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Abstract— The tokamak is a torus-shaped machine whose fi-

nal purpose is generating energy from nuclear fusion reactions.

In order to achieve this goal, a reactant plasma is confined inside

the tokamak by means of magnetic fields. For a tokamak to be

commercially competitive, operation for long periods of time

at high-performance operating points will be needed. Those

high-performance scenarios are characterized by a steady-state,

stable plasma operation in which the safety factor, a property of

the plasma that measures the pitch of the magnetic field lines,

plays a decisive role. In particular, control of the central safety

factor, which is the value of the safety factor at the tokamak

magnetic axis, is one of the crucial aspects to the success

of tokamak devices due to its close relationship to magneto-

hydrodynamic stability. Therefore, control algorithms for the

central safety factor in tokamaks will be required. In the present

work, a linear controller is proposed for the regulation of the

central safety factor using neutral beam injection and electron

cyclotron launchers. This controller is designed to guarantee

a zero input torque delivered by the neutral beam injection

system. The controller performance is tested via a simulation

study in a DIII-D scenario.

I. INTRODUCTION

Nowadays, the tokamak is one of the most promising
devices to obtain energy by means of nuclear fusion. It is
a torus-shaped device in which a gas, typically a mix of
hydrogen isotopes like deuterium and tritium, is injected.
This gas is heated to very high temperatures (⇠ 10 million
degrees) in order to overcome the Coulombic repulsion force
that exists between its particles and obtain energy from
nuclear fusion reactions. Due to such high temperature, the
gas is normally in plasma state, where ions and electrons are
dissociated. The fact that electrons and ions are separated in
a plasma provides it with very special characteristics, such
as the capability to drive electrical current and be confined
inside a particular volume by means of magnetic fields.
These characteristics motivated the creation and development
of magnetic confinement devices, the category in which
tokamaks are included [1]. A plasma magnitude that is of
crucial importance for stability and performance in tokamaks
is the so-called safety factor, q, which is a measure of the
pitch of the magnetic field lines. In particular, the limit
q � 1 is of special relevance due to its close relation-
ship with the triggering of certain magneto-hydrodynamic
(MHD) instabilities [1]. Such MHD instabilities substantially
decrease fusion performance and may terminate the confined
plasma. For monotonically increasing safety-factor profiles,
q achieves a minimum on the magnetic axis of the tokamak
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(see Fig. 1). Therefore, control of q at the magnetic axis (also
known as central safety factor, q0) is key for the success of
tokamaks as efficient means of producing energy.

Intensive work has been carried out to find control algo-
rithms for the q profile and/or q0. Control of the q profile
was experimentally demonstrated in both low and high
plasma-confinement scenarios in the DIII-D tokamak [2],
[3], [4], [5]. This previous work based the control design
on a nonlinear, physics-based, control-oriented model of the
plasma dynamics [6]. Other previous work proposed q profile
and/or q0 controllers for tokamaks different from DIII-D like,
for example, NSTX-U [7], [8], JET [9] or ITER [10], the
next-generation tokamak currently under construction. Some
of the actuators used for q or q0 control in previous work
are plasma current modulation, auxiliary power modulation,
density control, and plasma shape modification.

A particular tokamak scenario that is of special interest
in current magnetic-control research is that one in which
the injected auxiliary power produces an close-to-zero input
torque. These scenarios, known as zero input-torque scenar-
ios, will most likely be found in future burning-plasma toka-
maks such as ITER [11]. Also, tokamaks working with zero
input torque are more susceptible to suffer locked modes, a
particular type of MHD instability, due to low plasma rota-
tion [11]. Therefore, controllers that can ensure q0 regulation
under zero input-torque constraints are presently required
for physics studies. In this work, a proportional-integral-
derivative (PID) q0 controller for zero input-torque, high-
performance scenarios is presented. A nonlinear, physics-
based, control-oriented modeling approach is employed. The
control-oriented model is generated using DIII-D data from
TRANSP [12], a tokamak plasma-transport simulation code
widely used within the fusion community. The actuation
method used by the controller is auxiliary power modulation
by means of neutral beam injectors (NBI’s), which are
configured to produce zero input-torque, and electron cy-
clotron (EC) launchers. The zero input-torque configuration
adds significant constraints to the control scheme. These
constraints decrease the existent actuation capability over q0,
and evidently increase the complexity of the control problem.

This work is organized as follows. The nonlinear model
for the q0 evolution is introduced in Section II. The nonlinear
model is discretized using finite differences and linearized in
Section III. The PID control design is detailed in Section IV,
together with the characterization of the zero input-torque
condition. A simulation study is presented in Section V to
illustrate the controller performance. Finally, a summary and
possible future work are presented in Section VI.
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II. CENTRAL SAFETY FACTOR EVOLUTION MODEL

Magnetic field lines are normally closed in tokamaks and
guide the particles in helical paths as shown in Fig. 1.
The magnetic field, B̄, is expressed as the summation of
two components, B̄ = B̄

�

+ B̄
✓

, where B̄
�

is the toroidal
magnetic field and B̄

✓

is the poloidal magnetic field. The
poloidal magnetic flux is defined by  =

R
S

B̄
✓

· dS̄,
where S is the surface bounded by the toroidal ring passing
through each point P as depicted in Fig. 1. Points of
equal poloidal magnetic flux  define nested magnetic-flux
surfaces. An axisymmetric disposition of the magnetic-flux
surfaces around the so-called magnetic axis, as shown in Fig.
2, is normally found in tokamaks if ideal MHD conditions are
assumed. Under such assumption, a one-dimensional model
in the spatial domain can be used. The mean effective minor
radius, ⇢, is the magnitude used to index the magnetic-flux
surfaces, and it is related to the toroidal magnetic flux, �, and
to the vacuum toroidal magnetic field at the geometric major
radius R0 of the tokamak, B

�,0, by means of ⇡B
�,0⇢

2 = �.
The mean effective minor radius is normalized as ⇢̂ = ⇢/⇢b,
where ⇢b is the value of ⇢ at the last closed magnetic-flux
surface as depicted in Fig. 2. The non-dimensional variable ⇢̂
is the spatial coordinate used in this one-dimensional model.
The q profile is related to both � and  , and is defined as

q(⇢̂, t) =
d�

d 
= � d�

2⇡d 
= �B

�,0⇢
2
b ⇢̂

@ /@⇢̂
, (1)
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Fig. 1. Helical magnetic field lines in the tokamak define a poloidal
magnetic flux through the surface S associated with the point P .
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Fig. 2. Magnetic flux surfaces in a tokamak. Each magnetic flux surface
is characterized by a constant poloidal magnetic flux  .

where t is the time and  (⇢̂, t) is the poloidal stream
function,  = 2⇡ . The central safety factor, q0(t), is given
by

q0(t) = q(⇢̂ = 0) = �B
�,0⇢

2
b ⇢̂

@ /@⇢̂

����
⇢̂=0

. (2)

The evolution of  is described by the magnetic diffusion
equation [13],
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◆
+R0Ĥ⌘(Te)jni, (3)

where ⌘(Te) is the plasma resistivity, Te(⇢̂, t) is the elec-
tron temperature, µ0 is the vacuum permeability, D

 

(⇢̂) =
F̂ (⇢̂)Ĝ(⇢̂)Ĥ(⇢̂), where F̂ , Ĝ, and Ĥ are spatially varying
geometric factors pertaining to the magnetic configuration
of a particular plasma equilibrium [14], and jni is the non-
inductive current density. The boundary conditions are given
by
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= 0,
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⇢̂=1

= �µ0

2⇡
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Ĝ|
⇢̂=1Ĥ|

⇢̂=1

Ip(t), (4)

where Ip(t) is the total plasma current.
Control-oriented models for the electron temperature, elec-

tron density, plasma resistivity, and non-inductive current
density are used [6]. The electron temperature, Te(⇢̂, t), is
given by

Te(⇢̂, t) = T prof
e (⇢̂)Ip(t)

�Ptot(t)
✏ne(t)

⇣ , (5)

where T prof
e (⇢̂) is a reference profile, Ptot(t) is the total power

injected to the plasma, ne(t) is the electron density, and the
parameters �, ✏ and ⇣ are constants that describe how the
plasma temperature scales with Ip(t), Ptot(t) and ne(t).

The electron density, ne(⇢̂, t), is modeled as

ne(⇢̂, t) = nprof
e (⇢̂)n̄e(t), (6)

where nprof
e (⇢̂) is a reference profile, and n̄e(t) is

the line-averaged electron density, which is defined as
n̄e(t) =

R 1
0 ne(⇢̂, t)d⇢̂.

The plasma resistivity ⌘(Te) is given by

⌘(⇢̂, t) =
ksp(⇢̂)Zeff

T
3/2
e (⇢̂, t)

, (7)

where ksp(⇢̂) is a constant reference profile, and Zeff is the
average charge of the ions in the plasma, which is assumed
constant in this model.

Two sources of non-inductive current density are consid-
ered: the self-generated bootstrap current, and the current
density externally injected by auxiliary sources. In this work,
NBI and EC launchers are the auxiliary sources employed
for current-drive purposes. Therefore, jni can be expressed
as

jni(⇢̂, t) =
NNBX

i=1

jNB,i(⇢̂, t) + jEC(⇢̂, t) + jBS(⇢̂, t), (8)

where jNB,i is the non-inductive current density generated by
the i-th NBI, NNB is the total number of NBI’s available in
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the tokamak, jEC is the non-inductive current density gener-
ated by the EC launchers, and jBS is the non-inductive current
density produced by the bootstrap effect. For the NBI’s, the
non-inductive current density contribution is modeled as

jNB,i(⇢̂, t) = jprof
NB,i(⇢̂)

Te(⇢̂, t)�NB,i

ne(⇢̂, t)
PNB,i(t), (9)

where jprof
NB,i(⇢̂) is a reference deposition profile for the i-th

NBI, �NB,i is a constant related to the current-drive efficiency
of the i-th NBI, and PNB,i(t) is the injected power associated
to the i-th NBI. Similarly, the EC current density contribution
is modeled as

jEC(⇢̂, t) = jprof
EC (⇢̂)

Te(⇢̂, t)�EC

ne(⇢̂, t)
PEC(t), (10)

where jprof
EC (⇢̂) is a reference deposition profile, and PEC(t)

is the EC injected power. The bootstrap current contribution
is modeled in this work as [15]

jBS(⇢̂, t) =
R0

F̂ (⇢̂)

✓
@ 

@⇢̂

◆�1⇥
2L31(⇢̂)Te(⇢̂, t)

@ne(⇢̂, t)

@⇢̂

+
�
2L31(⇢̂) + L32(⇢̂) + ↵(⇢̂)L34(⇢̂)

�
ne(⇢̂, t)

@Te(⇢̂, t)

@⇢̂

⇤
, (11)

where ↵(⇢̂), L31(⇢̂), L32(⇢̂) and L34(⇢̂) are constant profiles
which depend on the magnetic configuration of a particular
plasma equilibrium.

The total injected power is expressed as Ptot(t) =P
i=NNB
i=1 PNB,i(t)+PEC(t)+Pohm(t)�Prad(t), where Pohm(t)

is the ohmic heating power and Prad(t) is the radiated
power. The ohmic heating power is given by Pohm(t) =
R

p

(t)Ip(t)2, where R
p

(t) =
R 1
0 ⌘(⇢̂, t)

dV

d⇢̂

d⇢̂ is the total
plasma resistance and V (⇢) is the volume enclosed by a
magnetic surface within the plasma. The radiated power is
modeled as Prad(t) =

R 1
0 Qrad(⇢̂, t)

dV

d⇢̂

d⇢̂, where Qrad(⇢̂, t) =

kbremZeff ne(⇢̂, t)2
p

Te(⇢̂, t) and kbrem is the Bremsstrahlung
radiation coefficient.

Using the control-oriented expressions (5), (6), (7), (8),
(9), (10) and (11), equation (4) can be rewritten as
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@t
= h

diff

(⇢̂, t)
@

@⇢̂
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+
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hNB,i(⇢̂, t)PNB,i(t)

+ hEC(⇢̂, t)PEC(t) + hBS(⇢̂, t)

✓
@ 
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◆�1
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where

h
diff
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where the time dependence in I
p

, Ptot and n̄e and the
⇢̂ dependence in the spatial derivatives of T prof

e and nprof
e

have been dropped to ease the notation. The functions
h
diff

(⇢̂, t), hNB,i(⇢̂, t), hEC(⇢̂, t) and hBS(⇢̂, t) are deter-
mined from TRANSP data applicable to the scenario of
interest. Therefore, in general, this model can be tailored
to any tokamak scenario. In this work, the model is tai-
lored to zero input-torque, reverse plasma-current (Ip < 0),
high-confinement scenarios using data from DIII-D shots
163518 through 163525, in similar fashion as in [6].

III. SPATIAL DISCRETIZATION AND LINEARIZATION OF
THE CENTRAL SAFETY FACTOR MODEL

The partial differential equation (12) is discretized in the
⇢̂-domain using finite differences to obtain a set of ordinary
differential equations. A discretization grid with N+1 nodes
in the interval ⇢̂ = [0, 1] is used. The value of  at each
of the nodes is denoted by  

j

, for j = 0, 1, ..., N , and
 ̂ = [ 0, 1, ..., N

]T is the state vector. After spatially dis-
cretizing (2) and (12), together with the boundary conditions
(4), the model can be rewritten as

˙̂
 = f

�
 ̂, t, u(t)

�
, (13)

q0 = g( ̂), (14)

where f
�
 ̂, t, u(t)

�
is a nonlinear function that de-

scribes the state evolution, g( ̂) is a nonlinear func-
tion that describes the output evolution, and u(t) =
[PNB,1(t), ..., PNB,NNB(t), PEC(t)]T is the input vector. The
control objective is to drive q0 to a nominal trajectory q̄0.
Linearizing with respect to a nominal trajectory of the system
described by a state vector  ̄(t) and an input vector ū(t), it
is possible to write (13), (14) and (2) as a linear, multi-input,
single-output, time-varying system given by

˙̃
 = A(t) ̃ +

i=NNBX

i=1

B1,i(t)P̃NB,i(t) +B2(t)P̃EC(t), (15)

q̃0 = C(t) ̃, (16)

where  ̃ =  �  ̄, ũ = u � ū, q̃0 = q0 � q̄0, A(t) 2
R(N+1)⇥(N+1) is the state matrix, B1,i(t) 2 R(N+1)⇥1 is the
input matrix associated to the i-th NBI, B2(t) 2 R(N+1)⇥1 is
the input matrix associated to the EC, and C(t) 2 R1⇥(N+1)

is the output matrix. These matrices are computed as A(t) =
@f

�
 ̂, t, u(t)

�
/@ ̂, B1,i(t) = @f

�
 ̂, t, u(t)

�
/@PNB,i for

i = 1, ..., NNB, B2(t) = @f
�
 ̂, t, u(t)

�
/@PEC and C(t) =

@g( ̂)/@ ̂, all of them evaluated at ( ̄, ū).
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IV. CONTROL DESIGN

A. DIII-D Beams and Zero Input-Torque Condition

In the DIII-D tokamak, a total of 8 NBI’s are available,
i.e., NNB = 8. These NBI’s are denoted by 30L, 30R, 150L,
150R, 210L, 210R, 330L and 330R, and their configuration
is depicted in Fig. 3. In this work, as a reverse plasma-
current scenario is considered, 6 out of the 8 NBI’s can drive
current in the counter-current direction (30L, 30R, 150L,
150R, 330L and 330R), while 2 NBI’s can drive current
in the co-current direction (210L and 210R). The torque
injected by a particular NBI is denoted as T(·), where (·) is
the designation of the NBI, i.e., (·) = 30L, (·) = 30R, etc.
The total torque injected by the co-current NBI’s is denoted
by TNB,co, and it is given by

TNB,co = T210L + T210R. (17)

The total torque injected by the counter-current NBI’s is
denoted by TNB,counter, and it is given by

TNB,counter=T30L+T30R+T150L+T150R+T330L+T330R. (18)

The time dependence has been dropped in both (17) and (18)
to ease notation. As a means to produce zero input-torque,
the torque injected by the co-current NBI’s must be equal to
the torque injected by counter-current NBI’s, i.e.,

TNB,co = TNB,counter. (19)

In order to achieve condition (19), the NBI’s are used in
balanced groups. A balanced group is composed by one co-
current NBI and one or more counter-current NBI’s such
that the co-current and counter-current torques are the same.
Therefore, a balanced group injects zero input-torque. Two
groups of paired NBI’s are considered in this work: a first
group composed by 30L, 150L, 330L and 210R, and a second
group composed by 30R, 150R, 330R and 210L.

L L

R

R

L

L

R
R

330° 
BEAMLINE

30° 
BEAMLINE

150° 
BEAMLINE

210° 
BEAMLINE

30° 

30° 

Fig. 3. Geometry and configuration of the NBI’s in the DIII-D tokamak.

For any balanced group, the voltage of each NBI in
DIII-D is adjusted according to their physical dimension and
ion source so that the input-torque is close to zero if the
power delivered to the co-current and counter-current NBI’s
is similar. Therefore, in terms of the power injected, the zero
input-torque condition implies

P30R + P150R + P330R = P210L, (20)
P30L + P150L + P330L = P210R, (21)

where P(·) is the power injected by the (·) NBI. In DIII-D,
the maximum power that can be injected by each NBI is
approximately 2 MW, i.e., PNB,i 2 [0, 2] MW, for i = 1, ..., 8.
Also, the maximum EC power available is approximately
2 MW, i.e., PEC 2 [0, 2] MW. In the DIII-D tokamak, the
150� beamline is physically smaller than the rest due to its
capacity to inject particles off-axis, and also its ion source is
different, so its voltage has to be higher than the other three
beamlines in order to achieve the same torque. Keeping the
150� beamline with very high voltage for long time may
damage it, so it is normally more convenient to use only the
NBI’s of the other three beamlines to produce zero input-
torque.

Moreover, the total current density driven by each bal-
anced group is small, because the current density contribution
of the co-current NBI will mostly cancel out with the current
density contribution of counter-current NBI’s. The model
substantially changes because there is no net current density
driven by the NBI’s, i.e., the second term on the right hand
side of (12) is zero,

P
NNB
i=1 hNB,i(⇢̂, t)PNB,i(t) = 0. Each

PNB,i(t) only enters in (12) by affecting Ptot(t) through
the functions h

diff

, h
EC

and h
BS

. Therefore, the relevant
magnitude for NBI control is the total NBI power, instead
of the individual powers of each NBI. The total NBI power
is denoted as PNB(t) =

P
i=NNB
i=1 PNB,i(t). With the previous

arguments, equation (15) adopts a different shape given by

˙̃
 = A(t) ̃ +B1(t)P̃NB(t) +B2(t)P̃EC(t), (22)

where B1(t) 2 R(N+1)⇥1 is the time-varying input matrix
associated to P̃NB(t). Then, the linearized system is still a
multi-input, single-output system, but with 2 inputs instead of
the NNB +1 that were considered before taking into account
the zero input-torque condition.

B. PID Controller Design

As introduced above, the control objective is to drive
q0 to its nominal trajectory q̄0, or equivalently, q̃0 to zero.
Although (22) and (16) compose a time-varying system, the
parameters of the PID controller are taken constant. The
control laws for P̃NB and P̃EC are given by

P̃NB

P̃EC

�
=


K

p1

K
p2

�
q̃0 +


1/T

i1

1/T
i2

� Z
t

t0

q̃0dt+


T
d1

T
d2

�
dq̃0
dt

, (23)

where K
p1, T

i1, T
d1, K

p2, T
i2 and T

d2 are parameters that
are designed to obtain a desired response of the closed-loop
system, and t0 is the initial time in which the error integral
starts to be computed. Once that PNB(t) = P̄NB(t)+P̃NB(t) is
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Fig. 4. Simulation study: (a) q0, (b) PNB and PEC, (c) NBI powers in closed loop for the 1st balanced group, P30L, P330L and P210R, and (d) NBI
powers in closed loop for the 2nd balanced group, P330R and P210L.

determined, PNB,i(t) (i = 1, ..., 8) is computed by using the
zero input-torque condition given by (20)-(21). In general,
there are 8 NBI’s available, but the control law (23) and the
zero-torque condition only impose three constraints, so five
additional conditions/constraints must be specified in order
to univocally determine PNB,i(t) (i = 1, ..., 8) from PNB(t).
Therefore, additional conditions must imposed on how the
balanced group powers or individual NBI powers are set.
Such conditions are determined based on the requirements
of each particular scenario. An example which illustrates how
conditions are imposed is shown in the simulation study of
Section V.

V. SIMULATION STUDY

In this section, a simulation study is carried out to test
the controller performance in a zero input-torque, high-
confinement, reverse plasma-current (I

p

< 0), DIII-D sce-
nario. Although the controller is synthesized from a linear
model, it is tested in a nonlinear simulation. The control-
oriented model is tailored to DIII-D shots 163518 through

163525. Relevant machine parameters and experimental data
for this scenario are B

�,0 = 1.93 T, R0 = 1.69 m, Zeff = 3.5,
�NBI,i = 0.5, �EC = 1, � = 1, ✏ = 0.5 and ⇣ = 0. Moreover,
the total available energy in the EC launchers during a shot
is limited, and it may be convenient to use EC only in the
most demanding situations. For such reason, EC is only used
as a backup actuator in this simulation study, so if PNB is
not saturated, then P̃EC = 0. Therefore, the control law used
in simulation is slightly different from (23), as it includes
some logic to detect saturation of PNB and set P̃EC = 0.

It is necessary to specify the additional conditions for the
zero-input torque configuration. First, the 150� beamline is
only used as a backup line due to its aforementioned special
characteristics. Then, the controller sets P150L = P150R = 0
unless any of the other NBI fails, and extra power is needed
to produce zero input-torque. Second, in order to obtain real-
time q-profile reconstruction in DIII-D, it is necessary to
keep P30L � 1 MW. Then, it is chosen that the controller
keeps P30L = 1 MW, P̃30L = 0. Third, the 30R NBI is not
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used (P30R = 0) to reproduce the conditions of shot 163520.
Equations (20)-(21) become

1 MW + P330R = P210L, (24)
P330L = P210R. (25)

Finally, it is imposed that each group of balanced NBI’s
injects the same amount of power, except if P̃NB as computed
by the control law (23) is not high enough to ensure P30L = 1
MW. In such case, all the power is injected by the first group
of balanced beams (where 30L belongs to) in order to ensure
q-profile reconstruction. All the introduced conditions allow
for univocally determining P̃NB,i(t) (i = 1, ..., 8) once that
P̃NB(t) has been determined from the control law (23).

In this simulation study, the controller attempts to regu-
late q0 around a desired target q̄0 while rejecting external
perturbations to the system. First, an open-loop simulation
with the inputs PNB and PEC corresponding to the shot
163520 was executed, and a q̄⇤0 evolution was obtained.
Based on that q̄⇤0 evolution, a new desired q̄0 evolution
was computed. The target q̄0 is taken as +15% of the q̄⇤0
evolution, i.e., q̄0 = 1.15q̄⇤0 . Such choice is based upon the
requirement of q0 � 1. Second, a closed-loop simulation with
disturbances was executed in which the controller attempts
to regulate q0 around q̄0. A fictitious �20% decrease in
jBS is introduced during all the shot, representing some
source of unknown variation in the bootstrap current density.
Moreover, a constant �15% disturbance in q0 is introduced
between 4 s. and 6 s., emulating some unexpected MHD
activity. Finally, an open-loop simulation with the previously
described disturbances was executed.

Fig. 4(a) shows the q0 evolution in open loop with
disturbances (magenta dashed-dotted), in open loop without
disturbances (black dashed-dotted), and in closed loop with
disturbances (blue solid), together with the target q̄0 (red
dashed). Fig. 4(b) shows the evolution of PNB and PEC
for both open-loop and closed-loop simulations (note that
PEC is zero in open loop). Fig. 4(c) shows the evolution
of the NBI powers in closed loop corresponding to the
first balanced group, while Fig. 4(d) shows the evolution of
the NBI power in closed loop corresponding to the second
balanced group. As it can be seen in Fig. 4(a), from the initial
time till 4 s., the open-loop simulation with disturbances
shows that q0 is smaller than in the open-loop simulation
without disturbances, due to the reduction in jBS. Also, the
controller successfully drives q0 to q̄0 in closed loop till 4s.,
when a sudden drop is suffered because of the constant q0
disturbance introduced at that moment. After 4 s., the open-
loop simulation with disturbances shows a constant drop in
q0, while the closed-loop simulation shows that the controller
drives q0 back to its reference value and is capable of keeping
q0 � 1, as desired. As it can be seen in Fig. 4(b), while PNB
is modulated by the controller during the whole shot, PEC
is only used as a backup actuator when PNB is saturated
between the beginning of the shot and ⇡ 1.3 s (in order to
achieve reference tracking), and between 4 s and ⇡ 5.25 s (to
recover from the sudden q0 drop introduced as a disturbance).

VI. SUMMARY AND FUTURE WORK

A new controller is presented for the regulation of q0
in tokamaks. Using linearization techniques, the nonlinear
model of the q0 evolution is transformed into a linear
system for which a PID controller is designed. By means
of a simulation study in a DIII-D scenario, it has been
demonstrated this controller is able to drive the system to a
distant target q̄0, and also that the controller is able to reject
unknown perturbations to the system. Also, the simulation
is executed in a high-confinement DIII-D scenario using
realistic power and torque balance constraints that may be
found in future tokamaks such as ITER.

Future work may include experimental testing of the
controller in DIII-D adding an anti-windup compensator, or
simulation testing for other scenarios different from DIII-D,
as well as robustness studies of the control algorithm in
presence of model uncertainties.
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