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Abstract— Active control of the toroidal current density
profile is among those plasma control milestones that the
National Spherical Tokamak eXperiment - Upgrade (NSTX-U)
program must achieve to realize its next-step operational
goals, which are characterized by high-performance, long-
pulse, MHD-stable plasma operation with neutral beam heating.
In this work, a previously developed physics-based control-
oriented model is embedded in a feedback control scheme
based on a model predictive control (MPC) strategy to track
a desired current density profile evolution specified indirectly
by a desired rotational transform profile. An integrator is
embedded into the standard MPC formulation to account for
various modeling uncertainties and external disturbances. The
neutral beam powers, electron density, and total plasma current
are used as actuators. The effectiveness of the proposed MPC
strategy in regulating the current density profile in NSTX-U is
demonstrated in closed-loop nonlinear simulations.

I. INTRODUCTION

Current nuclear power plants operate based on nuclear
fission, which produces energy through the splitting of heavy
atoms like uranium. Despite its capability for large amount
of energy production, nuclear fission poses serious risks due
to the release of highly radioactive nuclear waste, possibility
of nuclear accidents, and utilization of the technology for
the development of nuclear weapons. Unlike fission, nuclear
fusion is the process by which two light nuclei (usually
hydrogen isotopes deuterium and tritium) collide with each
other and fuse together to form a heavier nucleus (helium)
and free a neutron with a vast amount of energy release
as a by-product [1]. The energy released per gram of fuel
in a typical fusion reaction is significantly larger than that
of a typical fission reaction. Contrary to fission, fusion
poses almost no risk of a catastrophic nuclear accident,
produces mostly short-term, low-level, radioactive waste, and
generates no material for nuclear weapons [1].

Despite all its benefits, achieving controlled fusion on
Earth is challenging since it requires high temperature
(107�109K) and pressure in order to overcome the Coulomb
repulsion force that prevents the positively charged nuclei
from fusing together. Under the applied high temperature
and pressure, the reactants (hydrogen isotopes) separate from
their electrons and form an ionized gas called plasma, which
is considered as the fourth state of matter.

The main difficulty in maintaining fusion reactions is the
development of a device that can confine the hot plasma for
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Fig. 1. Magnetic flux surfaces in a tokamak [2]. The helical magnetic field
( ~B) in a tokamak plasma is composed of toroidal ( ~B�) and poloidal ( ~B✓)
fields. The poloidal magnetic flux is defined as  =

R
~B✓ · d ~AZ , where

~AZ denotes a disk of radius R that is perpendicular to a unit vector in the
vertical direction. Also shown are the geometric major radius, R0, and the
minor radius, a, of the plasma.

sufficiently long time while preventing it from hitting the
walls of the confining device. Among several techniques,
magnetic confinement [3] is the most promising approach
and it is used in tokamak machines [4]. The word “tokamak”
is the Russian acronym for “toroidal chamber with magnetic
coils”. Therefore, in a tokamak, confinement is achieved by
balancing the expansion pressure in the plasma with the
forces exerted by a magnetic field generated by both the
large magnetic coils around the toroidal chamber and the
current flowing toroidally in the plasma [5]. In a typical
tokamak device, the contours of constant pressure form
nested toroidal surfaces. The magnetic field lines also lie
on the constant pressure contours, and, consequently, these
contours are usually referred to as magnetic flux surfaces,
which marks points of constant poloidal magnetic flux,  as
shown in Fig.1.

A spherical tokamak, or a spherical torus (ST), is a
special tokamak configuration with an ultra tight aspect
ratio, A=R0/a [6] (see Fig. 1). Compared to a standard
tokamak, the ST device extrapolates to a more compact,
potentially lower-cost reactor, and the tight aspect ratio leads
to a higher � value (� represents a measure of efficiency
of confinement since it defines how much plasma kinetic
pressure can be maintained by a given magnetic confining
pressure). The National Spherical Tokamak eXperiment -
Upgrade (NSTX-U), located in Princeton Plasma Physics
Laboratory (PPPL) in the USA, is one of the major ST
experimental facilities in the world. NSTX-U is a substantial
upgrade to the former NSTX device, with significantly higher
toroidal field and solenoid capabilities, and three additional
neutral beam sources with significantly larger current-drive
efficiency [7]. Schematics of the NSTX and NSTX-Upgrade
(NSTX-U) facilities are shown in Fig. 2.



Fig. 2. Schematics of NSTX and NSTX-U devices [8]: NSTX-U retains
the basic configuration of NSTX, as much of the NSTX facility is utilized
including the vacuum vessel (VV) and outer toroidal field (TF) and poloidal
field (PF) coils.The new centre-stack with a four times larger TF coil cross
section and three times larger ohmic flux, permits the doubling of the TF
from ⇠0.5 to 1 T and the plasma current from 1 to 2 MA, while expanding
the plasma pulse length from ⇠1 to 5 s.

The rotational transform, ◆ is a key property affecting
stability, performance, and steady-state operation in fusion
plasmas. It can be shown that the value of ◆ on a flux
surface is proportional to the plasma current enclosed by that
flux surface. Therefore, control of the ◆-profile is equivalent
to control of the current density profile. In this work, the
application of a Model Predictive Control (MPC) strategy
is explored for the first time to regulate the rotational
transform profile, hence the current density profile around a
target profile in NSTX-U. To facilitate the control design, a
nonlinear, control-oriented, physics-based model describing
the temporal evolution of the rotational transform profile in
NSTX-U is first put into a constrained MPC formulation.
An integrator is embedded into the MPC formulation to
provide offset free tracking against modeling and external
disturbances. The neutral beam injectors, electron density,
and the total plasma current are used as control actuators
to manipulate the profile shape. The effectiveness of the
proposed controller in shaping the ◆-profile is shown in
closed-loop nonlinear simulations.

II. FIRST-PRINCIPLES-DRIVEN (FPD) MODELING OF
THE ROTATIONAL TRANSFORM PROFILE

Any arbitrary quantity that is constant on each magnetic
flux surface within the tokamak plasma can be used to index
the flux surfaces, which are graphically depicted in Fig. 1.
In this work, we choose the mean effective minor radius,
⇢, of the flux surface, i.e., ⇡B�,0⇢2 = �, as the indexing
variable, where � is the toroidal magnetic flux and B�,0 is
the vacuum toroidal magnetic field at the geometric major
radius R0 of the tokamak. The normalized effective minor
radius is defined as ⇢̂ = ⇢/⇢b, where ⇢b is the mean effective
minor radius of the last closed flux surface.

Based on a magnetic description [4], the rotational trans-
form (◆-profile) and the toroidal current density profile (j�)
can be related through

◆(⇢̂, t) =
R0µ0

⇢̂2B�

Z ⇢̂

0
j�(⇢̂

0, t)⇢̂0d⇢̂0, (1)

where µ0 is the permeability of the free space. Therefore,
the toroidal current density can be specified indirectly by
the rotational transform ◆, which is also related to poloidal
magnetic flux  and is defined as ◆(⇢̂, t) = �d /d�. Using
� = ⇡B�,0⇢2 and ⇢̂ = ⇢/⇢b, the ◆-profile can also be
expressed as

◆(⇢̂, t) = �d 
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where  (⇢̂, t) is the poloidal stream function, which is
closely related to the poloidal flux  ( = 2⇡ ).

Combining (1) and (2), it can be shown that the control of
the current density profile j�(⇢̂, t) is equivalent to the control
of the ◆-profile, which in turn is equivalent to the control of
the poloidal flux gradient profile @ /@⇢̂. The evolution of
the poloidal magnetic flux is given in normalized cylindrical
coordinates by the magnetic diffusion equation (MDE) [9]:
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= 0, where ⌘ is the plasma resistivity, Te is the electron

temperature, µ0 is the vacuum permeability, j̄ni is any source
of noninductive current density, B̄ is the magnetic field,

⌦↵

denotes a flux-surface average, D (⇢̂) = F̂ (⇢̂)Ĝ(⇢̂)Ĥ(⇢̂),
where F̂ , Ĝ, Ĥ are geometric factors pertaining to the
magnetic configuration of a particular plasma equilibrium,
and I(t) is the total plasma current.

Simplified, scenario-oriented models [10] are developed
for various plasma parameters to close the MDE (3) and
convert it into a control-oriented form. The simplified models
of ne, Te, and ⌘(Te) profiles take the form [11]

ne(⇢̂, t) = nprof
e (⇢̂)un(t), (4)

Te(⇢̂, t) = kTe(⇢̂)
T prof
e (⇢̂)

ne(⇢̂, t)
I(t)

p

Ptot(t), (5)

⌘(⇢̂, t) = ksp(⇢̂)Zeff/[Te(⇢̂, t)
3/2], (6)

where nprof
e (⇢̂) and T prof

e (⇢̂) are model reference profiles,
un(t) regulates the time evolution of the electron density,
Ptot(t) is the total power injected into the plasma, Zeff is
the effective atomic number of the ions in the plasma, kTe

and ksp are the electron temperature and resistivity profile
constants, respectively [11]. The simplified model of the total
noninductive current-drive in NSTX-U can be written as
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where j̄bs is the noninductive current generated by the
bootstrap effect [11], and j̄nbii is the noninductive current
generated by the individual neutral beam injectors

⌦
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↵
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(⇢̂, t) = kprofi (⇢̂)jdepi (⇢̂)

p
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Pi(t), (8)



where i = 1, 2, ..., 6, Pi(t) represents the neutral beam
injection power for each beamline, kprofi (⇢̂) is a normalizing
profile, and jdepi (⇢̂) is a reference profile for each current-
drive source [11].

By substituting the simplified scenario-oriented models for
the electron density (4), electron temperature (5), plasma
resistivity (6), and noninductive current drives (7)-(8) into
the MDE (3), space and time functions can be separated. As
a result, the MDE takes the control-oriented form
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where fb = [µ0R0]/[2⇡Ĝ(1)Ĥ(1)]. The spatial functions f⌘ ,
fi, and fbs are dependent on the model profiles, whereas the
time functions

ū=[u⌘, u1, u2, u3, u4, u5, u6, ubs, uI ]
T 2 R9⇥1 (10)

are the manipulated control inputs, which are nonlinear
combinations of the physical actuators,

u = [un, P1, P2, P3, P4, P5, P6, I]
T 2 R8⇥1. (11)

The nonlinear input transformations can then be written
compactly as ū = p(u), where p 2 R9⇥8 is a nonlinear
vector function defined as

p1(u)= u⌘(t)=
h

un(t) I(t)
�1 Ptot(t)

�1/2
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�1/2
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, (14)

p9(u)= uI(t)= I(t), (15)

where Ptot(t) =
P6

k=1 Pk(t) represents the total NBI power.
The ◆-profile is directly related to the poloidal flux gradient

(see (2)). Therefore, if we are able to control the poloidal flux
gradient profile, which we define as ✓(⇢̂, t) = @ /@⇢̂, we
will be able to control the ◆-profile, assuming the system is
controllable. By differentiating (9) wrt ⇢̂, the PDE governing
the evolution of ✓(⇢̂, t) can be written compactly as
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III. MODEL ORDER REDUCTION AND LINEARIZATION

A. Model Reduction via Truncated Taylor Series Expansion

To construct a reduced-order model suitable for feedback
control, the governing PDE (16) is discretized in space using
the truncated Taylor series while leaving the time domain
continuous. The non-dimensional spatial domain (⇢̂ 2 [0, 1])
is divided into l radial nodes, hence, the radial grid size
becomes �⇢̂ = 1/(l� 1). Central finite difference formulae
of O(�⇢̂2) are used to approximate the spatial derivatives
for the interior nodes, while forward and backward finite
difference approximations of O(�⇢̂2) are used at the left
and right boundary nodes, respectively. Since equation (16)
is a non-linear PDE, the discrete form of it yields a set of
nonlinear ODEs, which can be represented compactly as

✓̇(t) = g(✓(t), ū(t)), (20)

where g 2 R(l�2)⇥1 is a nonlinear vector function
of the states, inputs, and the model parameters, ū(t)
represents the nonlinear inputs as defined in (10), and
✓(t) = [✓1(t), ✓2(t), ...., ✓l�2(t)]T 2 R(l�2)⇥1 is the discrete
form of ✓(⇢̂, t) at the n= l�2 interior nodes, i.e.,

✓i(t) = ✓ (i�⇢̂, t) , i = 1, 2, ..., n (21)

B. Model Linearization

Let ūr(t) and ✓r(t) represent a set of inputs and states
satisfying the nonlinear, reduced-order model (20), i.e.,

✓̇r = g(✓r, ūr), (22)

where ūr = p(ur), with ur being the reference values of the
physical actuators (11). To obtain a model suitable for control
design, we define the perturbation values ✓̃(t) = ✓(t)� ✓r(t)
and ũ(t) = u(t)� ur(t), where ✓̃(t) is the deviation from
✓r(t), and ũ(t) is the to-be-designed feedback control. A
first-order Taylor series expansion of (20) can be written
around ✓r and ur as

✓̇ = g (✓r, p(ur))+
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By substituting ✓̃(t) and ũ(t) into (23) and using (22), it is
possible to obtain a Linear, Time-Variant (LTV), state-space
model for the perturbation dynamics as

˙̃✓(t) = A(t)✓̃(t) +B(t)ũ(t) , (24)

where the system jacobians are expressed compactly as
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After the initial ramp-up phase of the plasma discharge, ur

and ✓r remain approximately constant, such that the system
dynamics (24) can be reduced to the time-invariant system

˙̃✓(t) = A✓̃(t) +Bũ(t) , (26)

where A = A(ts), B = B(ts) and ts is some time during
the flat-top phase of the discharge. Note that the ◆-profile
and the poloidal flux gradient profile ✓(⇢̂, t) = @ /@⇢̂ are



related through (2). Hence, the LTI model (26) for ✓̃ can be
converted into an LTI model for ◆̃ as

˙̃◆(t) = A◆̃(t) +Bũ(t) , (27)

where A = T�1AT , B = T�1B, and the transformation
matrix T 2 Rn⇥n is defined as

T = �diag(B0⇢
2
b ⇢̂i) , i = 1, 2, ..., n (28)

where ⇢̂i = i(�⇢̂).

IV. MPC FORMULATION WITH INTEGRAL ACTION

In addition to the state equation (27), an output equation
can be defined to provide a linear combination of the states.
The ◆-profile dynamics is then characterized by the following
LTI, discrete-time, MIMO system

◆̃(k + 1) = Ad ◆̃(k) +Bd ũ(k), (29)
y(k) = Cd ◆̃(k), (30)

where Ad, Bd are the discrete versions of A, B in
the continuous time model (27), ũ(k) 2 Rm⇥1 and
◆̃(k) 2 Rn⇥1 define the deviations from a reference input
ur(k), and reference state trajectory, ◆r(k), respectively, i.e.,
ũ(k) = u(k)� ur(k), and ◆̃(k) = ◆(k)� ◆r(k). In equation
(30), Cd 2 Rm⇥n is the output matrix and y(k) 2 Rm⇥1

is the output vector with m = 8 (number of control outputs
chosen equal to the number of available physical actuators).
The role of the matrix Cd is to select those states, that is,
those radial points of the ◆-profile, where the profile control
must be achieved. Hence, each row of Cd has only one
nonzero element, which is equal to one and is located at
the column associated with the state to be controlled.

Standard MPC algorithms do not achieve integral ac-
tion [12]. However, an integral action is required in the
controller to achieve offset-free tracking against modeling
uncertainties and external disturbances. A method for incor-
porating an integrator within the MPC framework is to mod-
ify the plant so that the input is the control increment �ũ(k),
rather than control ũ(k) [13], [14], [15]. This is achieved by
taking the difference of both sides of (29) to form

�◆̃(k + 1) = Ad�◆̃(k) +Bd�ũ(k), (31)
where

�◆̃(k) = ◆̃(k)� ◆̃(k � 1) (32)
�ũ(k) = ũ(k)� ũ(k � 1) (33)

Next, from the output equation (30) one can obtain the output
increment as

�y(k + 1) = y(k + 1)� y(k)
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= CdAd�◆̃(k) + CdBd�ũ(k) (34)

Finally, defining a new state vector as x =
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(31) and (34) are combined to form the enlarged plant
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Note that the state-space equations (35)-(36) may be used to
define a Prediction Model (PM) [12] of the form

yk+1|N = ON
eAx(k) + FN�ũk|N , (38)
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Note that the control objective is to track the reference
profile, ◆r(k) with minimum control effort. Therefore, the
performance index of the MPC formulation needs to penalize
both the predicted tracking error and the predicted changes
to the control input [13], taking the form [16]

J(k) =
N
X

i=1

h

y(k + i)TQy(k + i)

+�ũ(k + i� 1)TR�ũ(k + i� 1)
i

, (43)

where y 2 Rm⇥1 is the predicted output, �ũ 2 Rm⇥1 is
the future change in the feedback control input (i.e., future
feedback control increment), and N is the length of the
prediction horizon. Using the PM (38), the general quadratic
cost (43) can be rewritten compactly as

J(k) = �ũT
k|NH�ũk|N + 2xT (k)fT�ũk|N + J0, (44)

where H = FT
N
eQFN + eR, f = FT

N
eQON

eA, and eQ, eR 2
RNm⇥Nm being diagonal matrices of Q and R, respectively.
Note that the term J0 on the RHS of (44) is a scalar depend-
ing on the initial condition, y(k), not on the unknown�ũk|N .
Therefore, it is not a part of the optimization problem, and
is omitted in this derivation.

A. Incorporating Constraints

Let umax 2 Rm⇥1 and umin 2 Rm⇥1 define the input limits
for the actual (physical) actuators of NSTX-U. Hence, for the
predicted input sequence, uk|N , it is possible to write

umin|N  uk|N  umax|N , (45)

umin|N = [umin umin . . . umin]
T 2 RNm⇥1, (46)

umax|N = [umax umax . . . umax]
T 2 RNm⇥1. (47)

Note that ũk|N = uk|N � urk|N , where

urk|N = [ur(k) ur(k + 1) . . . ur(k +N � 1)]T (48)



is the reference input sequence corresponding to the future
input sequence, uk|N . Therefore, the upper and lower limits
for the feedback control sequence, ũk|N , can be obtained by
subtracting (48), from all terms of (45) as

umin|N � urk|N
| {z }

ũmink|N

 ũk|N  umax|N � urk|N
| {z }

ũmaxk|N

(49)

Using the control increment (33) recursively, it is possible
to obtain the following matrix equation

ũk|N = S�ũk|N + cũ(k � 1) (50)

where S 2 RNm⇥Nm is a lower triangular matrix with
nonzero elements being m⇥m identity, Im, and

c =
⇥

Im Im . . . Im
⇤T 2 RNm⇥m (51)

Substituting (50) into (49), the inequality for the future
feedback control increment, �ũk|N becomes

ũmink|N �cũ(k�1)  S�ũk|N  ũmaxk|N �cũ(k�1) (52)

The constraints (52) are equivalent to

S�ũk|N  ũmaxk|N � cũ(k � 1) (53)
�S�ũk|N  �ũmink|N + cũ(k � 1) (54)

Finally, it is convenient to rewrite (53)-(54) compactly in the
linear matrix inequality A�ũk|N  bk, where
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S
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ũmaxk|N � cũ(k � 1)
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�
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B. Quadratic Programming

To solve the integral MPC formulation, the performance
index (44) with the plant model (29)-(30) should be mini-
mized with respect to the unknown future feedback control
increments, while satisfying the input constraints, i.e.,

�ũ⇤
k|N= arg min

�ũk|N

n

�ũT
k|NH�ũk|N+2xT(k)fT�ũk|N

o

(56)

subject to A�ũk|N  bk (57)

This defines a standard Quadratic Programming (QP) prob-
lem in terms of the unknown future feedback control incre-
ments, �ũk|N . A receding horizon strategy is used and only
the first control increment �ũ⇤(k) in the calculated �ũ⇤

k|N
is used for control. The optimal feedback control action to
the plant (29)-(30) then becomes

ũ(k) = �ũ⇤(k) + ũ(k � 1). (58)

V. SIMULATION RESULTS

Although NSTX-U has been operating since the second
half of 2015, there is still not enough experimental data
accumulated yet to tailor a reliable model for control design.
Therefore, the model reference profiles and constants are
adopted based on numerical predictions by TRANSP [17],
which is a highly reliable, physics-based code for predictive
tokamak analysis.

Both for modeling and control design, a reference state tra-
jectory ◆r(⇢̂, t) is generated through the open-loop TRANSP

run 142301W12, which is based on NSTX-U shape and
actuators, and for which the actuator requests are set to the
following arbitrary constants

ur(k) = ur = [un P1 P2 P3 P4 P5 P6 Ip]
T

= [1.0 0.2 0.4 0.6 0.8 1.0 1.2 0.7]T (59)

Both for control design and closed-loop simulation, the non-
dimensional spatial domain (⇢̂ 2 [0 1]) is equally divided
into l = 21 radial nodes, hence, the radial grid size is
�⇢̂ = 0.05. Control simulations are then carried out for
t 2 [t0 tf ] = [1.0 4.0] s. The control sampling time is
set to Ts = 0.01 s. Note that MPC may not guarantee
closed-loop stability for arbitrary values of the prediction
horizon, N . In general, the chance of getting closed-loop
instability decreases with an increasing N , at the expense
of an increase in computational time since the length of the
unknown vector �ũk|N in (56)-(57) also increases with an
increasing N [16]. In this case, some of the closed-loop poles
of the unconstrained MPC (i.e., the eigenvalues of eA+ eBK,
where K = �H�1f ) start to cross the unit circle for N  4.
Therefore, N = 5 is picked to guarantee closed-loop stability
without increasing the computational effort considerably.

In this closed-loop control simulation study, the ini-
tial condition perturbation rejection capability is tested
during the first 1.5 seconds of the discharge by setting
◆(t0) = ◆r(t0) + 0.3◆r(t0). In addition to an initial condition
perturbation, step disturbances are also added in each input
channel starting at t = 2.5 s., i.e.,

ũ(k) =

⇢

�ũ⇤(k) + ũ(k � 1), t < 2.5 s.
�ũ⇤(k) + ũ(k � 1) + ud, t � 2.5 s. (60)

where ud = 0.15ur. To seek a faster response, the
cost weight matrices are set to Q = 1000 I8⇥8 and
R = diag(0.01, 0.005, 0.001, 0.0001, 0.01, 0.001, 0.01, 0.01).

At the beginning of each simulation step, k, the QP
problem (56)-(57) is solved in MATLAB to obtain the
future feedback control increment, �ũk|N . Receding control
strategy is used to update the feedback control according to
(58). The nonlinear MDE (9) is then simulated in MATLAB
with the updated control input, and the prediction horizon is
shifted for the next time step.

The results of the closed-loop control simulation is pro-
vided in Fig. 3. The time evolution of the optimal physical in-
puts are illustrated in Figs. 3(a)-(c). The corresponding time
evolution of the optimal outputs are depicted in Figs. 3(d)-(e)
along with their respective targets. Note from Figs. 3(d)-(e)
that in the absence of the input disturbances, the outputs
are regulated around their desired values within the first
0.5 s. of the simulation. This is also reflected in Fig. 4,
through the comparison of the ◆-profile achieved at t = 1.5
s. with the desired target profile, ◆r(t = 1.5), along with
the unperturbed initial profile, ◆r(t = 1), and the perturbed
initial profile, ◆(t = 1). Note from Fig. 3(e) that the outer
states jump again at t = 2.5 s., which is the effect of the
step disturbance inputs added at that instant. The integral
MPC strategy instantly cancels the effect of these input
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Fig. 3. Tracking simulation results: (a)-(c) Time evolution of the optimal plasma current, electron density regulation and neutral beam injection powers;
(d)-(e) Time evolution of the actual outputs (solid) with their respective targets (dashed).
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Fig. 4. Time evolution of the rotational transform (◆-profile).

disturbances, providing almost excellent profile matching at
t = 2.6 s. in Fig. 4. Based on this simulation analysis, the
proposed controller is shown to be effective in regulating the
◆-profile around a target profile in NSTX-U.

VI. CONCLUSION AND FUTURE WORK

In this work, an MPC algorithm is formulated for ◆-profile
tracking in NSTX-U. An integrator is added to the MPC
formulation to achieve offset-free tracking against various
modeling uncertainties and external disturbances. The effec-
tiveness of the proposed controller is tested in numerical
simulations based on an MDE solver. The main contribution
of this work resides in the application itself since this is the
first MPC application ever designed for NSTX-U for current
density profile control. The next step is to experimentally
test the controller once NSTX-U starts operation.
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