make practical implementation of shape
and vertical position controllers on DIII-D challenging: (P1)
Computational speed is insufficient to do both vertical sta-
bilization and shape control with the same controller. (P2)
Vertical stability control and shape control share the same
actuators. This is a particular problem for the outer coils
because they become the only coils which perform shape
control for the outer plasma boundary. (P3) The shape control
power supply system is extremely nonlinear. (P4) Limitations
on actuator voltage imply that commands to shaping power
supplies (choppers) often saturate, particularly with large or
fast disturbances.

The paper is organized as follow. Section 2 introduces the
strategy used to face the challenges presented by the plasma
shape and vertical position control problem. The contribution
of this paper is clearly stated in this section. Section 3
explains the particular structure of the plant. Section 4
introduces the basis of the anti-windup method. The control
design is explained in Section 5. The conclusions are finally
presented in Section 6.

II. CONTROL STRATEGY

Computational Speed Limitation: Time-scale separation of
vertical and shape control appears to be critical for DIII-D,
since multivariable shape controllers can require significant
computation. Details of the architecture of the control design
can be found in [5].

Actuator Sharing: A method implemented for sharing ac-
tuators involves constructing a linear controller which simul-
taneously stabilizes and provides control of vertical control
coil currents on a fast time scale. The closed loop system
comprised of the DIII-D plant (inner plant) and stabilizing
vertical controller can act as an inner control loop for the
shape control. The inner loop provides as input actuators the
6 vertical coil current and centroid vertical position reference
signals r, and up to 12 shape coil command voltages v.
By integrating control of the vertical control coils into a
stabilizing controller, conflicts between shape and vertical
control use of these coils is eliminated. “Frequency sharing”

is accomplished explicitly with an H-infinity loop shaping
design by weighting low frequencies to regulate the coil
currents and high frequencies to stabilize the plasma. The
design technique ensures that the overall system remains
robustly stable.

Power Supply Nonlinearities: The problem of nonlinear
choppers was addressed previously by constructing closed
loop controllers for the outer chopper power supplies [6]
using a nonlinear output inversion. However, this solution
is not fast enough to be implemented in the inner loop. A
possible approach to deal with the highly nonlinear inner
chopper power supplies is shown in Figure 1-a. A linearized
model of the choppers is incorporated to the inner plant that is
used to synthesize the nominal linear vertical controller. The
output of the controller represents in this case the command
voltages to the choppers that saturate at fixed values (±10
V). In this approach the nonlinear behavior of the power
supplies are not considered and the linearized model of the
plant is accurate only within a very restricted domain. To
take into account the nonlinear nature of the power supplies
we remove the linearized model of the choppers from the
inner plant and incorporate a full nonlinear model of them
into an augmented saturation block as it is shown in Figure
1-b. The nominal linear vertical controller is synthesized
now using no information of the choppers and its output
now represents directly the desired coil voltages. A chopper
inverse function computes the necessary command voltages
within the saturation levels to make the output voltage of the
choppers equal to the desired coil voltages. When the chopper
inverse funtion fails calculating those command voltages we
say we have saturation. Although the saturation levels of
the command voltages are still fixed values (±10 V), the
saturation levels of the augmented saturation block are now
time-dependent functions (coil load current and DC supply
voltage). Similarly, the saturation levels of the outer choppers
also depend on the coil load currents and DC supply voltages.

Constrained Control: In order to make this approach suc-
cesful the inner controller (vertical controller) must guarantee
the stability of the plant for all commands coming from the



Fig. 2. Plant architecture.

outer controller (shape controller). However, the constraints
on the input of the plant due to the saturation of the actuators
may prevent this goal from being achieved. The saturation of
the coil voltages can not only degrade the performance of the
closed loop system but also impede the vertical stabilization
when the synthesis of the nominal inner controller does not
account for plant input saturation. Although the saturation of
coil currents and voltages is a common problem in tokamaks
and there are efforts to minimize the control demand for
shape and vertical control and to avoid saturation [7], [8],
the saturation of the actuators are generally not taken into
account in the design of the nominal controllers in present
works.

Recently several anti-windup approaches have been pro-
posed [9], [10], [11], [12], [13], [14], [15]. Due to the
characteristics of our problem we follow the ideas introduced
in the companion papers [16], [17] and also discussed in [18]
for exponentially unstable systems and [19] for nonlinear
systems. This technique has been shown to be succesful in
several case studies. However, the method must be modi-
fied and complemented in order to fulfill the performance
requirements of our system.

The inner loop design must take care of the windup of
that loop and ensure vertical stability for any command
coming from the outer controller. We understand as windup
the phenomenon characterized by degradation of nominal
performance and even loss of stability due to magnitude
and/or rate limits in the control actuaction devices. The anti-
windup synthesis problem is to find a nonlinear modification
of the predesigned nominal linear controller that prevents
vertical instability and undesirable oscillations but leaves
the nominal closed loop unmodified when there is no input
saturation. This problem was approached in [20].

In this work we focus on the design of an anti-windup

augmentation for the outer loop that prevents decrease of
performance due to undesirable oscillations of the controller
output. The main goal is to keep the shape controller well-
behaved in presence of constraints at the input of the outer
plant. The outer loop design must take care not only of
the windup of the actuators of that loop but also of the
input constraints imposed by physical limitations and the
inner loop design mainly. Contrary to the inner loop design,
where the anti-windup augmentation was designed for an
exponentially unstable but linear plant, in this case we are
dealing with a stable but nonlinear plant.

III. PLANT STRUCTURE

The outer plant is the result of the anti-windup augmen-
tation for the inner plant. The structure of our system is
shown in figure 2. The inner plant is linear but exponentially
unstable with control input u ∈ �m and measurements y ∈
�p. We write the inner plant in state-space form separating
the stable modes (xs ∈ �ns) from the exponentially unstable
modes (xu ∈ �nu) where the dimension of the state vector
x is n = ns + nu,

[
ẋs

ẋu

]
=

[
As Asu

0 Au

][
xs

xu

]
+ Bu + Ev + F

y = Cx + Du + Gv.

(1)

The vector u of dimension m = 6 are the voltage commands
for power supplies on the vertical coils, the vector v of
dimension q = 12 are the voltage demands for the shape
coils, the vector y of dimension p = 7 consists of the
six vertical coil currents and the plasma centroid position.
The eigenvalues of As have non-positive real part and the
eigenvalues of Au have positive real part.

In addition, we consider that a nominal linear vertical
controller has been already designed so that the closed loop



system with interconnection conditions u = yc, uc = y is
well posed and internally stable. Due to the composition of
the output vector y it is convenient to write the reference
for the nominal controller as r = [rI rZ ]T where rI are
the current references for the six vertical coils and rZ is
the centroid position reference. When the controller output
is subject to saturation, i.e. the interconnection conditions are
changed to u = sat(yc), uc = y, the synthesis of an anti-
windup scheme is necessary. In this case the interconnection
conditions are modified to

u = sat(yc + v1), uc = y + v2, (2)

where the signals v1 and v2 are the outputs of the inner-loop
anti-windup compensator [20].

Once the components of the outer plant (inner plant +
nominal vertical controller + anti-windup compensator) are
defined we must focus our attention on its inputs. The shape
coil voltage commands v∗ coming from the shape controller
go through a double saturation stage. The first magnitude
saturation is due to the watch-dog that is part of the inner
anti-windup augmentation. The second magnitude saturation
comes from the hardware limitations of the power supply
stage. The vertical coil current references and the centroid
position reference r∗ imposed by the shape controller also
go through a double saturation stage. The first saturation is in
magnitude and is due to the physical constraints on the coil
currents and centroid position. The second saturation is in
rate and is due to the rate limits imposed on the coil current
references by the inner anti-windup augmentation. Defining
the saturation function

sata
max

amin (b) =




amax if amax < b
b if amin ≤ b ≤ amax

amin if b < amin
(3)

we can write the shape coil voltage commands as

v = satM
max
v (t)

Mmin
v (t) (ṽ) , ṽ = satN

max
v (t)

Nmin
v (t) (v∗) (4)

where ṽ is the output of the watch-dog block. The saturation
levels Mmin

v and Mmax
v are determined by the hardware

limitations of the power supply stage and are functions
of time because they depend on the coil load current and
DC supply voltage. The saturation levels Nmin

v and Nmax
v ,

imposed by the watch-dog as it is explained below, are
also functions of time because they depend on the value
of the unstable mode xu. The watch-dog is limiting the
voltage commands to the shape coils to avoid the loss of
controllability of the unstable mode due to the shrinkage of
the controllable region. Given the dynamics of the unstable
mode

ẋu = Auxu + Buu + Euv + Fu (5)

it is posible to define the controllable region as

χ =
{
xu : xmin

u ≤ xu ≤ xmax
u

}
(6)

where

xmax
u =

− (Buu)max − Euv + Fu

Au
(7)

xmin
u =

− (Buu)min − Euv + Fu

Au
. (8)

These limiting values are plotted as functions of Euv in
Figure 3. We cannot allow the controllable region to shrink
to a null set and we impose a minimum size to it defined as

χmin =
{
xu : (xmin

u )max ≤ xu ≤ (xmax
u )min

}
. (9)

This minimum controllable region defines hard limits on Euv
allowing this signal to be between (Euv)lim

min and (Euv)lim
max.

In addition we need to impose variable limits on Euv

�

�

Euv

����������������

����������������

�
�

��

(xmax
u )min

(xmin
u )max

xmax
u (Euv)

xmin
u (Euv)

(Euv)lim
max

(Euv)lim
min

xmax
u , xmin

u

Fig. 3. Controllable region

depending on the position of the unstable mode xu. Toward
this goal we define

(xmax
u )allowed = max(fuxu, (xmax

u )min)
(Euv)allowed

max = − (Buu)max + Fu − Au(xmax
u )allowed

(xmin
u )allowed = min(fuxu, (xmin

u )max)
(Euv)allowed

min = − (Buu)min + Fu − Au(xmin
u )allowed

where fu > 1 is a design constant and for each channel i
we compute

(Nmax
v )i =




(Euv)allowed
max∑Ncoils

j=1
|Euj

| if sgn(Eui
) > 0

− (Euv)allowed
min∑Ncoils

j=1
|Euj

| if sgn(Eui
) < 0

(Nmin
v )i =




− (Euv)allowed
max∑Ncoils

j=1
|Euj

| if sgn(Eui
) < 0

(Euv)allowed
min∑Ncoils

j=1
|Euj

| if sgn(Eui
) > 0.

The rate limit on the vertical coil current references aims
at preventing the shape controller from asking the system for
a response rate that cannot be physically fulfilled. The rate
limit for the vertical coil current references can be written as

ṙI = Rsgn(r̃I − rI) (10)

where R is varied adaptively between maximum and mini-
mum values according to the available control. Ṙ is equal to
K min(Mmax − yc, yc − Mmin) |sgn(r̃I − rI)| if Mmin ≤
yc ≤ Mmax, 0 if R > Rmax and Mmin ≤ yc ≤ Mmax,



0 if R < Rmin and (yc < Mmin or yc > Mmax),
K(Mmax − yc) |sgn(r̃I − rI)| if yc > Mmax, and K(yc −
Mmin) |sgn(r̃I − rI)| if yc < Mmin. Mmin(t) and Mmax(t)
are the saturation levels for the inner controller, and

r̃I = satM
max
I

Mmin
I

(r∗I ) . (11)

The saturation levels Mmin
I and Mmax

I are related to the
maximum currents tolerated by the coils. The centroid po-
sition reference is also limited by physical constraints due
to the finite size of the reactor represented by Mmin

Z and
Mmax

Z , and is written as

rZ = satM
max
Z

Mmin
Z

(r∗Z) . (12)

IV. ANTI-WINDUP COMPENSATOR FUNDAMENTALS

We consider the stable plant

ẋ = f(x, u)
y = h(x, u) (13)

with control input u ∈ �m, measurements y ∈ �p and states
x ∈ �n. In addition, we consider that a nominal controller
with state xc ∈ �nc , input uc ∈ �p, output yc ∈ �m and
reference r ∈ �p,

ẋc = g(xc, uc, r)
yc = k(xc, uc, r)

(14)

has been already designed so that the closed loop system
with interconnection conditions

u = yc, uc = y (15)

is well posed and internally stable. The controller performs
well locally and succeeds regulating the plant to a desirable
value x∗ using the control value u∗ asymptotically. Both
x∗ and u∗ can be function of time as in the case when an
additional known input is driven the system.

Since the plant is stable in this case, the goal of the
anti-windup is the modification of the nominal loop with
the purpose of avoiding any performance decrease due to
the saturation of the actuaction devices. However, it is
required that the nominal controller is used and unmodified
on a prescribed, not necessarily bounded, neighborhood of
(x∗, u∗) denoted by F where there is no input constraint.

We assume there exist functions F and H and a point x∗
c

such that

1) F (x, u) = f(x, u) and H(x, u) = h(x, u) for all
(x, u) ∈ F

2) y∗
c = k(x∗

c ,H(x∗, u∗), r∗)
3) the feedback interconnection of (14) with the system

ẋ = F (x, u)
y = H(x, u) (16)

is well-posed and locally Lipschitz and the point
(x∗, x∗

c) is globally asymptotically stable.

Being F the region where there is no input magnitude
and/or rate saturation, it is natural to take the modified
plant (16) as the input constraint free version of the original
plant (13). Since in addition the nominal controller (14) is
designed precisely for the input constraint free version of the
original plant (modified plant (16)), the three assumptions are
satisfied.

The anti-windup augmentation to the controller (14) can
be written as

ẋ1
aw = f(x1

aw, u)
ẋ2

aw = F (x2
aw, u)

s = −h(x1
aw, u) + H(x2

aw, u)
(17)

with initial conditions x1
aw(0) = x1

awo
, x2

aw(0) = x2
awo

and
with the new interconnection conditions

u = yc, uc = y + s. (18)

Remark 1: Let us consider the system shown in Figure 4
(discard the superscript ‘s’). We can write the dynamics of
our overall plant as

ẋ =
[

ẋp

ẋa

]
=

[
f1(xp, h2(xa, u))

f2(xa, u)

]
≡ f(x, u)(19)

y = h1(xp, w) = h1(xp, h2(xa, u)) ≡ h(x, u). (20)

As long as F is contained in or equal to �n × U , where U
is the set of points u satisfying u = w, we may take

F (x, u) ≡
[

f1(xp, u)
f2(xa, u)

]
(21)

H(x, u) ≡ h1(xp, u), (22)

which match f(x, u) and h(x, u) on �n × U . Consequently
we can note that if x1

aw(0) = x(0) we will have

uc = y+s = h(x, u)−h(x1
aw, u)+H(x2

aw, u) = H(x2
aw, yc).

The anti-windup, through the signal s, is hiding the saturation
in rate and magnitude from the nominal controller and
guaranteeing in this way that the controller is well behaved.
At its input the controller is seeing the response the plant
would have had if no saturation were present.

Remark 2: When w = u we do not want the antiwindup to
affect through s the nominal closed loop system. To achieve
this goal we must have s = 0 and therefore x1

aw = x2
aw.

However, in presence of slow modes the system will be
affected by the anti-windup for an unnecessarily long time.
In this case we modify the anti-windup structure to make
xe = x1

aw − x2
aw, and consequently s, converge to zero

arbitrarily fast. Denoting x1
aw simply as xaw, the anti-windup

augmentation can be written now as

ẋaw = f(xaw, u)
ẋe = f(xaw, u) − F (xaw − xe, u) + γ(u,w)λ
s = −h(xaw, u) + H(xaw − xe, u)
λ = −cxe − [f(xaw, u) − F (xaw − xe, u)]

(23)



Fig. 4. Anti-windup scheme.

where c is a positive constant and γ(u,w) = 1 if u = w and
0 otherwise. Recalling that −h(x1

aw, u)+H(x1
aw, u) = 0 on

�n×U , i.e. when w = u, we guarantee that xe will converge
to zero arbitrarily fast (ẋe = −cxe) and so will s.

V. CONTROL SYSTEM DESIGN

Defining the overall input of the outer plant as ws =[
vT rT

I rT
Z

]T
we can write the dynamics of the outer plant

simply as
ẋs

p = f1(xs
p, w

s)
ys = h1(xs

p, w
s).

Defining the state and input of the actuators respectively
as xs

a = rI and us =
[

(v∗)T (r∗I )T (r∗Z)T
]T

, we can use
equations (4), (10), (11) and (12) to write

ẋs
a = R sgn

[
satM

max
I

Mmin
I

(us
2) − xa

]
= f2(xs

a, us)

ws =




satM
max
v (t)

Mmin
v (t)

[
satN

max
v (t)

Nmin
v (t) (us

1)
]

xs
a

satM
max
Z

Mmin
Z

(us
3)


 = h2(xs

a, us).

The superscript “s” has been used with the only purpose
of indicating that this is the plant (outer plant) for the shape
controller. Examining equation (1) we can note that the
dynamics of the inner plant is driven by a constant input. We
are in the case then where the equilibrium of the outer plant
(xs∗

, us∗
) is a function of time (xs = [(xs

p)
T (xs

a)T ]T ).
With the definitions (19-20) and (21-22), the dynamics of

the anti-windup augmentation of the shape controller is given
(adding the superscript “s”) by (23) with interconnection
conditions us = ys

c , us
c = ys + s. Figure 4 illustrates

the architecture of the anti-windup augmentation for the
outer loop. The stability of the anti-windup compensator is
guaranteed in this case by the stability of the plant.

VI. CONCLUSIONS

The necessity of an anti-windup scheme for the outer
loop is motivated not only due to the inherent limitations

of its actuators but also due to the fact that the inner loop
is modifying the control signals of the outer loop in order
to preserve stability of the plant. The proposed scheme will
be tested in nonlinear simulations first and in experimental
conditions later.
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