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Abstract— Tokamaks are toroidal devices in which a plasma
is confined by means of helical magnetic fields with the purpose
of obtaining energy from nuclear fusion reactions. The safety
factor, q, is a magnitude that measures the pitch of the helical
magnetic field lines in a tokamak. Active control of the q profile
is needed due to its close relationship with plasma performance
(steady-state operation) and magneto-hydrodynamic stability.
However, the responses of some plasma magnitudes, such as
the electron temperature profile, are difficult to model and
introduce a high level of uncertainty in the model used for
q-profile control design. Control algorithms that are robust
against such model uncertainties must be developed in order to
ensure successful q-profile regulation. In this work, a nonlinear,
robust q-profile controller is designed using feedback lineariza-
tion and nonlinear damping techniques. The controller makes
use of plasma current modulation, neutral beam injection,
electron-cyclotron heating & current drive, and electron density
modulation as actuation methods. A simulation study is carried
out for a DIII-D scenario to test the controller’s performance
under the presence of electron temperature uncertainties.

I. INTRODUCTION

A plasma is a very hot gas in which ions and electrons
are dissociated. Such dissociation makes plasmas capable
of interacting with magnetic fields, as well as of driving
electrical current. These special characteristics of plasmas
gave birth, within the context of nuclear fusion research, to
the so-called tokamak [1]. Tokamaks are toroidal devices in
which a plasma is confined by means of helical magnetic
fields (see Fig. 1). The ultimate goal of tokamaks is to
obtain energy by means of nuclear fusion reactions within
the plasma, which must be heated to temperatures in the
order of 10 million degrees to overcome the Coulombic
repulsion force that exists between its particles (usually hy-
drogen isotopes) and achieve fusion. The pitch of the helical
magnetic field lines within the tokamak can be characterized
by a magnitude known as safety factor, q. This magnitude is
closely related to steady-state operation, as well as to certain
plasma magneto-hydrodynamic (MHD) instabilities [1] that
normally decrease performance. Therefore, active control of
the q profile is a requirement for tokamaks to become a
commercially competitive means of energy generation.

Significant research has been carried out to develop
q-profile controllers for tokamaks. Control of the q profile
was experimentally demonstrated in both low and high
plasma-confinement scenarios in the DIII-D tokamak [2], [3],
[4], [5]. Other previous work proposed q-profile controllers

This work was supported in part by the U.S. Department of Energy
(DE-SC0010661). A. Pajares (andres.pajares@lehigh.edu) and
E. Schuster are with the Department of Mechanical Engineering and Me-
chanics, Lehigh University, Bethlehem, PA 18015, USA.

for other tokamaks such as NSTX-U [6], JET [7], Tore
Supra [8], TCV [9], or ITER [10], the next-generation
tokamak currently under construction.

A relevant aspect of this control problem is that there is
always some degree of uncertainty when modeling the re-
sponse of the q profile to the different actuators. In particular,
it is extremely difficult to accurately capture the dynamics
of kinetic magnitudes such as the plasma temperature by
using models that are tractable for control design. Most of
our previous model-based control-design work employs a
control-oriented model [11] for the electron temperature evo-
lution that exploits the time-scale separation between kinetic
(e.g., temperature) and magnetic (e.g., q) variables. Whereas
this modeling approach has the advantage of substantially
facilitating the control design, the capability of the simplified
temperature model to accurately capture the real dynamics
is limited, which may result in poor controller performance.
Alternatively, a more complex temperature model based on
the electron heat-transport equation is used in other pieces
of our previous work [9]. However, the low-complexity
transport-coefficients models that are needed for control de-
sign still introduce a high level of uncertainty that can affect
controller performance. Therefore, robust controllers that
ensure successful q-profile regulation even in the presence
of the aforementioned uncertainties are required.

Controllers that are robust to electron temperature uncer-
tainties were proposed in [9], [10], [12], where approximate
linearization and linear robust techniques are employed.
In this work, a nonlinear, robust q-profile controller that
avoids approximate linearization is designed to handle model
uncertainties in the model used for the electron temperature
profile evolution. A nominal controller is first designed by
using feedback linearization techniques based on a model
without uncertainties, in a similar fashion as in [13]. As a
difference from previous work, electron density modulation
is included as an actuator, together with plasma current mod-
ulation, neutral-beam injection (NBI), and electron-cyclotron
(EC) heating & current drive. More importantly, nonlinear
damping techniques are used in this work to robustify the
nominal design and to therefore avoid performance limitation
arising from the feedback linearization method due to the
temperature-profile-evolution model uncertainties.

This work is organized as follows. The nonlinear model
for the q-profile evolution is described in Section II. The
nominal control law is presented in Section III. The robust
control law is designed in Section IV. A simulation study
is presented in Section V to test the controller performance.
Finally, some conclusions are presented in Section VI.
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II. SAFETY FACTOR EVOLUTION MODEL

Magnetic field lines guide the particles in helical, closed
paths in tokamaks (see Fig. 1). This helical magnetic field,
B̄, has two components, namely the toroidal magnetic field,
B̄φ, and the poloidal magnetic field, B̄θ, such that B̄ =
B̄φ+ B̄θ. The poloidal magnetic flux at a point P is defined
as Ψ =

∫
S
B̄θ · dS̄, where S is the surface whose boundary

is a toroidal ring passing through P and is normal to the
z-axis (see Fig. 1). Points with the same poloidal magnetic
flux, Ψ, define nested magnetic-flux surfaces. Under ideal
MHD conditions, an axisymmetric configuration around the
z-axis is normally found in tokamaks (see Fig. 2). This,
together with the fact that some key plasma properties are
constant on the magnetic-flux surfaces, allows for the use
of a one-dimensional model in the spatial domain when the
mean effective minor radius, ρ, indexing the magnetic-flux
surfaces, is used as spatial coordinate. This spatial coordinate
is normalized as ρ̂ = ρ/ρb, where ρb is the value of ρ at the
last closed magnetic-flux surface (see Fig. 2). The normalized
mean effective minor radius, ρ̂, is related to the toroidal
magnetic flux, Φ, and to the vacuum toroidal magnetic field
at the geometric major radius R0 of the tokamak, Bφ,0, by
means of πBφ,0ρ2b ρ̂

2 = Φ. The q profile is defined as

q(ρ̂, t) ,
dΦ

dΨ
= − dΦ

2πdψ
= −Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ̂
, (1)

where t is the time and ψ(ρ̂, t) is the poloidal stream
function, which satisfies Ψ = 2πψ.

Magnetic axis
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Fig. 1. Helical magnetic field lines in the tokamak define a poloidal
magnetic flux through the surface S associated with the point P .
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Fig. 2. Magnetic flux surfaces in a tokamak. Each magnetic flux surface
is characterized by a constant poloidal magnetic flux Ψ.

The evolution of ψ is given by the magnetic diffusion
equation [14],

∂ψ

∂t
=

η(Te)

µ0ρ2b F̂
2

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+R0Ĥη(Te)jni, (2)

where η(Te) is the plasma resistivity, Te(ρ̂, t) is the elec-
tron temperature, µ0 is the vacuum permeability, Dψ(ρ̂) =
F̂ (ρ̂)Ĝ(ρ̂)Ĥ(ρ̂), where F̂ , Ĝ, and Ĥ are spatially varying
geometric factors pertaining to the magnetic configuration
of a particular plasma equilibrium [15], and jni(ρ̂, t) is the
non-inductive current density. The boundary conditions are
given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −µ0

2π

R0

Ĝ|ρ̂=1Ĥ|ρ̂=1

Ip(t), (3)

where Ip(t) is the total plasma current.
In this work, Te(ρ̂, t) is considered to be an uncertain

variable,

Te(ρ̂, t) = Tnome (ρ̂, t) + δTe(ρ̂, t), (4)

where Tnome (ρ̂, t) is the nominal electron temperature ob-
tained from control-oriented models [11], and δTe

(ρ̂, t) is
an uncertain term that is unknown but it is assumed to be
bounded. In this work, η and jni are modeled as in [11], so
they are functions of Te and, therefore, they are uncertain
variables as well. They can be expressed as

η(ρ̂, t) = ηnom(ρ̂, t) + δη(ρ̂, t), (5)
jni(ρ̂, t) = jnomni (ρ̂, t) + δjni

(ρ̂, t), (6)

where ηnom(ρ̂, t) and jnomni (ρ̂, t) are the nominal plasma
resistivity and non-inductive current density, respectively,
and δη(ρ̂, t) and δjni

(ρ̂, t) are uncertain terms that are also
unknown but bounded, and depend on δTe

(ρ̂, t). Using (5)
and (6), equation (2) can be rewritten as

∂ψ

∂t
=

ηnom

µ0ρ2b F̂
2

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+R0Ĥη

nomjnomni +δψ, (7)

where δψ is an uncertain term that is bounded and given by

δψ =
δη

µ0ρ2b F̂
2

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+R0Ĥ(δηδjni + δηj

nom
ni + ηnomδjni).

It is convenient to define the poloidal flux gradient, θ, as

θ ,
∂ψ

∂ρ̂
. (8)

Taking derivative with respect to ρ̂, using the definition (8),
and applying the chain rule, equation (7) can be rewritten as

∂θ

∂t
=
[
hdiff,1(ρ̂)θ′′ + hdiff,2(ρ̂)θ′ + hdiff,3(ρ̂)θ

]
uη(t)

+

NNB∑
i=1

hNB,i(ρ̂)uNB,i(t) + hEC(ρ̂)uEC(t)

+
[
hBS,1(ρ̂)

1

θ
− hBS,2(ρ̂)

θ′

θ2
]
uBS(t) + δθ, (9)
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Fig. 3. Current deposition profiles tailored to DIII-D shot 147634: (a) On-axis NBI, (b) Off-axis NBI, (c) EC.

where control-oriented models for Tnome , ηnom, and jnomni

have been employed [11]. NNB is the number of NBI
groups available for feedback-linearization control within
the tokamak (see Section III-B for details), hdiff,(·)(ρ̂),
hNB,i(ρ̂), hEC(ρ̂) and hBS,(·)(ρ̂) are spatial functions whose
expressions can be found in [13], δθ , δ′ψ , which is also
assumed to be bounded, and (·)′ , ∂(·)/∂ρ̂. The variables
uη(t), uNB,i(t), uEC(t) and uBS(t) denote the virtual inputs
to the system, which are functions of the physical inputs, i.e.,

uη = I−3γ/2p P
−3ε/2
tot n̄−3ζ/2e , (10)

uNB,i = I
γ(λNB− 3

2 )
p P

ε(λNB− 3
2 )

tot n̄
ζ(λNB− 3

2 )−1
e PNB,i, (11)

uEC = I
γ(λEC− 3

2 )
p P

ε(λEC− 3
2 )

tot n̄
ζ(λEC− 3

2 )−1
e PEC , (12)

uBS = I−γ/2p P
−ε/2
tot n̄1−ζ/2e , (13)

where PNB,i(t) is the power of the i-th NBI group
(i = 1, . . . , NNB), PEC(t) is the EC power, Ptot(t) =∑NNB

i=1 PNB,i(t) +PEC(t) is the total power injected, n̄e(t)
is the line-average electron density, γ, ε, ζ, λNB and λEC are
constants arising from the Tnome and jnomni control-oriented
models [11]. The physical inputs Ip, PNB,i, PEC and n̄e are
considered to be the controllable inputs in this work. Finally,
the boundary conditions can be rewritten as

θ|ρ̂=0 = 0, θ|ρ̂=1 = −kIpIp(t), (14)

where kIp = µ0R0/(2πĜ|ρ̂=1Ĥ|ρ̂=1).

III. NOMINAL CONTROL LAW

A. Discretization Using Finite Differences
The partial differential equation (9) is discretized in the

ρ̂-domain by means of the finite differences method for the
nominal case (no uncertainty, δθ = 0). A grid with N + 1
nodes in ρ̂ = [0, 1] is used. The value of θ at each node is
denoted by θj , for j = 0, 1, ..., N . After spatially discretizing
(9), and using the boundary conditions (14), the model can
be rewritten as

˙̂
θ = G

(
θ̂, Ip(t)

)
u(t), (15)

θN = −kIpIp(t), (16)

where ˙(·) , d(·)/dt, θ̂ = [θ1, ..., θN−1]T is a vec-
tor that only includes the values of θ at the inner
nodes, G

(
θ̂, Ip(t)

)
∈ R(N−1)×(NNB+3), and u(t) =

[uη(t), uNB,1(t), ..., uNB,NNB
(t), uEC(t), uBS(t)]T .

B. Determination of NNB
The number of NBI groups available for feedback lin-

earization control is determined based on the requirement of
having NNB linearly independent columns in G associated
with uNB,i (i = 1, ..., NNB). Such columns must also
produce a well-conditioned subpart in G. These requirements
attend to both physical reasons (the number of linearly
independent columns represents the real number of nodes
that can be controlled with NBI power modulation) and
numerical reasons (feedback linearization requires a full
rank, well-conditioned G matrix [13]).

Linear independence of the G-columns associated with
uNB,i depends exclusively on the linear independence of
the current deposition profiles (denoted by jprofaux,i(ρ̂) in [13],
notation that is kept in this work) associated with uNB,i.
This fact can be inferred from the definition of hNB,i(ρ̂),
which can be obtained from [13]. Typical DIII-D current
deposition profiles for on-axis NBI, off-axis NBI, and EC are
depicted in Fig. 3 [11]. Although these particular jprofaux,i(ρ̂)
are tailored to a specific DIII-D shot, any other shot or
tokamak would produce similar qualitative results regard-
ing on-axis NBI, off-axis NBI, and EC current deposition
profiles. It can be appreciated that for on-axis NBI, co-
current NBI’s and counter-current NBI’s produce linearly
dependent columns. Therefore, all on-axis NBI’s are taken as
one group. The power associated with this group is denoted
by PNB,ON−axis. Off-axis NBI’s will be used as a single
group because they produce a linearly independent column,
and the power associated with this group is denoted by
PNB,OFF−axis. Then, two NBI groups are available for
feedback linearization control: on-axis NBI and off-axis NBI
(NNB = 2). Finally, it can also be seen that EC produces
a linearly independent column, due to its sharp off-axis
current-deposition profile.

C. Determination of the Number of Nodes, N + 1

The number of nodes in which the system is discretized is
chosen equal to the number of physical inputs available for
control. Due to the boundary condition (14), θ0 is already
fixed. θ at the other N nodes are to be controlled with
the NNB + 3 = 5 available physical inputs, thus N = 5.
Therefore, in this work, G ∈ R4×5.
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Using the same nodes as available physical inputs only
makes sense if the resulting matrix G is full row rank,
which would imply that all nodes in the discretization can
be controlled through the available physical inputs. For the
practical cases studied in this work and in [13], it is found
that G is full row rank. However, in general, it cannot be
assured that G is full row rank. This is due to the nature
of the system, as G depends on θ̂ and Ip. If G is not full
rank, a study of the relative degree of the system needs
to be carried out, and a change of variables z = T (θ̂)
needs to be sought to find a state-space representation that is
feedback linearizable [16]. Due to the nature of the auxiliary
sources, however, it can always be assured that at least
3 inner nodes can be controlled (because G has at least
3 linearly independent columns arising from on-axis NBI,
off-axis NBI and EC contributions), and that the system is
always feedback linearizable with the new state variables
z = T (θ̂).

D. Boundary Control with Ip

From the boundary condition (16), it can be seen that Ip
directly controls θN . Then, the control law for Ip is taken as

Ip(t) = −θ̄N/kIp , (17)

where θ̄N is the target for θN . The control law (17) assures
that θN = θ̄N at all times. In this work, no model uncertainty
is considered in (16) since determination of kIp is relatively
accurate.

E. Interior Control: Feedback Linearization Control Law

If u(t) is chosen such that

G(θ̂, Ip)u(t) = −kN θ̃ + ˙̄θ, (18)

where kN > 0 is a design parameter, θ̄ = [θ̄1, ..., θ̄N−1]T is
a vector with the target values for θ̂, and θ̃ = θ̂ − θ̄, then
equation (15) can be rewritten as

˙̃
θ = −kN θ̃, (19)

i.e., a linear system which is exponentially stable because
kN > 0 [16]. A suitable Lyapunov function for (19) is given
by V = 1

2 θ̃
T θ̃, which yields V̇ = −kN

∑i=N−1
i=1 θ̃2i . Hence,

it can be assured that θ̃ → 0 in time, or what is the same,
that θ → θ̄ in time.

Expression (18) is a nonlinear system of 4 equations with 4
unknowns (u is a function of PNB,ON−axis, PNB,OFF−axis,
PEC , and n̄e, as given in equations (10)-(13)), whose so-
lution defines the control law for these 4 physical inputs.
At every control step, (18) is solved using a trust-region
dogleg algorithm, which is based on solving an optimization
problem [17]. Once a solution has been found, physical
actuation limits for PNB,ON−axis, PNB,OFF−axis, PEC ,
and n̄e are applied. As long as such actuation limits are not
reached, exponential stability of the θ̃ evolution is ensured.

IV. ROBUST CONTROL LAW

A. Discretization Using Finite Differences

The partial differential equation (9) is also discretized in
the ρ̂-domain by means of the finite differences method for
the case with uncertainty, δθ 6= 0. Using the same grid and
notation as above, (9) can be rewritten as

˙̂
θ = G

(
θ̂, Ip(t)

)
u(t) + δ̂θ, (20)

where δ̂θ = [δθ,1, ..., δθ,N−1]T , being δθ,(·) the values of δθ
at the discretization nodes. If G

(
θ̂, Ip(t)

)
is full row rank

(as in this case), it has a right inverse, which is denoted as
G−1R

(
θ̂, Ip(t)

)
. Then, equation (20) can be rewritten as

˙̂
θ = G

(
θ̂, Ip(t)

)[
u(t) +G−1R

(
θ̂, Ip(t)

)
δ̂θ]. (21)

Because δθ is bounded, it can be noted that ||δ̂θ||2 is bounded
as well. Such bound, although unknown, is denoted by κ in
this work (κ > 0).

B. Nonlinear Damping Control Law

A robust control law is sought using nonlinear damping
techniques [16] with a shape given by

u(t) = un(t) + v(t), (22)

where un(t) is the nominal control law for the virtual inputs
that is obtained from (18), and v(t) is the nonlinear damping
term that is designed for robustness. Using the Lyapunov
function V = 1

2 θ̃
T θ̃, it is found that

V̇ =
∂V

∂θ̃

(
G
[
un + v +G−1R δ̂θ

]
− ˙̄θ
)

= −kN θ̃T θ̃ + θ̃TG
[
v +G−1R δ̂θ

]
. (23)

By defining wT = θ̃TG, and taking 2-norm, the second term
on the right hand side of equation (23) can be bounded as

wT
[
v +G−1R δ̂θ

]
≤ wT v + ||w||2||G−1R ||2κ, (24)

and if v is taken as

v = −w||G−1R ||
2
2kR, (25)

where kR > 0 is a design parameter, then (24) becomes

wT
[
v+G−1R δ̂θ

]
≤−||w||22||G−1R ||

2
2kR+||w||2||G−1R ||2κ. (26)

Defining x , ||w||2||G−1R ||2, it is trivial to see that f(x) =
−kRx2+κx has a maximum at x0 = κ/(2kR), and f(x0) =
κ2/(4k2R). Therefore, equation (23) can be rewritten as

V̇ ≤ −kN ||θ̃||22 +
κ2

4k2R
, (27)

so it is found that V̇ < 0 outside the ball B defined by
B = {θ̃ | ||θ̃||2 < κ

2kR
√
kN
}. Hence, θ̃ is uniformly bounded

in closed-loop under the robust control law (22), where v is
given by (25).

Finally, the physical inputs to the system, PNB,ON−axis,
PNB,OFF−axis, PEC , and n̄e, are obtained from solving the
nonlinear system of 4 equations given by

Gu = G(un − w||G−1R ||
2
2kR), (28)
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Fig. 4. Safety factor evolution at different locations for simulation case 1 (δTe = 0).
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Fig. 5. Safety factor profiles for simulation case 1 (δTe = 0).

where u is, as indicated above, a function of PNB,ON−axis,
PNB,OFF−axis, PEC , and n̄e as given by (10)-(13). As in
the nominal case, a trust-region dogleg algorithm is used to
solve (28), and subsequently physical actuation limits are
applied. As long as these actuation limits are not reached,
uniform boundedness of the θ̃ evolution is ensured.

V. SIMULATION STUDY

In this section, a simulation study is carried out to show the
performance of both nominal and robust control laws. The
model is tailored to DIII-D shot 147634. The corresponding
machine parameters are Bφ,0 = 1.65 T, R0 = 1.80 m,
ρb = 0.82 m, γ = 1, ε = 0.5, ζ = -1, λNB = 0.5, and λEC = 1.
Two cases are studied: a first case with no uncertainty in
Te (δTe = 0), and a second case with uncertainty in Te
(δTe 6= 0). All simulations are made from t = 0.5 s to

t = 2.5 s, i.e., for the ramp-up and early flat-top phases of
the plasma discharge.

A. Case 1: δTe = 0

First, a feedforward simulation is run with the input signals
corresponding to DIII-D shot 147634. A target q̄ is created
such that q̄ = 1.1qFF , where qFF is the q-profile evolution
obtained in feedforward. Then, a feedback simulation is run
in which the controller attempts to drive q to the target q̄
using the nominal control law. A value of kN = 1.6 is taken.

Fig. 4 shows the time evolution of q at particular spatial
locations, which correspond to the discretization nodes used
for control, for both feedforward and feedback simulations
together with the target q̄. In Fig. 5, the q profile is showed
at particular instants in time (t = 0.5 s, t = 1.25 s, and
t = 2.5 s), also for feedforward and feedback simulations
together with the target q̄ profile. Fig. 6 shows the inputs
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Fig. 6. Input signals for simulation case 1 (δTe = 0).

Ip, n̄e, PON + POFF , and PEC , both in feedforward and
feedback simulations. As it can be seen in Fig. 4 and Fig. 5,
the nominal control law successfully drives q to its target q̄ in
all the different spatial locations. The q evolution converges
to q̄ faster as ρ̂ increases, due most likely to the combined
effect of boundary control (Ip control) with interior control
(NBI & EC power, and n̄e control). As showed in Fig. 6, the
nominal controller uses a smaller Ip than in the feedforward
case to achieve the target q̄, whereas it uses a higher NBI
and EC powers, and mostly a higher n̄e.

B. Case 2: δTe 6= 0

In this second part of the simulation study, an uncertainty
δTe

is introduced which given by

δTe(ρ̂, t) = −0.2Tnome (ρ̂, t)− 0.25 keV, ρ̂ ≤ 0.3 (29)
δTe(ρ̂, t) = −0.2Tnome (ρ̂, t)− 0.15 keV, ρ̂ > 0.3, (30)

i.e., an uncertainty composed by a time-varying, spatially-
varying decrease of −20% Tnome , plus constant decreases of
about −17% (at ρ̂ ≤ 0.3) and −10% (at ρ̂ > 0.3) of the
initial core-temperature experimental value.

The target q̄ is taken in this case as q̄ = qFF . First,
a feedforward simulation is run with the input signals
corresponding to DIII-D shot 147634. Second, a feedback
simulation is run in which the controller attempts to drive q
to q̄ using the nominal control law. Finally, another feedback
simulation is executed using the robust control law with the
same objective of driving q to q̄. The same value kN = 1.6
is taken, so that the comparison between nominal and robust
controllers is fair. Also, kR = 0.1 is taken.

Fig. 7 shows the time evolution of q at particular spatial
locations (again, the nodes used for control), Fig. 8 shows the
q-profile at particular instants in time, and Fig. 9 shows the
controlled inputs. All the figures show simulations for three
different cases: feedforward, feedback under the nominal
control law, and feedback under the robust control law. By
comparing Fig. 7 with Fig. 4, it is possible to note how
sensitive the prediction of the q profile is with respect to
uncertainties in the electron temperature model. As it can be
seen in Fig. 7 and Fig. 8, the robust control law successfully
drives q to its target q̄, whereas the nominal control law is
unable to do so. It is interesting to see how the q evolution
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Fig. 7. Safety factor evolution at different locations for simulation case 2 (δTe 6= 0).
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Fig. 8. Safety factor profiles for simulation case 2 (δTe 6= 0).

under robust-feedback converges to q̄ faster as ρ̂ decreases,
i.e., the opposite to the case with no uncertainty under
nominal-feedback. Again, this is most likely because of the
major impact of the robust interior control in the plasma
core. Fig. 6 shows that the controller uses the same Ip in
feedforward and feedback, due to the fact that q̄ = qFF . Both
NBI and EC powers, together with n̄e, are higher when using
robust-feedsback than when using nominal-feedback, except
in the last ≈ 0.2 s of the simulation. It can also be seen
that the nominal control law reaches saturation at the end of
the simulation, but the q-profile evolution does not reach the
target, showing a significantly more efficient control using
the robust control law.

VI. CONCLUSIONS

A robust controller for q-profile regulation in tokamaks has
been presented that makes use of feedback linearization and

nonlinear damping techniques. It has been showed that the
tokamak model employed in this work is always feedback
linearizable, which is a powerful property that avoids approx-
imate linearization of the system. Also, the use of feedback
linearization allows for the ulterior use of nonlinear robust-
control techniques. Nonlinear robust controllers are expected
to have a better performance than linear robust controllers
due to the highly nonlinear, uncertain nature of the plasma
dynamics. Nonlinear damping techniques can be applied to
this system because it is feedback linearizable. The controller
has showed good performance in simulation for a DIII-D
scenario, but it is applicable to any other tokamak scenario
following an analog approach to the one showed in this paper.
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