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Abstract— The accuracy of the internal states of a tokamak,
which usually cannot be measured directly, is of crucial
importance for feedback control of the plasma dynamics. A
first-principles-driven plasma response model could provide an
estimation of the internal states given the boundary conditions
on the magnetic axis and at plasma boundary. However, the
estimation would highly depend on initial conditions, which
may not always be known, disturbances, and non-modeled
dynamics. In this work, a closed-loop state observer for the
poloidal magnetic flux is proposed based on a very limited set
of real-time measurements by following an Extended Kalman
Filtering (EKF) approach. Comparisons between estimated and
measured magnetic flux profiles are carried out for several
discharges in the DIII-D tokamak. The experimental results
illustrate the capability of the proposed observer in dealing
with incorrect initial conditions and measurement noise.

I. INTRODUCTION

Nuclear fusion is the process by which two light nuclei
fuse together to form one heavier nucleus. There is a mass
fraction �m that is converted into energy according to the
mass-energy equivalence �E = �mc2, where c is the speed
of light in vacuum. In order for the fusion reaction to occur
frequently enough, the nuclei must be heated to temperatures
of about one hundred million degrees. At these temperatures,
the reactants are in the plasma state and have enough kinetic
energy to overcome the repelling electrostatic forces and
fuse. One of the most promising approaches to nuclear fusion
is magnetic confinement, where magnetic fields are used
to confine the plasma. A common solution is to close the
magnetic field lines in on themselves, forming a torus as
shown in Fig. 1 and leading to a tokamak configuration.
In a tokamak, the magnetic field lines follow a helical path
through the torus, i.e. they curve around in the poloidal direc-
tion (B

✓

) as well as in the toroidal direction (B
�

). Following
any magnetic field line a number of times around the torus a
closed flux tube is mapped, a so called magnetic-flux surface,
which marks points of constant poloidal magnetic flux,  [1].
A collection of such points along a plasma radial coordinate
(⇢ in Fig. 1) is called the poloidal magnetic flux profile.

Extensive research has been conducted to find high-
performance operating scenarios characterized by a high
fusion gain, good plasma confinement, plasma stability, and
a noninductively driven plasma current with the goal of
developing candidate scenarios for ITER [2]. A key property
that is related to both the stability and performance of
these advanced plasmas is the magnetic poloidal flux profile
and its gradients. The design of control algorithms for the
regulation of these profiles has recently attracted a great deal
of attention [3]–[10].

Unfortunately, the values of several discharge parameters,
including the magnetic poloidal flux profile, are not directly
measured in tokamaks. However, these values can be recon-
structed from magnetic field and flux measurements. Equilib-
rium codes, such as EFIT [11], calculate the distributions of
magnetic poloidal flux and toroidal current density over the
plasma and surrounding vacuum region that best fit, in a least
square sense, the external and any available internal magnetic
measurements, and that simultaneously satisfy the magneto-
hydrodynamic equilibrium equation (Grad-Shafranov equa-
tion) [12]. Real-time versions of these equilibrium codes [13]
play a crucial role in the feedback control of the plasma
position, shape and internal profiles. However, the quality
of the reconstruction depends strongly on the availability
of internal measurements such as those provided by the
Motional Stark Effect (MSE) diagnostic available in the DIII-
D [14] tokamak, which gives a measure of the pitch angle
of the plasma magnetic field.

In tokamaks where MSE diagnostics, or any other internal
diagnostics, are not available, the plasma equilibrium recon-
struction is poorly constrained by just external measurements
and the estimation of the internal magnetic poloidal flux
profile is not accurate. For these cases a state observer
approach is proposed in this work. First, the first-principles
physics model of the poloidal magnetic flux profile evolution
in the tokamak is converted into a form suitable for control
design. This is accomplished by combining the poloidal flux
evolution model with simplified control-oriented versions of
physics-based models of the electron density and temperature
profiles, the plasma resistivity, and the noninductive current-
drives, with emphasis on high performance, high confinement
(H-mode) scenarios, thereby obtaining a first-principles-
driven model [15]. Second, a state observer based on the
Kalman filtering approach is proposed. An extended Kalman
filter (EKF) is designed based on the first-principles-driven
control-oriented model of magnetic poloidal flux profile. At
each time instant, the nonlinear state equation is linearized
around the state estimated at the previous time step. Kalman
filtering has found some applications in plasma control, such
as the estimation of induced vessel currents [16] or unknown
plasma transport parameters [17]. Previous work in this area
include the estimation of both the magnetic poloidal flux pro-
file and the temperature profile from simulated data [18] as-
suming availability of internal profile measurements. In this
work, on the contrary, MSE-constrained EFIT-reconstructed
magnetic poloidal flux profiles from DIII-D are used to
validate the observer-based profile estimation obtained from
pointwise (not-internal) measurements at the boundaries.



The paper is organized as follows. The first-principles-
driven control-oriented model of the poloidal magnetic flux
and the numerical discretization method are introduced in
Section II and Section III. The observability of the discretized
system is discussed in Section IV. In Section V, an observer
is designed based on the extended Kalman filter theory. Com-
parisons between experimentally reconstructed and observer-
based estimated poloidal flux profiles are presented in Sec-
tion VI to show the effectiveness of the observer. Conclusions
and future work are discussed in Section VII.

II. POLOIDAL MAGNETIC FLUX MODEL

From Gauss’s law for magnetism, r ·B̄ = 0, we can write
the magnetic field B̄ as the curl of a vector potential, i.e.,
B̄ = r ⇥ Ā. In cylindrical coordinates, R̄ = (R,�, Z), we
write the vector potential as Ā = (A
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). Assuming
an axisymmetric configuration (@/@� = 0), the magnetic
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where we define the stream function  (R,Z) = RA
�

(R,Z).
This quantity is closely related to the poloidal flux  , i.e.,
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where S denotes the surface normal to Z bounded by the
toroidal ring passing through the point P in the (R,Z)
cross section at which the poloidal flux is computed (see
Fig. 1). The magnetic surface  (R̄) = constant is such
that all magnetic lines of force lie upon on that surface,
i.e., r (R̄) · B̄ = 0 on the magnetic surface. We let ⇢ be
an arbitrary coordinate indexing the magnetic surfaces. Any
quantity constant on each magnetic surface could be chosen
as the variable ⇢. We choose the mean effective minor radius
of the magnetic surface as the variable ⇢, i.e., ⇡B

�,0⇢
2 = �,

where � is the toroidal magnetic flux and B
�,0 is the toroidal

magnetic field at the major radius R0 of the device. The
normalized effective minor radius ⇢̂ is defined as ⇢̂ = ⇢/⇢

b

,
where ⇢

b

is the mean effective minor radius of the outermost
closed magnetic flux surface. The configuration of typical
tokamak magnetic flux surfaces is shown in Fig. 1.

A. Magnetic diffusion equation

The dynamics of the poloidal magnetic flux is governed
by the magnetic-flux diffusion equation (MDE) [15],
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where t is the time, ⌘ is the plasma resistivity, T
e

is
the electron temperature, µ0 is the vacuum permeability,
j̄
NI

is any source of noninductive current density, B̄ is
the magnetic field,

⌦↵
denotes a flux-surface average, and

D
 

(⇢̂) = F̂ (⇢̂)Ĝ(⇢̂)Ĥ(⇢̂). The parameters F̂ , Ĝ, Ĥ are
geometric factors pertaining to the magnetic configuration
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Fig. 1. Cross-section view of the magnetic flux surfaces in a tokamak.
The limiting flux surface at the center of the plasma is called the magnetic
axis. The coordinates (R,Z) define the radial and vertical dimensions in
the poloidal plane of the tokamak. The poloidal (B✓) and toroidal (B�)
components of the magnetic field define helical paths around the torus. The
toroidal magnetic field B� is the driver of the toroidal magnetic flux �.

of a particular plasma equilibrium. The boundary conditions
are given by
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where I
p

(t) is the total plasma current.

B. Electron temperature modeling

The electron temperature T
e

is modeled as
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where T profile

e

is a reference electron temperature profile
and P

tot

is the total power injected into the plasma. T profile

e

is obtained by evaluating the experimental T
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at a reference
time t
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This model exploits the time scale separation between mag-
netic ( ) and kinetic (T

e

) variables in tokamaks. For cur-
rent profile control purposes, any partial-differential-equation
(PDE) model for the electron temperature (heat transport
equation) can be reduced to an ordinary differential equation
(ODE) by following a singular perturbation approach. Its
approximate solution is assumed to adopt the form in (5).

C. Electron density modeling

The electron density n
e

is modeled as

n
e

(⇢̂, t) = nprof

e

(⇢̂)n̄
e

(t), (7)

where nprof

e

is a reference electron density profile obtained
at reference time t

rne , i.e., nprof

e

(⇢̂) = n
e

(⇢̂, t
rne)/n̄e

(t
rne),

and n̄
e

(t) is the line-averaged electron density, which is
typically utilized to specify the electron density in present
tokamak operation.



D. Plasma resistivity modeling

Following Spitzer resistivity model, the plasma resistivity
⌘ is modeled as
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Note that k
sp

is evaluated at a reference time t
r⌘

. Z
eff

is
the effective average charge of the ions in the plasma, which
is defined as
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and where n
j

and Z
j

denote densities and average atomic
numbers of the different ion species.

E. Noninductive current-drive modeling

The total noninductive current-drive [19] is produced by
the gyrotron (electron cyclotron) launchers, the neutral beam
injectors, and the bootstrap current, and is expressed as
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where j̄

eci is the noninductive current generated by the in-
dividual gyrotron launchers, n

ec

is the number of gyrotrons,
j̄
nbii is the noninductive current generated by the individual

neutral beam injectors, n
nbi

is the number of neutral beam
injectors, and j

bs

is the noninductive current generated by
the bootstrap effect.

1) Electron cyclotron and neutral beam injection current-
drive: Each auxiliary noninductive current-source is modeled
as the time varying power in each actuator multiplied by
a constant deposition profile in space, which is adequate
for a given set of gyrotron launcher and neutral beam
injector configurations. The current density provided by each
auxiliary source is modeled as
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where i = [ec1, · · · , ecnec , nbi1, · · · , nbinnbi ], k
i

(⇢̂) is a
normalizing profile, jdep

i

(⇢̂) is a reference deposition profile
for each current-drive source, and P

i

is the power of each
current-drive source.

2) Bootstrap current-drive: The bootstrap current arises
from the inhomogeneity of the magnetic field strength pro-
duced by the external coils in the tokamak, which causes
particles in the plasma to become trapped in their orbits
around the machine. We write the bootstrap current as
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where we have assumed a tight coupling between the electron
and ion species in the plasma (i.e., T

i

⇡ T
e

and n
i

⇡ n
e

),
k
JkeV

converts keV into Joule and L31, L32, L34,↵ are
factors that are related to the magnetic configuration of
a specified plasma equilibrium and particle collisionality
within the plasma [20].

F. Control-oriented model of poloidal magnetic flux profile

By combining the simplified physics-based models for the
electron temperature (5) and density (7) profiles, plasma
resistivity (8) and, noninductive current-drive (11) � (13)
with the magnetic diffusion equation (3)� (4), we obtain a
control-oriented model for the poloidal magnetic flux profile
evolution. The model can be expressed as
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with the boundary conditions
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Ĝ(1)Ĥ(1)
. The functions f1, f2, f3, f4 are

defined as

f1(⇢̂, t)=
⌘(T

e

)D
 

µ0⇢2
b

F̂ 2
, (16)

f2(⇢̂, t)=
⌘(T

e

)

µ0⇢2
b

F̂ 2

✓
@D

 

@⇢̂

◆
, (17)

f3(⇢̂, t)=R0Ĥ⌘(Te
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III. HYBRID NUMERICAL METHOD

A. Discretization in space

A finite difference method is used to discretize the MDE
(14)-(15) in space. The spatial grid is defined as
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can be represented as  
i

=
 (⇢̂

i

, t). A second order approximation is used for the
boundary conditions (15) to obtain conditions for the bound-
ary nodes ⇢̂1 and ⇢̂
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4 2 �  3 � 3 1 = 0, (21)
4 

n�1 �  
n�2 � 3 

n

+ k�⇢̂I
p

(t) = 0. (22)



Over the interior nodes (⇢̂2, · · · , ⇢̂n�1), we discretize (14)
using also a second order approximation to obtain

 ̇
i

=f1(⇢̂i, t)

✓
 
i+1 +  

i�1 � 2 
i

�⇢̂2

◆
+

✓
f1(⇢̂i, t)

⇢̂
i

+ f2(⇢̂i, t)

◆✓
 
i+1 �  

i�1

2�⇢̂

◆
+

f3(⇢̂i, t) +
2f4(⇢̂i, t)�⇢̂

 
i+1 �  

i�1
. (23)

By defining z = [ 2, 3, · · · , n�2, n�1]T , we can express
(21)-(23) as

ż = g(z, u), (24)

where g is a nonlinear function and

u = [n̄
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B. Discretization in time

The temporal grid is chosen as
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the partial derivatives of the parabolic term are evaluated at
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j+1, the partial derivative in the interior term coming from

the bootstrap-current model together with all the temporal
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By defining z
j

= [ 2,j , 3,j , · · · , n�2,j , n�1,j ]T and
evaluating (21) and (22) at t

j

, (27) can be written as

z
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= û(t)|
t=tj

, and the matrix E(t)
adopts a tridiagonal form.

By evaluating the nonlinear term (last term on the RHS
of (23)), which is related to the bootstrap current-drive,
at time t

j

instead of t
j+1, the integration in time of the

nonlinear system (24) requires the solution of the tridiagonal
system (28) at each instant of time. This hybrid approach,
combining both the implicit and explicit methods, reduces
the computation complexity allowing for a faster integration
while preserving unconditionally stable properties at the
expense of a reduced level of accuracy.

IV. OBSERVABILITY OF THE MDE

The observability analysis for the infinite-dimensional
system (14)-(15) is beyond the scope of this work. However,
the observability analysis for the spatially discretized system
is relatively straightforward as it will be shown below.

A. System outputs
Tokamaks without the capability of carrying out MSE-

constrained real-time reconstructions of the internal poloidal
flux profile still have the capability of providing three related
measurements:

1) Poloidal flux at the boundary,  (1, t). From (22),
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where S denotes the magnetic flux surface.
These three measurements are chosen as the system output,
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However, the total plasma current measurement still needs
to be expressed as function of the state z. By discretizing
(31) in space, it is possible to rewrite (29)-(31) as

y = C̄z , h(z). (33)

B. Observability analysis
By combining the state equation (24) with the output

equation (33), a nonlinear model is obtained as
ż = g(z, u)
y = h(z)

. (34)

By linearizing (34) around a nominal trajectory z⇤ driven by
the nominal input u⇤, we obtain
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with �z = z � z⇤ and �u = u � u⇤. The Observability
Gramian Q
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where � denotes the state transition matrix. The Gramian
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While the observability of (34) can be analyzed by ex-
amining the rank of the distribution spanned by all repeated
Lie derivatives [21], the observability of (35) can by studied
by examining the rank of Q

m

(t0, t1) obtained either from
the definition (37) or as the solution of (38). This latter
study shows that the system is observable when the output
is defined as in (32).
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Fig. 2. Observer structure.

V. OBSERVER DESIGN SCHEME

By using (28) and (33) we can model our system as a
nonlinear discrete lumped-parameter system, i.e.

z
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= G(z
j�1, ûj�1) + w
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The terms w
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and v
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have been added to account for internal
and measurement noise, respectively. They are assumed to
be uncorrelated, zero-mean, Gaussian signals, i.e. w
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⇠
N(0, Q
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), v
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⇠ N(0, R
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), where Q
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and R
j

denote their
respective covariance matrices. The observer design process
based on extended Kalman filtering [22] includes prediction
and correction steps as shown in Fig. 2, where z̃ represents
the prediction of the state z. The prediction step is given by
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The correction step is given by
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VI. ANALYSIS OF RESULTS

Three arbitrary initial profiles for the poloidal magnetic
flux have been chosen in order to test the performance of the
designed observer, i.e.,  1

0 = 0.4� 0.1⇢̂2,  2
0 = 0.1� 0.1⇢̂2,

 3
0 = 0.3 � 0.3⇢̂2. The grid size is chosen as �t = 0.02s

and �⇢̂ = 0.025. The time span is given by the total length
of the discharge in the DIII-D experiments.

Fig. 3 compares the poloidal magnetic flux profiles es-
timated by the observer with those reconstructed by the
real-time equilibrium code (rt-EFIT) [13] in different DIII-
D shots. DIII-D has the capability of reconstructing the
plasma equilibrium using plasma internal constraints pro-
vided by MSE diagnostics, which guarantees a reliable
reconstruction of the poloidal magnetic flux profile. As
can be seen from the figure, the proposed observer has
the potential for reconstructing in real time the poloidal
magnetic flux profile in tokamaks without the availability

of MSE diagnostics (or any other diagnostics with the capa-
bility of providing plasma internal measurements). Compar-
isons between rt-EFIT-reconstructed (solid red) and observer-
estimated (dashed blue) poloidal magnetic flux profiles from
DIII-D shot 147383 are shown in Fig. 3(a), Fig. 3(b), and
Fig. 3(c) at different spatial locations. Similar comparison
are provided for shot 154358 in Fig. 3(d), Fig. 3(e), and
Fig. 3(f), and for shot 147634 in Fig. 3(g), Fig. 3(h), and
Fig. 3(i). Fig. 3(j), Fig. 3(k), and Fig. 3(l) compare rt-EFIT-
reconstructed and observer-estimated poloidal magnetic flux
profiles at time t = 4.5s for DIII-D shots 147383, 154358,
and 147634, respectively. All figures also show the estimated
profiles obtained just by integrating the MDE equation using
the arbitrary initial conditions and the noisy inputs from DIII-
D (dashed black). It can be appreciated from the figures that
the proposed closed-loop observer is capable of converging
to the correct value of the poloidal magnetic flux profile
regardless of the initial error and the noise.

VII. CONCLUSION

A closed-loop observer for the estimation of the poloidal
magnetic flux profile has been proposed for tokamaks in
which the profile cannot be accurately reconstructed in real
time from internal magnetic measurements. The observer has
been synthesized by applying extended Kalman filtering the-
ory and using a discrete lumped-parameter nonlinear model
of the poloidal magnetic flux profile evolution. This control
oriented model is obtained by combining the first-principles
MDE with physics-based control-oriented models for the
electron temperature, electron density, plasma resistivity and
non-inductive current drives. This model has been tailored to
high-confinement (H-mode) discharges in the DIII-D toka-
mak. DIII-D has the capability of accurately reconstructing
the poloidal magnetic flux profile by embedding measure-
ments by the MSE diagnostics in the real-time equilibrium
code, which makes it a perfect testbed for the proposed
observer. Experimental results demonstrates the potential of
the proposed observer. The observer makes use of the total
plasma current measurement and point-wise measurements
of the poloidal magnetic flux at both the magnetic axis and
the plasma boundary. Since the observer does not make
use of internal measurements of the poloidal magnetic flux
profile, it is well suited for tokamaks not provided with
internal diagnostics such as the MSE diagnostic.
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0 at ⇢̂ = 0.25 (d), ⇢̂ = 0.5 (e), and ⇢̂ = 0.75 (f); DIII-D shot 147634 with  3
0 at ⇢̂ = 0.25 (g), ⇢̂ = 0.5 (h), ⇢̂ = 0.75 (i); DIII-D shot 147383

with  1
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0 at t = 4.5s (k), DIII-D shot 147634 with  3
0 at t = 4.5s (l).
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