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Abstract— First-principle tokamak plasma predictive models

based on flux averaged transport equations often yield complex

expressions not suitable for real time control implementations.

Addition of turbulent transport phenomena further encum-

bers these models with transport coefficients that must be

determined experimentally and the interdependences between

parameters must be accounted for with ad hoc assumptions. As

an alternative to first principle modeling, data-driven modeling

techniques involving system identification have the potential

to obtain practical, low complexity, dynamic models without

the need for ad hoc assumptions. This paper considers the

evolution of the toroidal rotation profile in response to the

heating and current drive (H&CD) systems. Experiments are

conducted during plasma current flattop, in which the actuators

are modulated in open-loop to obtain data for the model

identification. The rotation profile is discretized in the spatial

coordinate by Galerkin projection. Then a linear state space

model is generated by the prediction error method (PEM)

to relate the rotation profile to the actuators according to a

least squares fit. An optimal tracking controller is proposed to

regulate the rotation profile to a desired reference trajectory.

I. INTRODUCTION

For sustained high-gain fusion operation, tokamak plasmas
must exhibit high energy confinement, defined as the time
required for the input energy to dissipate from the plasma.
Experiments have shown that high plasma rotation, i.e., bulk
fluid rotation around the tokamak, can have a significant
impact on the confinement time by suppressing energy
and particle transport to the wall. This effect is somewhat
intuitive, considering the fact that a large portion of energy
degradation stems from turbulence, and a gradient in the rota-
tion velocity will suppress the development of turbulent flow
across the plasma. Since the tokamak wall does not move, a
velocity gradient will exist between the plasma and the wall,
so, the larger the rotation, the larger the rotation gradient.
Additionally, plasma rotation can minimize the effect of error
fields that can influence the magnetic topology and excite
tearing modes. A rapidly rotating plasma will increase the
effective frequency of the error field in the plasma frame and
reduce the depth of its penetration. Tearing modes rotating
with the plasma velocity will thus be substantially suppressed
in a rotating plasma. This same reasoning applies to resistive
wall mode instabilities as well [1], [2].
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Mathematical modeling of plasma transport phenomena
with sufficient complexity to capture the dominant dynamics
is critical for plasma control design. Transport theories
(classical, neoclassical and anomalous) even under restrictive
assumptions, produce strongly nonlinear models based on
partial differential equations (PDEs). The complexity of these
models often makes them impractical for control design
since it is very challenging, if not impossible, to synthesize
compact and reliable control strategies based on these com-
plicated mathematical models. As an alternative, data-driven
modeling techniques, including system identification [3] and
data assimilation [4], have the potential to obtain practical,
low-complexity, dynamic models useful for implementing
relatively simple control design problems for tokamaks.

Data-driven modeling techniques have been successfully
used in the past to model plasma transport dynamics for
active control design in nuclear fusion reactors (see, e.g., [5]).
System identification using input/output (I/O) diagnostic data
has been used to model the current profile dynamics in
ASDEX Upgrade [6]. In the JET tokamak [7], a two-time-
scale linear system has been used to describe the dynamics of
the magnetic and kinetic profiles around certain quasi-steady-
state trajectories, where system matrices can be identified
from experimental data. In the L-mode discharges of the JT-
60U tokamak [8], diffusive and nondiffusive coefficients of
the momentum transport equation of the toroidal rotation
profile dynamics have been estimated from transient data
obtained by modulating the momentum source.

This paper aims at developing an input output response
model, suitable for real-time profile control, for the toroidal
rotation in DIII-D during AT scenarios. A linear time invari-
ant model is synthesized using system identification methods.
Finally, the model is used for an optimal control synthe-
sis to regulate the rotation profile to a desired reference.
Section II describes the system identification process and
using this process a model relating the rotation profile to
the neutral beams, current drives, and the toroidal loop
voltage is obtained. In section III we propose an optimal
control tracking method for following a desired velocity
profile. Section IV considers simulations of reference profile
tracking for an initially disturbed and an initially undisturbed
system. It is concluded in section V that the response of the
toroidal rotation profile in DIII-D to specific actuators can
be satisfactorily identified from a small set of experiments.
This provides, for control purposes, readily available models
which are far less complex than those obtained from first
principle modelling and thus better suited for control design.



II. EXPERIMENTAL METHOD AND SYSTEM
IDENTIFICATION ON DIII-D

By taking the surface average over the magnetic flux
surfaces, plasma transport equations can be represented by
one dimensional nonlinear parabolic PDEs whose variables
are dependent on both time t and the normalized radius ρ̂.
Around certain given trajectories, the nonlinear PDEs can be
linearized as

∂x(ρ̂, t)

∂t
= A(ρ̂)x(ρ̂, t) + B(ρ̂)u(t) +K(ρ̂, t)e(ρ̂, t), (1)

where x(ρ̂, t) represents the collection of physical variables,
e.g., the poloidal magnetic flux, ψ(ρ̂, t), the toroidal velocity
Vφ(ρ̂, t), the ion and electron temperatures Ti,e(ρ̂, t). The
variable u(t) represents external and auxiliary inputs, such
as various current drives (ECCD), neutral beam injection
(NBI), electron cyclotron resonance heating (ECRH), and
the plasma boundary loop voltage (Vext). The variables
A(ρ̂), B(ρ̂), and K(ρ̂) are infinite dimensional operators. The
system outputs (2) can be measured via various diagnostic
systems

y(ρ̂, t) = C(ρ̂)x(ρ̂, t) + e(ρ̂, t), (2)

where C(ρ̂) is the observation operator and e(ρ̂, t) is the
observation noise field. The infinite dimensional system can
be approximated by projecting the distributed variable y(ρ̂, t)
onto a basis function space. In this paper a discretized
system is generated by Galerkin projection and it is simply
assumed that by increasing the number of trial basis functions
the discrete system would converge towards the infinite
dimensional differential system. The Galerkin projection of
a generic dynamical variable, y(ρ̂, t), reads:

y(ρ̂, t) ≈
N�

i=1

Gy,i(t)bi(ρ̂), (3)

where bi(ρ̂) are the basis functions. In this paper the basis
functions are piece-wise linear functions as shown in Fig. 1
with i = 1, 2, ...N . The expansion coefficients, Gy,i(t),
will be called Galerkin coefficients and the vector array
containing the Galerkin coefficients of the variable y(ρ̂, t)
will simply be named Y (t). To determine the Galerkin
coefficients, we multiply both sides of the expansion equation
(3) with any basis function bj(ρ̂), j = 1, 2, ...N and integrate
over the spatial coordinate to obtain,

� 1

0
y(ρ̂, t)bj(ρ̂)dρ̂ =

� 1

0

� N�

i=1

Gy,i(t)bi(ρ̂)
�
bj(ρ̂)dρ̂, (4)

for j = 1, 2, ...N . If the basis functions are orthonormal,
i.e.

� 1
0 bi(ρ̂)bj(ρ̂)dρ̂ = δij , then the coefficients Gy,i can be

computed explicitly. Otherwise the coefficients are obtained
by the matrix equation.
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Fig. 1. Piece-wise linear functions bi(ρ̂), used for the expansion of Vphi(ρ̂)

where mij is the inner product of bi and bj , i.e.,� 1
0 bi(ρ̂)bj(ρ̂)dρ̂ and qj is the inner product between y(ρ̂, t)

and bj(ρ̂), i.e.,
� 1
0 y(ρ̂, t)bj(ρ̂)dρ̂. After this discretization has

been made, the lumped parameter version of the state space
model is obtained, which reads:

dX(t)
dt

= AX(t) +Bu(t) +Ke(t),
Y (t) = CX(t) + e(t).

(6)

where u(t) are the inputs, e.g., neutral beam injection (NBI)
power, electron cyclotron current drive (ECCD) power, and
the loop voltage (Vext). Then we seek a least squares fit of
the discrete model of the system to experimental data.

To collect the data for system identification a number of
discharges of an advanced tokamak scenario were run with
identical ramp-up phases and during flattop various actuators
were modulated around their reference values. Experiments
were carried out in the loop voltage (Vext) control mode
(as opposed to current control) to avoid feedback in the
response data from the primary circuit. The reference plasma
(identical to shot #133103) state was that of a 0.9 MA AT
scenario which had been optimized to combine non-inductive
current fractions near unity with 3.5 < βN < 3.9, bootstrap
current fractions larger than 65%, and H98(y, 2) = 1.5 [9].
Actuator modulations were applied from t = 2.6 s, i.e.,
after 1 s of 0.9 MA current flat top. At this time, in
all discharges, the Ip and βN controls were disabled and
Vext was enabled as an actuator. This ensures there is no
feedback response in the system during data collection. The
NBI and ECCD systems provided the heating and current
drive sources for these experiments. Available beam-lines
and gyrotrons were grouped to form, together with Vext,
five independent actuators: i- co-current NBI power (PCO)
ii- counter-current NBI power (PCNT ) iii- balanced NBI
power (PBAL) iv- total ECCD power from all gyrotrons in
a fixed off-axis current drive configuration (PEC), and v-

Vext. All actuators were modulated individually in open loop
according to predefined waveforms while the other actuators
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Fig. 2. Time evolution of Vext, PCO , PCNT , PBAL, and PEC in DIII-D
shots #140092, 140094, and 140106

were kept constant and equal to those values used to produce
the reference discharge. Power and loop voltage modulations
resulted in dynamic variations of the plasma current between
0.7 and 1.2 MA. Fig. 2-3 display some typical modulations of
the system inputs and of the plasma current Ip, line-averaged
density NeR0, and the normalized pressure βN .

System identification for the toroidal rotation profile
Vφ(x, t) was carried out with 8 Galerkin coefficients com-
puted at normalized radii ρ̂ = 0.1, 0.2, ..., 0.8, starting at t =
2.6 s. Fig. 4-6 display some of the typical fits between the
experimental data and the synthesized model, in these cases
the model is compared to shots not used in the identification
process. An offset has been subtracted to all the data sets
so that the identification routine only handles datasets with
zero average. Reasonable fits were obtained for most of the
shots, including shots not used in the identification process.
The fit between the original data Y (t) and the reconstructed
data Ym(t) is characterized by the parameter f ,

f = 1−
��N

k=1 [Y (t)− Ym(t)]2
�N

k=1 [Y (t)− �Y �]

�
, (7)

where f = 1 (100%) is a perfect fit and f = 0 corresponds
to a reconstructed data set equal to the mean of the measured
data, �Y �.

Several shots are used to generate the model (shot
#140076, 140077, 140093, 140106, and 140107). Shot
140107 performs Vext modulation, shots 140076, 140077,
and 140106 provide modulation for the neutral beam groups,
and 140093 includes modulation of the gyrotrons, to de-
termine the effect of total ECCD power. We assume the
input/output relation for any given shot is of the form

Vφ = V̄φ +∆Vφ = Ḡ(ū) +G∆u (8)
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Fig. 3. Time evolution of βN , NeR0, Ip in DIII-D shots #140092, 140094,
and 140106

where Ḡ represents the relationship between the reference
input ū and reference output V̄φ. We simply subtract this
reference value from our data set and consider only the
left over dynamics ∆Vφ = G∆u. The reference value is
subtracted out of each data set and the resulting dynamics
are added together to perform the identification. The resulting
dataset allows us to solve for the system

V
�
φ = Gu

� (9)

where V
�
φ

= ∆Vφ,1 + ∆Vφ,2 + ... + ∆Vφ,N and u
� =

[∆u1,∆u2, ...,∆uN ]T , thus we can synthesize a model that
incorporates all of the dynamics in the identification shots.
An optimal G(q) according to a least squares fit criterion
is determined using the prediction error method (PEM) [3].
The PEM method calculates the matrices A, B, and C by
the minimization of the norm VN , which for a least squares
fit is defined as

VN (G) =
1

N

N�

k=1

�
2(k) (10)

where �(k), called the prediction error, is the difference
between the measured output and the predicted output of
the model.

�[k] = H
−1(q)(y[k]−G(q)u[k]) (11)

y[k] = G(q)u[k] +H(q)�[k] (12)
G(q) = C(qI −A)−1

B (13)
H(q) = C(qI −A)−1

K + I (14)

where q is the forward shift operator, i.e., qu[k] = u[k+1] or
q
−1

u[k] = u[k− 1], and the matrices A, B, C, K represent
the discrete time system,
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Fig. 4. Comparison between model (blue line) and measured (red dash)
Vφ data (105 m/s) at ρ̂ = 0.1, 0.2, ...0.8 for DIII-D shot 140076.
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Fig. 5. Comparison between model (blue line) and measured (red dash)
Vφ data (105 m/s) at ρ̂ = 0.1, 0.2, ...0.8 for DIII-D shot 140092.

x[k + 1] = Ax[k] +Bu[k] +Ke[k] (15)
y[k] = Cx[k] + e[k] (16)

III. DISCRETE TIME LINEAR QUADRATIC TRACKING
CONTROL

For a linear time invariant system described by the state
equation

x[k + 1] = Ax[k] +Bu[k] (17)

and the output relation
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Fig. 6. Comparison between model (blue line) and measured (red dash)
Vφ data (105 m/s) at ρ̂ = 0.1, 0.2, ...0.8 for DIII-D shot 140109.

y[k] = Cx[k] (18)
The task of control synthesis is to find a feedback policy
u[k] = f(x[k]) that minimizes the following cost functional
J , i.e., find,

min
u

J =
1

2
(Cx[N ]− z[N ])T F (Cx[N ]− z[N ]) +

1

2

N�

k=1

�
(Cx[k]− z[k])T Q (Cx[k]− z[k])+u

T [k]Ru[k]
�

(19)

where x[k], u[k], and y[k] are n, r, and p order, state, control
and output vectors, respectively. Also we assume F and Q

are each n× n dimensional positive semidefinite symmetric
matrices, and R is an r×r positive definite symmetric matrix.
The initial condition is given as x[k0] and the final condition
x[kf ] is free with kf fixed. We want the error e[k] = y[k]−
z[k] as small as possible with minimum control effort, where
z[k] is an n dimensional reference vector. By introducing the
Lagrange multiplier λ[k] ∈ Rn×1, we can define Hamiltonian
functional of the tracking problem as

H[k] =
1

2
(Cx[k]− z[k])TQ(Cx[k]− z[k])

+ u[k]TRu[k] + λ
T [k + 1](Ax[k] +Bu[k]), (20)

from which we obtain the optimal solution characterized by
the following set of differential equations in the state x and
costate λ,

x
∗[k + 1] =

∂H[k]

∂λ∗[k + 1]
= Ax

∗[k] +Bu
∗[k], (21)

λ
∗[k] =

∂H[k]

∂x∗[k]
= A

T
λ
∗[k + 1] + V x

∗[k]−Wz[k], (22)

where (·)∗ indicates the optimal value, V = C
T
QC, and

W = C
T
Q. According to the principle of optimality,



∂H/∂u = 0, the optimal control law is given by

∂H[k]

∂u∗[k]
= 0 ⇒ u

∗[k] = −R
−1

B
T
λ
∗[k + 1], (23)

with final condition

λ[N ] = C
T
FCx[N ]− CFz[N ]. (24)

To obtain the closed-loop form, we assume a transformation
bases on the form of the boundary condition

λ
∗[k] = P [k]x∗[k]− g[k], (25)

where the n×n matrix P [k] and the n×1 vector g[k] are to
be solved off-line and backwards using the final condition.
P [k] is the nonlinear, matrix difference Ricatti equation and
g[k] is the linear, vector difference equation,

P [k] = A
T
�
P

−1[k + 1] + E
�−1

A+ V, (26)

g[k] =
�
A

T −A
T
P [k + 1]

�
I + EP [k + 1]

�−1
(27)

E
T

�
g[k + 1] +Wz[k],

where E = BR
−1

B
T with boundary conditions

P [kf ] = C
T
FC (28)

g[kf ] = C
T
Fz[N ]. (29)

Then using Eq. (25) to solve for the closed-loop optimal
control law

u
∗[k] = −L[k]x∗[k] + Lg[k]g[k + 1], (30)

where the feedback gain L[k] and feed forward gain Lg[k]
are given by

L[k] = (R+B
T
P (k + 1)B)−1

B
T
P [k + 1]A, (31)

Lg[k] = (R+B
T
P [k + 1]B)−1

B
T
, (32)

and the optimal state trajectory becomes

x
∗[k + 1] = (A−BL[k])x[k] +BLg[k]g(k + 1). (33)

IV. SIMULATION RESULTS

We present simulation results showing the effectiveness
of the proposed optimal control algorithm applied to the
identified model from section II. For this simulation study
we consider a time interval [t0 = 0, tN = 1.0 s] relative
to an initial time tinit = 2.6 s in the experiment, i.e.,
t0 = 0 in the simulations corresponds to tinit = 2.6 s in
the experiment, 1 s after flattop when data collection for
the system identification begins. In simulation, we consider
two cases; (i) driving an initially disturbed system to zero
(regulator control), and (ii) driving the system from zero to
a desired profile (constant reference tracking). In each case
the cost function weighting matrices are specified as follows;
F = 10In, Q = 100In, and R = 0.001Ir and the sampling
period is Ts = 0.01 s.

Fig. 7-9 show the results of the initial disturbance
rejection case. Here the initial condition is Yi(0) =
[0.091 0.115 0.044 −0.003 −0.027 −0.05 −0.07 −0.097]T .
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Fig. 7. Optimal tracking control inputs: Vext, PCO , PCNT , PBAL, and
PEC for the disturbance rejection case.
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PEC for the constant reference tracking case.
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Fig. 11. Convergence of optimal tracking control for the constant reference
tracking case (Vφ(0.1)-Vφ(0.8)). The lines are the outputs and the circles
are the corresponding references.

0

0.2

0.4

0.6

0.8

1 0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ρ̂

time (s)

V φ
 (1

05  m
/s

)

Fig. 12. Rotation profile Vφ(ρ̂, t) during constant reference tracking case.

The control successfully drives the system to zero with all the
states converging after about 0.9 s. The disturbance rejection
represents the case in which the rotation profile has deviated
from the desired shape (characterized by zero), the control
is initiated and the profile is adjusted.

Fig. 10-12 show the results of the constant ref-
erence tracking case. Here the system starts at zero
and is driven to a constant reference value Yi(N) =
[0.450 0.475 0.400 0.350 0.325 0.300 0.275 0.20]T . To
avoid fast dynamics in the system, the constant tracking
reference is actually approximated as a hyperbolic tangent
approaching, asymptotically the final value. Essentially this
acts to slow the system down, but results in less overshoot.
In this case the rotation is successfully sped up across the
plasma with all the states fully converging after about 0.4 s.
This case represents the situation in which it is desirable to
speed up the rotation across the plasma. Note that the zero
rotation value refers to some reference profile shape, not an
absolute zero rotation.

V. CONCLUSIONS

In this paper we have developed a simplified linear model
based on system identification methods for the profile evo-
lution of the toroidal rotation profile in DIII-D. We have
been able to generate reasonable model prediction of the
rotation profile to modulations in the neutral beam injectors,
the current drive power, and the external loop voltage by data
driven techniques. An optimal tracking control is proposed
for following a desired reference profile in closed-loop.
Sufficient profile control using the optimal control method
was also possible with feasible input power limits.

In the future we plan to incorporate the coupled dynamics
between the rotation and current profiles into the model. The
integration of rotation and current profiles into a single con-
troller is particularly relevant to advanced tokamak scenarios
in future devices such as ITER where the heating and current
drive (H&CD) actuators will be quite constrained [7].
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