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Abstract

Control of plasma density and temperature magnitudes,
as well as their profiles, are among the most fundamental
problems in fusion reactors. Unfortunately, the economy
of fusion reactors often requires the reactor to operate
under conditions in which the rate of thermonuclear re-
action increases as the plasma temperature rises. In this
thermally unstable zone, an active control system is nec-
essary to stabilize the thermonuclear reaction. Existing
efforts use control techniques based on linearized mod-
els. In this work, a zero-dimensional nonlinear model in-
volving approximate conservation equations for the en-
ergy and the densities of the species was used to synthe-
size a nonlinear feedback controller for stabilizing the
burn condition of a fusion reactor. A computer simu-
lation study was performed to show the capability of
the controller and compare it with previous linear con-
trollers.

Keywords: Burn control, fusion reactors, tokamaks,
ITER, nonlinear control, Lyapunov stabilization.

1 Introduction

In order to be commercially competitive, a fusion reac-
tor needs to run long periods of time in a stable burn-
ing plasma mode at working points which are charac-
terized by a high Q, where Q is the ratio of fusion
power to auxiliary power. Active burn control is of-
ten required to maintain these near-ignited or ignited
conditions (Q � ∞). Although operating points with
these characteristics that are inherently stable exist for
most confinement scalings, they are found in a region of
high temperature and low density. Unfortunately, eco-
nomical and technological constraints make these oper-
ating points unattractive and require the fusion reactor
to operate in a zone of low temperature and high den-
sity where the thermonuclear reaction is inherently ther-
mally unstable. In this thermally unstable zone, a small
increase of temperature leads to an increase of power
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which results in thermal excursion. Although the ex-
cursion reaches a stable uneconomical working point at
a higher temperature, the plasma can be led to beta or
density limit disruptions before reaching this point. On
the other hand, a small decrease of temperature leads
to a decrease of power and quenching. Even during a
quenching, a disruptive instability can be reached, caus-
ing wall damage.

Over the years, the physical and technological feasibil-
ity of different methods for controlling the burn condi-
tion have been studied [1, 2, 3] considered: modulation
of auxiliary power, modulation of fueling rate and con-
trolled injection of impurities.

The controllers based on the modulation of the auxiliary
power [4, 5] requires the operation at subignition points
where the auxiliary power is nonzero. As the plasma
heats up due to a positive perturbation in the initial
temperature, the auxiliary power is reduced by the con-
troller. Since the maximum reduction is complete shut-
off of the auxiliary power, there is a limited range of
thermal excursions where the control system is effec-
tive. The control of negative perturbations in the initial
temperature is less demanding and it depends only on
the availability of adequate heating capability.

The controllers based on the modulation of the fueling
rate [6, 7, 8] allows the operation at ignition points where
the auxiliary power is zero. However, although they can
deal quite well with perturbations in initial conditions
leading to thermal excursions, they are not very effective
for perturbations in initial conditions leading to quench-
ing.

Controlled introduction of impurities is useful to en-
hance the radiation losses in the plasma and prevent in
this way thermal excursions. For large positive pertur-
bations in the initial temperature this method requires
the introduction of a large amount of impurities. There-
fore, after controlling the thermal excursion, additional
amount of auxiliary power, with the consequent Q re-



duction, must be provided in order to compensate the
radiation losses due to the impurities until they are com-
pletely removed from the reactor.

The common denominator of existing works is the ap-
proximation of the nonlinear model of the fusion reactor
by a linearized one and generally the utilization of only
one among the actuation concepts (single-input control).
To expand operability, we are seeking a systematic pro-
cedure for synthesis of burn controllers that are able to
stabilize the system against large initial conditions, can
work as well for suppressing thermal excursions as for
preventing quenches, can operate at subignition or igni-
tion points indistinctly, show robustness against uncer-
tainties in parameters of the model such as the confine-
ment times of the species, can drive the system from an
operating point to another and can change the fusion
power during the reactor operation. Such controllers
should be based on a full nonlinear model and should
make use simultaneously of all the potential actuators:
auxiliary power, refueling rate and impurities injection.

The paper is organized as follows. In Section 2 a zero–
dimensional model for the fusion reactor is described.
The control objectives are stated in Section 3. A non-
linear feedback control law that achieves stabilization of
the deviation state variables is presented in Section 4.
In Section 5, a detailed simulation study is provided. Fi-
nally, the conclusions and some suggestions about future
work are presented in Section 6.

2 Model

In this work we use a zero-dimensional model for a fu-
sion reactor which employs approximate particle and en-
ergy balance equations. This is fundamentally the same
model used by Hui, Miley and Bamieh [6, 7] but we
introduce a new equation which allows the presence of
impurities in the reactor. The alpha-particle balance is
given by

dnα

dt
= −nα

τα
+

(
nDT

2

)2

< σv > (1)

where nα and nDT are the alpha and deuterium-tritium
(DT) densities respectively, and τα is the confinement
time for the alpha particles. This approximate model
implies that the 3.52 MeV alpha particles slow down in-
stantaneously, depositing their energy in the flux surface
where they are born, which is a reasonable approxima-
tion for reactor-size tokamaks. The deuterium-tritium
(DT) fuel particle balance is given by

dnDT

dt
= −nDT

τDT
− 2

(
nDT

2

)2

< σv > +S (2)

where S is the refueling rate (input) and τDT is the
confinement time for the fuel particles. The impurity
presence is determined by the balance equation

dnI

dt
= −nI

τI
+ SI (3)

where nI is the impurity density, τI is the confinement
time for the impurity particles and SI is the impurity
injection rate (input). The energy balance is given by

d 3
2
(nα + nDT + nI + ne)T

dt
= −

3
2
(nα + nDT + nI + ne)T

τE

+Paux +
(

nDT

2

)2

< σv > Qα − AbZeffn2
e

√
T (4)

where T is the plasma temperature, Paux is the auxiliary
power (input), Qα = 3.52 MeV is the energy of the
alpha particles and Ab = 5.5 10−37 Wm3/

√
KeV is the

bremsstrahlung radiation coefficient.

The DT reactivity < σv > is a highly nonlinear, positive
and bounded function of the plasma temperature given
by

< σv >= exp
(

a1

T r
+ a2 + a3T + a4T

2 + a5T
3 + a6T

4
)

and its constant parameters ai and r are taken from [9].
No explicit evolution equation is provided for the elec-
tron density ne since we can obtain it from the neutrality
condition

ne = nDT + 2nα + ZInI , (5)

whereas the effective atomic number Zeff , the total den-
sity and the energy are written as

Zeff =

∑
i
niZ

2
i

ne
=

nDT + 4nα + Z2
I nI

ne
(6)

n = nα + nDT + nI + ne

= 2nDT + 3nα + (ZI + 1)nI (7)

E =
3

2
nT (8)

The energy confinement scaling used in this work is
ITER90H-P [10] because it allows the comparison with
previous linear controllers based on this scaling. How-
ever, it will be clear from the synthesis procedure that
the results can be extended to newer scalings. This
scales with plasma parameters as

τE = f 0.082I1.02R1.6B0.15A0.5
i κ−0.19

χ P−0.47 = kP−0.47 (9)

where the isotopic number Ai is 2.5 for the 50:50 DT
mixture, k is a constant that depends on the ITER ma-
chine parameters which are defined in table 1 and the
factor scale f which in turn depends on the confinement
mode. The net plasma heating power P is defined as

P = (alpha heating) − (radiation loss) + Paux

=
(

nDT

2

)2

< σv > Qα − AbZeffn2
e

√
T + Paux (10)

The confinement times for the different species are
scaled with the energy confinement time τE as

τα = kατE , τDT = kDT τE , τI = kIτE . (11)



I Plasma Current 22.0 MA
R Major Radius 6.0 m
a Minor Radius 2.15 m
B Magnetic Field 4.85 T
κχ Elongation at χ 2.2
kα Alpha particle confinement constant 7
kDT DT particle confinement constant 3
kI Impurity particle confinement constant 10
βmax Beta limit 2.5I

aB
= 5.3%

V Plasma Volume 1100 m3

Table 1: ITER Machine Parameters [11]

3 Control Objective

The possible operating points of the reactor are given
by the equilibria of the dynamic equations. The density
state variables n̄α, n̄DT , n̄I = 0, energy state variable Ē
and inputs P̄aux, S̄, S̄I = 0 at the equilibrium, are cal-
culated as solutions of the nonlinear algebraic equations
obtained by setting the left hand sides in (1)–(4) to zero
when two of the plasma parameters such as T and β, for
example, are chosen arbitrarily.

Defining the deviations from the desired equilibrium val-
ues as ñα = nα−n̄α, ñDT = nDT −n̄DT , ñI = nI −n̄I =
nI , Ẽ = E − Ē, P̃aux = Paux − P̄aux, S̃ = S − S̄ and
S̃I = SI − S̄I = SI , we write the dynamic equations for
the deviations as

dñα

dt
= − ñα

τα
+ uα

+
(

ñDT

2

)2

< σv > +
1

2
ñDT n̄DT < σv >(12)

dñDT

dt
= − ñDT

τDT
+ uDT + S̃

−2
(

ñDT

2

)2

< σv > −ñDT n̄DT < σv > (13)

dñI

dt
= − ñI

τI
+ S̃I (14)

dẼ

dt
= − Ẽ

τE

−
[

Ē

τE
−

[(
nDT

2

)2

< σv > Qα + u

]]
(15)

where

uα = − n̄α

τα
+

(
n̄DT

2

)2

< σv >

uDT = − n̄DT

τDT
− 2

(
n̄DT

2

)2

< σv > +S̄

u = Paux − AbZeffn2
e

√
T

Equations (5) and (6) for ne and Zeff respectively al-
low us to write u in terms of the state variables. From
equations (7) and (8) we can also write T as a function
of our state variables

T =
2

3

E

2nDT + 3nα + (ZI + 1)nI
(16)

The control objective is to drive the initial perturba-
tions in ñα, ñDT , ñI , Ẽ to zero using actuation through
P̃aux, S̃ and S̃I . All the states are assumed to be avail-
able from measurement or estimation.

4 Controller Design

We start by looking for a control which stabilizes Ẽ. We
choose u such that

Ē

τE
−

[
(
nDT

2
)2 < σv > Qα + u

]
= 0 (17)

This means that we choose Paux and nI such that

Ē

τE
=

(
nDT

2

)2

< σv > Qα − AbZeffn2
e

√
T + Paux

= P (18)

From the equilibrium equation for the energy E,

0 = − Ē

τ̄E
+ (

n̄DT

2
)2 < σ̄v > Qα − AbZ̄eff n̄2

e

√
T̄ + P̄aux

= − Ē

τ̄E
+ P̄ ,

and the expression (9) for the energy confinement time,
we note that the solution for equation (18) is P = P̄ .
Therefore, the control strategy will be to adjust Paux

and nI , if necessary, to make P constant and equal to P̄
satisfying equation (18) and reducing equation (15) to

dẼ

dt
= − Ẽ

τE

The subsystem Ẽ is exponential stable since τE > 0.
The controller that implements (18) is synthesized in
two steps:

First Step: We compute

Paux = P̄ −
(

nDT

2

)2

< σv > Qα + AbZeffn2
e

√
T (19)

If Paux ≥ 0 then we keep this value for Paux and let
SI = 0.
If Paux < 0 then we take Paux = 0 and go to the Second
Step,

Second Step: We follow a singular perturbation ap-
proach. We look for the least nI = n∗

I > 0 such that¶

−P̄ +
(

nDT

2

)2

< σv > Qα = AbZeffn2
e

√
T (20)

and use this value n∗
I as the reference to follow for the

positive valued proportional controller:

SI = KI(n
∗
I − nI) ∀n∗

I − nI ≥ 0

SI = 0 ∀n∗
I − nI < 0 (21)

¶Note that ne, Zeff and T are functions of nI



If the reactor operates at a subignition point and the po-
tential perturbations in initial conditions are such that
they can be rejected only by the modulation of the auxil-
iary power Paux according to the control law (19), we are
in the case where impurities are not needed and SI = 0.
In this case, P is always equal to P̄ , equation (18) is
always satisfied and consequently τE = τ̄E , τα = τ̄α,
τDT = τ̄DT and τI = τ̄I . If the reactor operates at an
ignition point and suffers perturbations in initial condi-
tions leading to thermal excursions, or even if it works
at a subignition point but these perturbations in initial
conditions are too big to be rejected only by the modu-
lation of the auxiliary power, the injection of impurities
is necessary. In this case the controller cannot ensure
P = P̄ for all time since nI has its own dynamics given
by equation (14). However, it must be remarked that
this transient until P becomes P̄ can be arbitrarily re-
duced by a proper increase of the gain KI if enough
control energy for SI is available. Moreover, and more
important, no matter what the length of the transient,
the controller always guarantees the convergence of nI

to n̄I and consequently the convergence of P to P̄ , the
satisfaction of equation (18) and the exponential sta-
bility of Ẽ. The selection of the gain KI is always a
compromise between the length of the transient and the
amount of auxiliary power the reactor needs after the
injection of the impurities. This selection is also a func-
tion of the atomic number ZI , the type of impurity.

We note from equation (14) that ñI is input-state stable
(ISS) (See [13], section 5.3) with respect to SI . This en-
sures that ñI will be bounded as long as SI is bounded,
and it will be exponentially stable once SI becomes zero.
After stabilizing Ẽ and ñI using Paux and SI as con-
trollers, we must focus on equations (12) and (13) to
achieve stability for ñDT and ñα. Choosing

S̃ = 2
(

ñDT

2

)2

< σv > −uDT (22)

we can reduce equation (13) to

dñDT

dt
= −

[
1

τDT
+ n̄DT < σv >

]
ñDT

Since [ 1
τDT

+ n̄DT < σv >] is positive, the subsystem
ñDT is exponential stable.

In order to finish our stability analysis we examine the
equation (12) for ñα. We note that ñα is ISS with re-
spect to ñDT and uα. Therefore, since ñDT is bounded
(because it is exponentially stable), and uα is bounded
(because Ẽ is exponentially stable and < σv > is a
bounded function), ñα will be bounded for all time. In
addition, once E converges to Ē (Ẽ → 0) and nDT con-
verges to n̄DT (ñDT → 0) this equation reduces to

dñα

dt
= − ñα

τ̄α
+ u∗

α, u∗
α = − n̄α

τ̄α
+

(
n̄DT

2

)2

< σv >

The function < σv > is a function of T = 2
3

Ē
2n̄DT +3nα

,
once nI = ñI converges to zero, and has a positive
derivative in the region of interest. Consequently u∗

α has
the same sign as − ñα

τ̄α
and vanishes when ñα vanishes

(< σv >=< σ̄v >). This allows to conclude exponential
stability for ñα.

5 Simulation Results

The objective of the controller is to keep the plasma at
a desired equilibrium or operating point. The controller
must be able to reject perturbations in initial conditions,
forcing the plasma back to the equilibrium.

T̄ Temperature 8.28 KeV
n̄e Electron Density 9.80 1019 m−3

f̄α Alpha Fraction 6.41 %
β̄ Beta 2.69 %
n̄α Alpha Density 6.28 1018 m−3

n̄DT DT Density 8.55 1019 m−3

Ē Energy 3.78 105 J.m−3

P̄aux Auxiliary Power 0 W.m−3

S̄ Fuel Rate 4.04 1018 m−3.sec−1

Table 2: ITER Equilibrium point 1 - Ignition point

For all the simulations presented here we have used im-
purities with ZI = 8. This relatively low Z and the fu-
sion reactor temperature justify the absence of the term
corresponding to the line radiation due to impurities in
the energy balance equation of our model [12]. In ad-
dition, a controller gain KI = 0.05 and a scale factor
f = 0.85 for the energy confinement time (9) have been
used. It should be noted that our controller does not
depend on kI and consequently it tolerates any size of
uncertainty in this parameter. Therefore the choice of
kI = 10 can be considered completely arbitrary and with
the only purpose of the simulation.

The controller designed shows capability of rejecting dif-
ferent types of large perturbations in initial conditions.
Figure 1 compares its performance with other two con-
trollers synthesized by linear pole placement [6] and lin-
ear robust [7] techniques which use the same dynamical
model presented here. This study is carried out generat-
ing initial perturbations around the equilibrium 1 given
by table 2 for T and ne and keeping the alpha-particle
fraction fα := nα/ne equal to that of the equilibrium.
While the boundaries shown for the linear controllers
are absolute, for the nonlinear controller they only in-
dicate the limits within which we performed our tests.
Tests exceeding the Troyon β limit are not shown. How-
ever if the MHD stability conditions were not violated,
the controller would reject also initial perturbations in
this area. This is also the case for the density limit.
Although the density limit is not shown in the figure,
it can be appreciated that some of the perturbations in
initial conditions that are rejected by the controller may
exceed this limit.
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The robustness of our controller was also studied against
those of the linear controllers. Figure 2 shows the re-
gions of stability against uncertainty in the parameter
kα whose nominal value is equal to 7 when the system
suffers perturbations in the initial temperature. Again,
the region shown for the nonlinear controller is not a
limit. With the sole objective to show its performance
we tested it against uncertainties up to 400% and per-
turbations for initial T between −90% and 100%.
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Figure 2: Robustness comparison.

Figures 3 and 4 show the ability of the control to keep
the system at the desired equilibrium point 1 even when
disturbed by large perturbations in initial conditions.
It must be remarked that such large perturbation in
initial conditions can rarely be handled by a controller
synthesized using an approximate linear model.

6 Conclusions and Future Work

This new approach to the problem of burn control allows
us to deal with perturbations in initial conditions that

were unmanageable until now. On the other hand, the
multi-input nature of the controller allows it to reject
large perturbations in initial conditions leading to both
thermal excursion and quenching. In addition, the ef-
fectiveness of the controller does not depend on whether
the operating point is an ignition or a subignition point.
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Figure 3: (States) With control, even under initial

perturbation of 100% in T , −90% in ne and 100% in fα,

the system returns to the desired equilibrium.

Since the nonlinear controller depends parametrically on
the equilibrium point, it can drive the system from one
equilibrium point to another allowing in this way the



change of power, other plasma parameters and ignition
conditions. No scheduled controllers are necessary and
the same control law is valid for every equilibrium point.
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Figure 4: (Inputs) Note how the auxiliary power Paux and

impurity injection SI work in tandem.

Simulation results show good robustness properties
against uncertainties in the confinement times. The con-
trol laws (19), (21) and (22) are only functions of kDT

and even this dependence in (22) can be avoided with a
slight modification in the design that is not presented in
this work. The boundedness of the system solutions is
achieved for any kind and size of perturbation in initial
conditions regardless of the size and nature of the un-

certainty. The controller is always robust against uncer-
tainties in kI , is always able to drive E → Ē regardless
of the uncertainty type and, in addition, is able to drive
nDT → n̄DT when there is no uncertainty in kDT . In
order to drive the system to the equilibrium point corre-
sponding to the actual values of the confinement times,
and to avoid spending control effort on handling the un-
certainties in an unstructured (non-parametric) manner,
a nonlinear adaptive control law should be synthesized.

It must be noted that this approach can be extended to
the use of any other energy confinement time scaling (9)
based on the net heating power. One possible extension
of this work involves developing a more accurate model
which includes radiation terms for higher Z impurities
and other phenomena like injected fuel diffusion. Fi-
nally, in order to approach a more relevant problem in
the fusion context as the control of the kinetic profiles,
a one-dimensional dynamic model should be introduced
and a nonlinear distributed controller should be synthe-
sized.
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