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Abstract— We investigate active control of fluctuations via

manipulation of flow profiles in a magnetized laboratory plasma

device (HELCAT). Fluctuations and particle transport are mon-

itored by electrostatic probes, and E×B flow profiles controlled

via biased ring electrodes. A non-model-based optimization

algorithm is implemented to seek control inputs that minimize a

cost function related to the fluctuation amplitude. The algorithm

is also able to identify radial poloidal flow profiles associated

with specific levels of RMS fluctuations.

I. INTRODUCTION

Turbulence, and turbulence-driven transport are ubiquitous
in magnetically confined plasmas, where there is an inti-
mate relationship between turbulence, transport, destabilizing
mechanisms like gradients, and stabilizing mechanisms like
flow shear. Though many of the detailed physics of the inter-
relationship between turbulence, transport and flow remain
unclear, there is clear experimental evidence in both fusion
and laboratory plasmas that transport and/or turbulence can
be suppressed or reduced via shaping of plasma flow profiles
(flow shear), e.g., [1], [2]. Several theories were proposed to
explain this phenomenon. Currently, the most accepted cause
for transport mitigation is the reduction and/or stabilization
of turbulence by sheared E ×B flows.

We investigate active control of fluctuations, including
fully developed turbulence and the associated cross-field
particle transport, via manipulation of flow profiles in a mag-
netized laboratory plasma device. Fluctuations and particle
transport are monitored by an array of electrostatic probes,
and E ×B flow profiles controlled via a set of biased con-
centric ring electrodes that terminate the plasma column in
the linear HELCAT (HELicon-CAThode) plasma device [3]
(Fig. 1). The ultimate goal is to establish the feasibility of
using advanced active control algorithms to control cross-
field turbulence-driven particle transport through appropriate
manipulation of radial plasma flow profiles.

We report in this paper the work carried out towards the
solution of an open-loop optimal control problem where
control laws for the bias ring voltages are sought to minimize
a cost functional related to the RMS fluctuation amplitude.
Among many optimization techniques that may be consid-
ered, Extremum Seeking [4] has been chosen to address
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Fig. 1. The HELCAT device at University of New Mexico.

this problem since this technique can be applied directly
to the plant in real-time without the need of using any
dynamic model. This is critical in this application, where
the predictions by available models still differ significantly
from experimental observations.

When implemented both in the experiment and in a predic-
tive simulation code, the extremum seeking algorithm can not
only determine the feedforward or open-loop control signals
that minimize fluctuations but also help to identify those
radial plasma flow profiles associated with low RMS fluctu-
ation amplitudes. The long-term goal is to develop model-
based feedback controllers to regulate the radial plasma flow
profiles around these desired low-RMS-fluctuation profiles.

The paper is organized as follows. The HELCAT plasma
device is described in Section II. The dynamic model im-
plemented in the predictive code used for the tuning of the
extremum seeking algorithm is summarized in Section III.
The basis of the extremum seeking algorithm is introduced in
Section IV. Experimental results are presented in Section V.
The paper is closed by the conclusion and future work
statement in Section VI.

II. THE HELCAT PLASMA DEVICE

The HELCAT (Helicon-Cathode) linear plasma device at
University of New Mexico (UNM) [3], shown in Fig. 1,
consists of a 4 m long, 50 cm diameter cylindrical stainless
steel vacuum chamber in two 2 m sections. Each section has
eight 10 in, twelve 8 in, and fourteen 3.375 in conflat type
ports providing excellent diagnostic access. Currently four
10 in gate valves and seven KF-40 differentially pumped
linear probe feedthroughs provide diagnostic access while
under vacuum. Magnetic fields are produced by a total of



Fig. 2. Schematic of HELCAT feedback control system.

Fig. 3. Left: Copper concentric bias rings mounted on ceramic substrate.
Ring radii are: 3.0, 3.7, 4.4, 5.1, 5.9, and 6.6 cm. Right: Multi-point probe.

thirteen water-cooled solenoidal magnetic coils (steady state
magnetic fields of up to 2.2 kG at 500 A).

The vacuum chamber has a helicon RF source on one
end and a thermionic cathode on the other. Each source can
be operated independently, or both sources can be operated
simultaneously. Using both sources, HELCAT is capable of
operating over a wide range of plasma collisionalities (via
changes in background neutral pressure).

The schematic in Fig. 2 shows a typical hardware con-
figuration used for real-time measurement and control. The
feedback control system makes use of the concentric bias
rings that terminate the plasma column to manipulate the
E×B flow profiles. Fig. 3 (left) shows a realization of a set
of 6 copper rings, spaced ∼7 mm center-to-center, mounted
on a ceramic substrate. HelCat has an extensive and growing
suite of plasma diagnostics. Fig. 3 (right) shows a typical
multi-point or “rake” probe.

III. DYNAMIC MODEL

Based on [5], the transport model under development for
HELCAT follows the one-dimensional (radial, r) evolution
of the axially averaged density, n(r, t), electron temperature,
Te(r, t), ion temperature, Ti(r, t), poloidal flow, Vθ(r, t),
radial electric field, Er(r, t), and RMS fluctuation amplitude,
ε(r, t).

The evolution equation for the density is
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where Dn = Dneo + Dεε2 is the total particle diffusivity,
which includes both neoclassical and turbulent effects. Dneo

and Dε are constants, and S is the helicon/cathode particle
source, which is modeled by a flat-top radial profile (r0 is
the radial width of the source.), i.e.,
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where Pe = SEe0 is the electron power source and Ee0

is the source energy for electrons. The second and third
terms on the right hand side of the equation are related
to diffusive energy transport, while the last term represents
the ion-electron energy transfer. The electron temperature
normalization factor, Te0, the ion temperature normalization
factor, Ti0, the electron thermal diffusivity, DTe and the ion-
electron energy exchange factor, qb, are all constant.

The ion temperature (energy) equation is
3
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where Pi = SEi0 is the ion power source and Ei0 is the
source energy for ions. The second and third terms on the
right hand side of the equation are related to diffusive energy
transport, the fourth term represents the ion-electron energy
transfer, while the last term denotes the charge-exchange
damping. The charge-exchange damping coefficient µ is
constant.

The poloidal, or azimuthal, flow equation is
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where µθ is the coefficient of magnetic damping, αθ is the
coefficient of Reynolds stress flow generation, DVθ is the
poloidal momentum diffusion coefficients, and τθ is an ex-
ternal momentum source. Excluding the external momentum
source effect, the generation of flow is a competition between
the Reynolds stress flow drive and both magnetic damping
and momentum diffusion.

The radial electric field is determined by ion force balance,

Er = −BφVθ + α
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where Bφ is the axial component of the magnetic field
and α is a constant. With the low ion pressure found in
the experiment, poloidal flow is likely to be the dominant
contribution to the radial electric field.

Finally, the evolution of the RMS fluctuation is given by
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where ε ≡
�
< (ñ/n)2 > (ñ is the density fluctuation),

γ is the linear growth rate (a function of the density and
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Fig. 4. Extremum seeking control scheme for discrete-time systems.

temperature profiles), αε1 is the nonlinear energy transfer
coefficient, and αε2 is the shear suppression coefficient. The
last term on the right hand side of the equation represent
the diffusive fluctuation transport. The evolution of the
fluctuation envelope is a competition between the linear drive
and the various attenuation mechanisms: nonlinear transfer,
shear suppression and radial spreading. The growth rate γ
model for HELCAT has been developed based on the theory
of drift wave instabilities in helicon plasmas [6].

The control elements, biased concentric rings in the ex-
periment, are modeled as localized momentum sources in
the transport code (in practice, Gaussian function momentum
sources). The effect will be identical to a source of poloidal
E × B flow in the limit of zero β (i.e., when diamag-
netic flows are negligible). The external poloidal momentum
source from the rings is

τθ(r) =
6�

i=1

τθie
(r−ri)

2

2w2
i (8)

where the input variable τθi denote the source strength, ri
represent the radial location and w(i) denotes the width of
the Gaussian momentum source for the i-th bias ring (i =
1, . . . , 6). The bias ring locations for HELCAT are 3.0 cm,
3.7 cm, 4.4 cm, 5.1 cm, 5.9 cm, 6.6 cm. The plasma radius
is ∼8 cm.

IV. EXTREMUM SEEKING

A. Fundamentals of Extremum Seeking

Extremum seeking optimal control has found applications
in many engineering areas. Extremum seeking is applicable
in situations where there is a nonlinearity in the control
problem, and the nonlinearity has a local minimum or a
maximum. One of the most attractive features of the method
is its non-model-based nature, which places it in a privileged
position in comparison of model-based optimization methods
when the knowledge of the plant is limited. In this work
we use extremum seeking for adaptive tuning of the torque
source τ in numerical simulations or the bias ring voltages
V in the experiment in order to minimize a function related
to the RMS fluctuation.

We change θ (torque source τ in numerical simulations
or bias ring voltages V in the experiment) after each plasma
run, therefore, we employ the discrete time variant of ex-
tremum seeking [4], [7]. The implementation is depicted in

Fig. 4, where z denotes the Z-transform variable. The static
nonlinear block J(θ) is defined in this case as a measure of
the plasma RMS fluctuation. The objective is to minimize J .
The variables θ∗ and J∗ denote respectively the minimizing
values of θ and the minimum value of J , i.e., J∗ = J(θ∗).
The probing signal, a cos(ωk) with a > 0, in Fig. 4, fed
into the plant helps to get a measure of the gradient of the
map J(θ), which is used to drive the parameters θ to the
minimizing values θ∗, and therefore J to its minimum value
J∗. We can summarize the extremum seeking algorithm
shown in Fig. 4 as

χ(k) = −hχ(k − 1) + J(k)− J(k − 1) (9)
ξ(k) = χ(k) cos(ωk − φ) (10)

θ̂(k + 1) = θ̂(k)− γξ(k) (11)
θ(k + 1) = θ̂(k + 1) + a cos(ω(k + 1)). (12)

The high-pass filter, z−1
z+h , is designed as 0 < h < 1, and

the modulation frequency ω is selected such that ω = απ,
0 < |α| < 1, and α is rational. It is important to select ω
large in a qualitative sense when compared with the plant
time scale. The cut-off frequencies of the filters need to
be lower than the frequency ω of the probe signal. These
observations impose constraints and, at the same time, a
relationship between ω and h. As an additional constraint, ω
should not equal any frequency present in the measurement
noise. The perturbation amplitude a needs to be small in
order to make the steady state output error also small. Given
a, the adaptation gain γ of the low pass filter, −γ

z−1 , needs
to be small enough to preserve stability. In this case we are
dealing with a multi-parameter extremum seeking procedure
where each component of the vector θ has its associated a,
γ, h, ω and φ parameters.

For this application we define the cost function as

J =
4�

i=1

kiJi, (13)

where ki are weighting constants and Ji are functions of
the RMS fluctuation ε at different points in space ri (i =
1, . . . , 4) averaged over a predefined period of time, i.e.,

Ji = Ji(ε̄(ri, θ)), (14)

where

ε̄(ri, θ) =
1

t2 − t1

� t2

t1

ε(t, ri, θ)dt. (15)

In each iteration k of the extremum seeking procedure,
or equivalently, in each plasma run, we fix θ(k) (torque
source τ in numerical simulations or bias ring voltages V in
the experiment) and obtain direct or indirect time-averaged
measurements of the RMS fluctuation at four points in space,
i.e., ε̄(ri, θ(k))) for i = 1, . . . , 4. These measurements are
used to compute J(θ(k)) as defined in (13)-(14), which is
in turn fed into the extremum-seeking algorithm (9)-(12) to
compute θ(k + 1).
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Fig. 5. (a) Experimental cost function components, (b) Ring voltages (θ).
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Fig. 6. Ion saturation current evolution before the extremum seeking controller is turned on: (a) tip 3, (b) tip 5, (c) tip 6, (d) tip 8.
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Fig. 7. Ion saturation current evolution after the extremum seeking controller is turned on: (a) tip 3, (b) tip 5, (c) tip 6, (d) tip 8.

V. EXPERIMENTAL PROCEDURE

A. Experimental Setup

Due to the availability of only four power supplies, the
three outer bias rings shown in Fig. 3 (left) have been con-
nected in parallel. Therefore, while the voltages of the three
inner rings can be controlled independently, the voltages of
the three outer rings can be controlled only as a group. The
power suppliers are grounded to the HELCAT chamber and
their output ranges are -20V/+20V. Based on experimental
observations obtained in a trial and error procedure, the
power supplies for the two inner rings have been connected
in series with 12 V car batteries in order to improve the
efficiency of the bias rings in terms of fluctuation mitigation.
The ranges for the two inner power supplies are -8V/+32V.
The tips 3, 5, 6 and 8 of the rake probe shown in Fig. 3 (right)
have been used to simultaneously obtain fluctuation-related
measurements at several points along the plasma radius.

B. Extremum Seeking Setup

The predictive code based on the model (1)-(8) has played
a crucial role in tuning up the parameters of the extremum
seeking algorithm (9)-(12). The code is still under devel-
opment and validation but it already provides qualitative

predictions that match experimental observations. However,
there are two key differences at this moment between the
numerical code and the experiment:

1) Although the numerical code can predict the evolution
of the RMS envelope of the fluctuation ε based on
(7), in the real experiment we can only measure a
signal that is proportional to the fluctuation as it will
be explained below.

2) While in the numerical code the control inputs are
the strengths τθi of the momentum or torque sources
as defined in (8), in the real experiment the control
inputs are the voltages of the bias rings. These voltages
create an electrical field in the radial direction that
by interacting with the axial magnetic field produces
torque in the poloidal or azimuthal direction.

In order to emulate the experimental conditions imposed by
the availability of four power sources, the to-be-optimized
extremum seeking parameters are defined as θ1 = τθ1, θ2 =
τθ2, θ3 = τθ3, θ4 = τθ4 = τθ5 = τθ6 in the simulations. The
cost function (13)-(14) is defined as

Ji(ε̄(ri, θ)) = ε̄(ri, θ) (16)



with t1 = 100 ms and t2 = 250 ms in (15). The measurement
points are chosen as 5 cm, 5.8 cm, 6.2 cm and 7 cm from
the plasma center and the simulation time is set to 250 ms.
The extremum seeking parameters are tuned as h = 0.4,
ωi = 0.065iπ, for i = 1, . . . , 4, and γ = 0.5 based on the
numerical predictions provided by the code (1)-(8).

C. Experimental Results

We focus in this paper on the experimental results obtained
after the implementation in HELCAT of the extremum-
seeking algorithm (9)-(12), which was tuned based on numer-
ical simulations carried out based on the code model (1)-(8).
For the experiment we define θ1 = V1, θ2 = V2, θ3 = V3,
θ4 = V4, where Vi, for i = 1, . . . , 4, represent the voltages on
the bias rings R1, R2, R3 and R4/R5/R6 respectively (R1

denotes the most inner ring while R6 denotes the most outer
ring). The radii ri, for i = 1, . . . , 4, denote the positions of
the third, fifth, sixth and eighth tips of the rake probe.

1) Fluctuation Mitigation: The first extremum-seeking
implementation focused on fluctuation mitigation. The goal
in this case is to reduce the fluctuation level and completely
suppress it if possible. Therefore, we define the cost function
(13)-(14) as

Ji(ε̄(ri, θ)) = Īs (ri, θ) , (17)

where we define

Īs(ri, θ) =
1

t2 − t1

� t2

t1

�
Ĩ2s (t, ri, θ)dt (18)

Ĩs(t, ri, θ) = Is(t, ri, θ)− Ios (ri, θ) (19)

Ios (ri, θ) =
1

t2 − t1

� t2

t1

Is(t, ri, θ)dt. (20)

with t1 = 100 ms and t2 = 250 ms. This time-interval choice
is based on the fact that the transient dampens out after 80 ms
and the experiment can be consider in quasi steady state for
100 ms ≤ t ≤ 250 ms. Is denotes the ion saturation current
signal provided by the rake probe, which is proportional to√
Ten. If we write Te ≈< Te > +T̃e and n ≈< n > +ñ,

where <> denotes average or 0th order contribution and
˜denotes fluctuation or 1st order contribution, and take into
account that the Te fluctuation is very small compared to its
average value, we can conclude that Is ∝

√
< Te > < n >

+
√
< Te >ñ. This implies that Ĩs ∝ ñ, and therefore Īs is

an indirect measure of ε̄.
Fig. 5(a) shows the evolutions of the four components

Ji(ε̄(ri, θ)) = Īs (ri, θ) of the cost function, where ri, for
i = 1, . . . , 4, represent the positions of the tips 3, 5, 6 and
8 of the rake probe, as a function of the extremum seeking
iterations, i.e., as a function of the HELCAT plasma dis-
charges. We can note that after 60 discharges the fluctuation
is driven to a much lower level than that present before
turning on the extremum seeking controller. The evolutions
of the components of the extremum-seeking θ parameter,
which are the voltages provided by the four power amplifiers,
are shown in Fig. 5(b). We can see that the two inner bias
ring voltages are driven by the extremum seeking algorithm
to positive values around 25V, while the voltages of the four

outer bias rings are driven to negative values around -10V.
Fig. 6 shows time evolution of the ion saturation current,
whose variance is proportional to the density fluctuation,
before turning on the extremum-seeking controller at the
four spatial locations defined by the positions of the tips
3, 5, 6 and 8 of the rake probe. By comparing Fig. 6(a)-
(d), it is possible to note that the fluctuation phenomenon
is indeed more severe at the far edge of the plasma. After
the extremum-seeking controller is turned on, Fig. 7 shows
that the fluctuation levels measured by the four tips of the
probe are dramatically reduced. By comparing Fig. 7(a)-(d)
we can note that extremum seeking is effective in mitigating
fluctuation both at the center and at the edge of the plasma.

2) Fluctuation Regulation: The second extremum-seeking
implementation focused on fluctuation regulation. The goal
in this case is not to suppress fluctuation but to regulate it
around a desired level. Therefore, we define the cost function
(13)-(14) as

Ji(ε̄(ri, θ)) =
��

Īs (ri, θ)− Ī∗s (ri)
�2
, (21)

where Ī∗s denotes the desired value of Īs (ri, θ), which is
related to a desire value for ε̄. We set Ī∗s (r1) = 2, Ī∗s (r2) = 4,
Ī∗s (r3) = 3 and Ī∗s (r4) = 3.

Fig. 8(a) shows the evolutions of Īsi = Īs(ri), where ri,
for i = 1, . . . , 4, represent the positions of the tips 3, 5, 6 and
8 of the rake probe, as a function of the extremum seeking
iterations, or equivalently, the HELCAT plasma discharges.
We can note that the extremum seeking controller drives
Īs(r1) →∼ 2, Īs(r2) → 3.5, Īs(r3) → 3.5 and Īs(r4) → 5.
It is important to emphasize that the desired values Ī∗si, for
i = 1, . . . , 4, have been chose arbitrarily and there is no
guarantee that they are indeed achievable. The evolutions of
the components of the extremum-seeking θ parameter, which
are the voltages provided by the four power amplifiers, are
shown in Fig. 8(b). We can see that the two inner bias ring
voltages are driven by the extremum seeking algorithm to
positive values around 20V, while the voltages of the four
outer bias rings are driven to negative values around -10V.
Fig. 9 shows the time evolution of the ion saturation current,
whose variance is proportional to the density fluctuation,
before turning on the extremum-seeking controller at the
four spatial locations defined by the positions of the tips
3, 5, 6 and 8 of the rake probe. After the extremum-seeking
controller is turned on, Fig. 10 shows that the fluctuation
levels measured by the four tips of the probe are reduced but
not suppressed. It is interesting to note the sudden change
in the fluctuation level at around 150 ms. This phenomenon
needs further exploration but we anticipate that it may be
related to the fact that the to-be-minimized cost function
is defined in terms of the time average of the fluctuation.
The extremum seeking controller seems to drive the voltages
to values where this sudden change is possible in order
to achieve the time-averaged level of fluctuation specified
by Ī∗si, for i = 1, . . . , 4. By comparing Fig. 10(a)-(d) we
can note that extremum seeking is effective in regulating
fluctuation at both the center and the edge of the plasma.
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Fig. 8. (a) Experimental time-averaged ion saturation current components, (b) Ring voltages (θ).
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Fig. 9. Ion saturation current evolution before the extremum seeking controller is turned on: (a) tip 3, (b) tip 5, (c) tip 6, (d) tip 8.

0.5 1 1.5 2 2.5 3 3.5
x 104

0

1000

2000

3000

4000

5000

6000

7000

Time (ms)

Is
at

 (A
.U

.)

0.5 1 1.5 2 2.5 3 3.5
x 104

0

2000

4000

6000

8000

10000

Time (ms)

Is
at

 (A
.U

.)

0.5 1 1.5 2 2.5 3 3.5
x 104

0

1000

2000

3000

4000

5000

6000

7000

8000

Time (ms)

Is
at

 (A
.U

.)

0.5 1 1.5 2 2.5 3 3.5
x 104

0

1000

2000

3000

4000

5000

6000

7000

8000

Time (ms)

Is
at

 (A
.U

.)

(a) (b) (c) (d)

Fig. 10. Ion saturation current evolution after the extremum seeking controller is turned on: (a) tip 3, (b) tip 5, (c) tip 6, (d) tip 8.

VI. CONCLUSIONS

A multi-parameter, extremum-seeking, adaptive controller
has been designed for plasma fluctuation mitigation in HEL-
CAT. The controller can successfully regulate the fluctua-
tion level by adaptively tuning the bias ring voltages. The
controller’s non-model-based nature represents an advantage
in this case when compared with other model-based op-
timization techniques due to the challenges arising in the
modeling of the system dynamics. Constraints and competing
objectives can be incorporated into the cost function.

The controller has been successfully tuned using a pre-
dictive simulation code. Motivated by the promising results
obtained in the simulation study, the controller has been
implemented in HELCAT, where it has been proved effective
in controlling the plasma fluctuation. The controller can fully
suppress fluctuation or regulate it around a pre-specified
desired value. This capability of the extremum-seeking con-
troller makes it an extremely useful tool for the study of
the underlying physics of the system. A multi-point probe
capable of simultaneously measuring the poloidal flow at
different points along the plasma radius is currently under
development. This probe will allow for the identification
of the radial poloidal flow profiles associated with specific

levels of RMS fluctuation regulated by the extremum-seeking
controller and will also enable real-time profile reconstruc-
tion and feedback control. This application is a clear example
on how advanced control techniques can be used as tools to
elucidate the physics of laboratory and fusion plasmas.
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