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Abstract— The control of plasma density and temperature are
among the most fundamental problems in fusion reactors and
will be critical to the success of burning plasma experiments
like ITER. While stable burn conditions exist, it is possible
that economic and technological constraints will require future
commercial reactors to operate with low temperature, high
density plasma, a burn condition that may be unstable. The
instability is due to the fact that for low temperatures, the fusion
heating increases as the plasma temperature rises. An active
control system will be essential for stabilizing such operating
points. In this work a spatially averaged (zero-dimensional)
nonlinear transport model for the energy and the densities
of deuterium and tritium fuel ions, as well as the alpha-
particles, is used to synthesize a nonlinear feedback controller
for stabilizing the burn condition of a fusion reactor. Whereas
previous efforts assume an optimal 50:50 mix of deuterium
and tritium fuel, this controller makes use of ITER’s planned
isotopic fueling capability and controls the densities of these
ions separately. Also, unlike previous work which used impurity
injection to mitigate thermal excursions, this design exploits
the ability to modulate the DT fuel mix to control the plasma
heating. By moving the isotopic mix in the plasma away from
the optimal 50:50 mix, the reaction rate is slowed and the
alpha-particle heating is reduced to desired levels. A zero-
dimensional simulation study is presented to show the ability
of the controller to bring the system back to the desired
equilibrium from a given set of perturbations.

I. INTRODUCTION

To realize the promise of nuclear fusion and make it an
economical energy source, tokamak reactors must operate for
long periods of time in a burning plasma mode characterized
by a high Q, where Q is the ratio of fusion power to
auxiliary power. Although stable operating points with this
characteristic exist for most confinement scalings, they are
usually found in a region of high temperature and low den-
sity. It is possible, however, that economic and technological
constraints will require future commercial fusion reactors to
run at low temperature and high density operating points in
which the rate of thermonuclear reaction increases as the
plasma temperature rises. Under these conditions, an active
control system may be necessary to stably control the plasma
density and temperature and prevent small perturbations in
temperature or density from growing. Small increases in
temperature may cause thermal excursions in which the
system moves to a new, stable equilibrium at a higher
temperature, or, in the case of decreases in temperature, the
loss of heating power could lead to quenching. In either case,
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disruptive plasma instabilities could be triggered, stopping
operation and possibly causing wall damage.

Over the years, the physical and technological feasibility
of different methods for controlling the burn condition have
been studied. Prior work, including [1], [2], [3], considered
modulation of auxiliary power, modulation of fueling rate,
and injection of impurities as actuators. Most existing burn
control efforts use only one of the available actuators (single-
input control) and linearize the system model to make use of
linear control techniques. When tested using nonlinear mod-
els, these controllers succeed in stabilizing the system against
a limited set of perturbations. In [4], a diagonal multi-input,
multi-output control scheme was developed for controlling
burning plasma kinetics, though the authors point out that
due to the complexity of the plasma system, nonlinear control
is needed for the most economic and reliable modes of
operation. In our previous work [5], a zero-dimensional non-
linear model involving approximate conservation equations
for the energy and the densities of the species was used to
synthesize a nonlinear feedback controller for stabilizing the
burn condition of a fusion reactor. The controller makes use
of all of the previously considered actuators simultaneously,
using auxiliary power modulation to prevent quenching,
impurity injection to increase radiation losses and stop
thermal excursions, and fueling modulation to stabilize the
density. The use of nonlinear control techniques removes the
operability limits imposed by linearization in other works.
A 0-D computer simulation study was performed to show
the capability of the controller and compare it with previous
linear controllers. Nonlinear control using multiple actuators
had only been done previously in works using non-model
based techniques, like neural networks [6], [7].

The nonlinear controller designed in our work [5] guar-
antees a much larger region of attraction than the previous
linear controllers. However, the control scheme requires
impurity injection to reject thermal excursions, which could
lead to undesirable accumulation of impurity ions within
the plasma core. Also, the model used for design assumed
an optimal 50:50 mix of deuterium and tritium within the
plasma at all times. Because experiments indicate that deu-
terium and tritium may have different transport properties
[8], the deuterium and tritium systems should be actuated
separately to allow for control of the isotopic mix in the
core. Such a scheme should be possible in ITER, based on
the proposed fueling system, which is to include both pellet
and gas injection systems, and the available diagnostics. The
pellet injection system will include two pellet injectors -
one for pellets of primarily deuterium and the other for



pellets of primarily tritium. The gas injection system will
be used to supply deuterium at the edge of the plasma.
Together, these systems will allow the fuel mix to be altered
in a technique called isotopic fuel tailoring [9]. The ratio
of tritium to deuterium within the plasma is important for
reactor operation and burn control, as well as safety and
commissioning of devices. First, because the fusion power
is a maximum with a 50:50 DT mix, the mix should be kept
near 50:50 during steady state operation. Secondly, because
tritium levels in the plasma facing parts of the machine
depend directly on the relative amount of tritium in the
plasma’s edge, the machine could be made safer and easier
to commission if the amount of tritium in the plasma’s edge
is kept low [10]. Lastly, as we will show in this work, it is
possible to exploit the reduction in fusion power caused by
modulating the relative mix of DT fuel as a way to stabilize
thermal excursions without the need for impurity injection.

The controller presented here is designed to stabilize the
volume averaged densities of alpha-particles, deuterium ions,
and tritium ions, as well as the volume averaged energy
density. The controller can deal with perturbations in initial
conditions leading to either thermal excursion or quenching,
and its effectiveness is independent of whether the operating
point is an ignition (no auxiliary heating) or subignition
point. The nonlinear controller depends parametrically on
the equilibrium, allowing it to drive the system from one
equilibrium point to another. This will be essential for mod-
ulating power and other plasma parameters during reactor
operation. Simulation results show successful stabilization
of the desired equilibrium.

The paper is organized as follows. In Section II a zero-
dimensional model of the dynamics is introduced. The
control objective is stated in Section III. The design of a
nonlinear stabilizing controller is presented in Section IV.
Simulation parameters and results, showing both the open
loop and closed loop response of the system, are presented
in Section V. Finally, conclusions and plans for future work
are stated in Section VI.

II. BURNING PLASMA MODEL

In this work we use a zero-dimensional model for a
burning plasma which employs approximate energy and
particle balance equations. The model is fundamentally the
same as that used in [11], and also [5]. However, unlike
the model used in these previous pieces of work, the model
considered here treats the deuterium and tritium ion densities
separately, which allows us to make use of isotopic fuel
tailoring as an additional actuator. The model is given by

dnα
dt

=−nα
τα

+nDnT �σν� (1)

dnD

dt
=−nD

τD
−nDnT �σν�+SD (2)

dnT

dt
=−nT

τT
−nDnT �σν�+ST (3)

dE
dt

=− E
τE

+Qα nDnT �σν�−Prad +Paux (4)

where nα , nD, and nT are the alpha-particle, deuterium,
and tritium densities, respectively, and E is the energy.
Parameters τα , τD, τT , τE are the alpha-particle, deuterium,
tritium, and energy confinement times, respectively. The
control inputs are the deuterium and tritium fueling rates,
given by SD and ST , as well as the auxiliary heating, Paux.
This approximate model implies that the alpha-particles slow
down instantaneously and deposit their energy (Qα = 3.52
MeV) in the flux surface in which they are born, which is a
reasonable approximation for reactor-size tokamaks.

The DT reactivity �σν� is a highly nonlinear, positive,
and bounded function of the plasma temperature T and is
calculated by

�σν�= exp
� a1

T r +a2 +a3T +a4T 2 +a5T 3 +a6T 4
�

(5)

where the parameters ai and r are taken from [12]. In this
work, the radiation loss Prad is approximated as

Prad = Pbrem = AbZe f f n2
e
√

T (6)

where Ab = 5.5× 10−37 Wm3/
√

keV is the bremsstrahlung
radiation coefficient, Ze f f is the effective atomic number, and
ne is the electron density. No explicit evolution equation is
provided for the electron density as it is obtained from the
neutrality condition ne = nD+nT +2nα . The effective atomic
number, plasma density, and temperature are given by

Ze f f =
�

i

niZ2
i

ne
=

nD +nT +4nα
ne

(7)

n = nα +nD +nT +ne = 2nD +2nT +3nα (8)

T =
2
3

E
n

(9)

where Zi is the atomic number of the different ions. The
energy confinement time scaling used in this work is
ITER90H-P [13] because it allows for performance compar-
ison with previous work, however, this choice only affects
the simulation study. The controller design is independent of
the scaling used. The scaling used is

τE=f 0.082I1.02R1.6B0.15A0.5
i κ−0.19

χ P−0.47=f kA0.5
i P−0.47 (10)

The factor scale f depends on the confinement mode and is
determined by comparing the net plasma heating power P to
the L-H transition power. For the simulations in this work,
the system remains in H-mode, for which we use f = 0.85.
Parameters I,R,B,κχ , are assumed to be kept constant by a
magnetic controller, such that they can be collapsed into a
single constant, k. The isotopic number Ai is given by

Ai = 3γ +2(1− γ) = γ +2 (11)

with γ being the tritium fraction. This is the fraction of
hydrogen that is tritium and can be expressed as

γ = nT/(nD +nT ) (12)
The net plasma heating power P is defined as

P = Pf usion −Prad +Paux (13)
The fusion power is given by

Pf usion = Qα nDnT �σν�= Qα γ(1− γ)n2
H�σν� (14)



TABLE I
REACTOR PARAMETERS

I Plasma current 22.0 MA
R Major radius 6.0 m
a Minor radius 2.15 m
B Magnetic Field 4.85 T
κχ Elongation at χ 2.2
kα Alpha-particle confinement constant 7
kD Deuterium particle confinement constant 3.6
kT Tritium particle confinement constant 2.6

βmax Beta limit 2.5I/aB=5.3%
V Plasma volume 1100 m3

where nH = nD + nT is the total hydrogen density. Note
the parabolic relationship between fusion power and tritium
fraction γ , which will be exploited for controlling thermal
excursions.

The confinement times for the different species are scaled
with the energy confinement time τE as

τα = kα τE , τD = kDτE , τT = kT τE (15)

Reactor parameters used in this work are given in Table I.
III. CONTROL OBJECTIVE

The possible steady-state operating points of the reactor
are given by the equilibria of the dynamic equations. The
equilibrium values of the energy Ē, the density variables n̄α ,
n̄D, n̄T , the fueling source terms S̄D, S̄T , and the auxiliary
heating P̄aux, are determined by solving the nonlinear alge-
braic equations obtained by setting the left side of Eqs. (1)
through (4) to zero when two of the plasma parameters, such
as T and plasma β 1, for example, are chosen arbitrarily i.e.

0 =− n̄α
τ̄α

+ n̄Dn̄T �σ̄ν� (16)

0 =− n̄D

τ̄D
− n̄Dn̄T �σ̄ν�+ S̄D (17)

0 =− n̄T

τ̄T
− n̄Dn̄T �σ̄ν�+ S̄T (18)

0 =− Ē
τ̄E

+Qα n̄Dn̄T �σ̄ν�− P̄rad + P̄aux (19)

In this work, we only consider equilibria with the optimal
tritium ratio γ = 0.5. By defining the deviations from the
equilibrium values as ñα = nα − n̄α , ñD = nD− n̄D, ñT = nT −
n̄T , and Ẽ = E− Ē, the dynamic equations for the deviations
can be written as

dñα
dt

=− ñα
τα

− n̄α
τα

+Sα (20)

dñD

dt
=− ñD

τD
− n̄D

τD
−Sα +SD (21)

dñT

dt
=− ñT

τT
− n̄T

τT
−Sα +ST (22)

dẼ
dt

=− Ẽ
τE

− Ē
τE

+Qα Sα −Prad +Paux (23)

where the nonlinear alpha-particle source term is written as

Sα(E,nD,nT ,nα) = nDnT �σν�= γ(1− γ)n2
H�σν� (24)

1The plasma β is the ratio of plasma pressure to magnetic pressure and
is given by β = knT

(B2/2µ0)
where B is the magnetic field strength, µ0 is the

permeability of free space, and k is the Boltzmann constant.

to simplify the presentation. Recall from (5) and (9) that
�σν� is a function of E,nD,nT , and nα . The objective of
the control law is to force the initial perturbations ñα , ñD,
ñT , Ẽ to zero by modulation of the fuel sources SD, ST ,
as well as the auxiliary power Paux. It is assumed that all
states are available from either measurement or estimation.
Paux is used to stabilize the energy system during negative
perturbations, however, Paux cannot be reduced below zero,
so large positive perturbations in temperature require the use
of another actuator. In previous work, controlled injection of
impurities was used to increase radiation losses and stabilize
such excursions. In this work, we avoid the use of impurities
by utilizing the ITER fueling system’s ability to perform
isotopic fuel tailoring. For this initial work, we assume ideal
actuators. In future work, it will be necessary to account for
actuator dynamics.

IV. CONTROLLER DESIGN

The design begins by looking for a control which stabilizes
Ẽ. If the condition

Qα Sα −Prad +Paux =
Ē
τE

(25)

is satisfied, equation (23) is reduced to
dẼ
dt

=− Ẽ
τE

(26)

and the Ẽ subsystem is then exponentially stable since τE >
0. Condition (25) is met by modulating the alpha-heating
term Qα Sα and the auxiliary heating Paux. Modulation of
the alpha-heating term is done through altering the tritium
fraction γ = nT/(nD+nT ) within the plasma. The stabilizing
controller is calculated as follows:

First Step: We first set Paux = 0 and seek a tritium fraction
γ = γ∗ that satisfies condition (25). Writing the alpha-particle
generation term Sα in terms of γ∗, condition (25) becomes

Qα γ∗(1− γ∗)n2
H�σν�−Prad =

Ē
τE

(27)

This equation can be solved for γ∗, yielding

γ∗(1− γ∗) =
Ē
τE

+Prad

Qα n2
H�σν�

=C (28)

γ∗ = 1±
√

1−4C
2

(29)

If C ≤ 0.25, the two resulting solutions for γ∗ are real.
Because economic and safety considerations make it unde-
sirable to use more tritium than necessary in a reactor, we
take only the solution satisfying γ∗ ≤ 0.5. If C ≥ 0.25, there
is no real value of γ∗ that satisfies condition (25), so we set
γ∗ = 0.5, and move on to the second step.

Second Step: If γ∗ = 0.5, the condition (25) cannot be met
by altering the tritium ratio alone and additional heating is
needed. In this case, we calculate the auxiliary power as

Paux =
Ē
τE

−Qα γ∗(1− γ∗)n2
H�σν�+Prad (30)

Based on the control objectives and the previous steps,
we now have desired reference values for the energy, Ē, the



tritium fraction, γ∗, and the hydrogen density, n̄H = n̄D+ n̄T .
We next stabilize these references with the fueling terms SD
and ST . We begin by defining γ̂ = γ − γ∗ and

f (γ, Ẽ, ñα , ñD, ñT ) =− Ē
τE

+Qα Sα −Prad +Paux (31)

f (γ∗, Ẽ, ñα , ñD, ñT ) = 0 (32)

where the last relation is a consequence of our choice of γ∗
and Paux in (29) and (30). The last relation allows us to write
f = γ̂φ , where φ is a continuous function. This allows us to
rewrite (23) as

dẼ
dt

=− Ẽ
τE

+ γ̂φ (33)

Recalling the definition of the tritium ratio, γ = nT/nH , we
can write the equation governing its dynamics as

γ̇ = ˙̂γ + γ̇∗ = ṅT nH −nT ṅH

n2
H

=
ṅT

nH
− γ ṅH

nH
(34)

ˆ̇γ =
1

nH
[ṅT − γ ṅH ]− γ̇∗ (35)

We recall (21) and (22) to write

ṅT = ˙̃nT =−nT

τT
−Sα +ST (36)

ṅH = ˙̃nH = ˙̃nT + ˙̃nD =−nT

τT
− nD

τD
−2Sα +SD +ST (37)

˙̂γ =
1

nH

�
−nT

τT
−Sα +ST −nH γ̇∗

−γ
�
−nT

τT
− nD

τD
−2Sα +SD +ST

��
(38)

Now that the necessary dynamic equations are available, we
take the Lyapunov function candidate

V =
k2

1Ẽ2 + k2
2 γ̂2 + ñ2

H
2

(39)

where k1 = 1015 and k2 = 1020 (recall that Ẽ = O(105), γ̂ =
O(10−1), and ñH = O(1020)) and compute

V̇ =k2
1Ẽ ˙̃E + k2

2 γ̂ ˙̂γ + ñH ˙̃nH (40)

=− k2
1Ẽ2

τE
+ k2

1Ẽ γ̂φ +
k2

2 γ̂
nH

�
−nT

τT
−Sα +ST −nH γ̇∗

−γ
�
−nT

τT
− nD

τD
−2Sα +SD +ST

��

+ ñH

�
−nT

τT
− nD

τD
−2Sα +SD +ST

�
(41)

=− k2
1Ẽ2

τE
+

k2
2 γ̂

nH

�
k2

1nHẼφ
k2

2
− nT

τT
−Sα +ST −nH γ̇∗

−γ
�
−nT

τT
− nD

τD
−2Sα +SD +ST

��

+ ñH

�
−nT

τT
− nD

τD
−2Sα +SD +ST

�
(42)

We begin by stabilizing the part of (42) relating to the
dynamics of ñH by taking

SD =
nT

τT
+

nD

τD
+2Sα −ST −KDñH (43)
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Fig. 1. Top: Values of γ∗ for a range of values of nα . Bottom: Values of
V̇α for a range of values of nα . The circle denotes the desired equilibrium.

where KD > 0. This reduces equation (42) to

V̇ =
k2

2 γ̂
nH

�
k2

1nHẼφ
k2

2
− nT

τT
−Sα +ST −nH γ̇∗+ γKDñH

�

− k2
1Ẽ2

τE
−KDñ2

H (44)

Finally, we take

ST =−k2
1nHẼφ

k2
2

+
nT

τT
+Sα +nH γ̇∗ − γKDñH −KT γ̂ (45)

such that SD becomes

SD =
nD

τD
+Sα +

k2
1nHẼφ

k2
2

−nH γ̇∗ − (1− γ)KDñH +KT γ̂

(46)

and equation (44) is reduced to

V̇ =− k2
1Ẽ2

τE
−KDñ2

H − KT k2
2 γ̂2

nH
(47)

such that V̇ < 0 when the deviation variables are nonzero.
This guarantees that the energy and hydrogen density subsys-
tems are stabilized, and that the tritium fraction γ converges
to γ∗. By making γ = γ∗ and choosing the necessary value
of Paux, the controller guarantees that the system satisfies
condition (25). Once nH = n̄H and E = Ē, we note that T ,
ne, Ze f f , and therefore Prad , are only functions of nα . The
reactivity, being a function of T , is also only a function of
nα . The fusion power (14) is then only a function of nα and
γ . Thus, for any given perturbation in nα , we can find the
value of γ = γ∗ that would satisfy condition (25). For the
equilibrium given in Table II, the value of γ∗ at a range of
values of nα is shown in the top plot of Figure 1. Each value
of nα and γ∗, can then be used to calculate the terms in the
dynamic equation for ñα , equation (20). We then take the
Lyapunov function Vα = 1

2 ñ2
α and calculate for each value of

nα the quantity V̇α = ñα ˙̃nα . In the bottom plot of Figure 1,
we see that for the equilibrium given in Table II, V̇α < 0 at
all physically significant values of nα . This shows that the
controller stabilizes the nα system against any perturbation.
A similar study could be done for other equilibrium points.
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Fig. 2. Evolution of open loop states (blue-solid) compared with equilib-
rium values (red-dashed).

Once nα = n̄α , we see from Figure 1 that we must have
γ∗ = .5, the equilibrium value of γ . Recalling that nH goes
to n̄H , this guarantees that nD and nT are stabilized. We now
have that the states E, nD, nT , and nα are stabilized by the
control laws given by equations (30), (45), and (46).

V. SIMULATION RESULTS

In this section we show the performance of the controller
for the equilibrium point characterized by the values given
in Table II. The simulations shown were all done using the
initial perturbations nH(0) = 0.80n̄H , γ(0) = 0.88γ̄ , nα(0) =
1.20n̄α , and E(0) = 1.20Ē.

In the open loop simulation, the system is initially per-
turbed and the actuators are kept constant at their equilibrium
values. The simulation shows that without active control, a
thermal excursion occurs and the system moves away from
the desired equilibrium. Figure 2 shows the evolution of
the states. Note that the hydrogen density drops, the energy
increases sharply, and the α-particle density rises with the
increased reactivity. This is reflected in Figure 3, which
shows the temperature, density, and β .

In the closed loop simulation, the controller alters the
fueling and heating in order to force the system to the desired
equilibrium. Figure 4 shows the evolution of the average ion
densities and energy during the closed loop simulation while
Figure 5 depicts the evolution of the temperature, density and
β . After a thermal excursion, the states are all successfully
returned to their desired equilibrium values. Figure 6 shows
the time history of the actuators in closed loop. The plot

TABLE II
EQUILIBRIUM POINT

T̄ Temperature 8.2 keV
β̄ Plasma Beta 3%
n̄ Plasma Density 2.14×1020 m−3

n̄H Hydrogen Density 9.63×1019 m−3

γ̄ Tritium Fraction 0.5
n̄α Alpha-particle Density 7.04×1018 m−3

Ē Energy Density 4.21×105 J/m3

S̄D Deuterium Fueling Rate 2.11×1018 m−3 s−1

S̄T Tritium Fueling Rate 2.87×1018 m−3 s−1

P̄aux Auxiliary Power 168 W/m3
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Fig. 3. Evolution of open loop T , n, and β (blue-solid) compared with
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shows how the fuel injection rates and the auxiliary power
work in tandem to control the energy of the system. Note
that ramp rate limits have been imposed on the actuators
during the simulation. The top plot of Figure 7 shows the
time evolution of γ and γ∗. Finally, the bottom plot of Figure
7 shows the time evolution of the plasma heating power P.
Note that once γ = γ∗ = .5 the power goes to its equilibrium
value, as the only solution to (25) is P = P̄.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a nonlinear burn stability controller
capable of rejecting perturbations in the ion species densities
and energy, returning the subsystems to their desired values.
By avoiding linearization, the controller can deal with a
larger set of perturbations than previous linear controllers and
the multi-input scheme allows it to reject perturbations lead-
ing to both thermal excursion and quenching. In addition, the
effectiveness of the controller does not depend on whether
the operating point is an ignition or subignition point.

The DT ion densities are handled separately, allowing for
control of the DT fuel mix, which is exploited to control
thermal excursions. This scheme avoids the need for impurity
injection into the plasma core. The system was simulated
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Fig. 7. Top: Tritium ratio, γ , compared to the value called for by the
controller, γ∗. Bottom: Plasma heating P (blue-solid) compared with the
equilibrium value of plasma heating P̄ (red-dashed).

in open and closed loop to show the need for and the
effectiveness of the proposed controller. The simulations
show that for a given set of initial conditions the open loop
response of the system is unstable and that the controller
forces the system back to the desired equilibrium.

Since the nonlinear controller depends parametrically on
the equilibrium, it can drive the system from one working
point to another, allowing for changes in power and other
parameters without the need for scheduled controllers.

It should be noted that this approach could be used for

any confinement time scalings (10) and is not restricted
to the ITER scaling used here. It should also be noted
that the expressions for confinement used here were derived
by experiment and that these experiments are usually done
under time-stationary states. Thus, it is unclear whether the
empirical confinement time can be safely applied. For larger
excursions from equilibrium (i.e., when (1/Ẽ)(dẼ/dt >
1/τE) the empirical expression for τE may break down.
In this case, an alternate expression should be used, or a
one-dimensional model could be used to incorporate plasma
profile evolution information during transients.

Uncertainty and variation in the confinement time scaling
(15), as well as variation in reaction rate and radiation losses
from the one-dimensional kinetic profile shapes, should be
considered. Available control tools for dealing with uncer-
tainties will be considered. Another approach will be to
modify the nonlinear control design to use available kinetic
profile measurements. Both approaches will be studied with
a one-dimensional burning plasma model and will be a
step towards kinetic profile control in burning plasmas, an
issue with implications for other fusion control problems,
like transport control, confinement improvement, and MHD
stability. The long-term goal is to design model-based con-
trollers for simultaneous kinetic profile regulation and burn
condition control combining all available actuation methods,
including boundary (gas-puffing) and interior (pellet injec-
tion, auxiliary heating) actuators.
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