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Abstract— When designing the control loops for tokamaks,
it is important to acknowledge the effects of time delays. An
assumption sometimes made for tokamaks having supercon-
ducting coils is that these extra time delays will not have any
undesirable effects on control. In fact, introducing extradelays
into the axisymmetric control loops of certain superconducting
tokamaks can have significant detrimental consequences. Aside
from qualitative observations, the detrimental effects ofextra
time delays in tokamak control loops are not always well
understood outside the control community. This study exposes
and quantifies the detrimental effects imposed by time delays in
the control loop in superconducting tokamaks, by focusing on
plasma current control and radial position control in a vert ically
stable circular plasma in the KSTAR tokamak. Delays in the
power supplies, data acquisition, and vessel structure aretaken
into account. Extremum-seeking-based optimal tuning of PID
controllers is proposed as a possible method for remediating the
negative effects of time delays. The Nyquist dual locus technique
is employed to assess stability of the optimally tuned closed-loop
system in the presence of time delays.

I. I NTRODUCTION

With the introduction of fully superconducting tokamaks
comes the need to understand how to operate and control
plasmas within these devices, given new constraints imposed
by superconducting PF coils. There is a concern about AC
losses triggering coil quench. The minimum distance of coils
from the plasma is increased due to cryogenic insulation
requirements. There is a greater emphasis on minimizing the
number of control coils due to cost. Passive structures are
often more conductive, due to requirements for increased
structural strength, multiple conducting walls, or intentional
placement of highly conductive passive conductors near the
plasma to reduce the growth rate of instabilities.

All of these changes from present devices tend to change
the plasma shape control properties, several of them nega-
tively because of increased delays in responding to plasma
disturbances. One response to worries about AC losses is
to impose limits on the speed of response of the coils.
(Contrary to sometimes-stated opinion, the natural response
of superconducting coils are not intrinsically slower than
conductive coils of the same cross-section and number of
turns, since the relevant response time is determined by the
coil inductance, which is defined purely by coil geometry.)
Larger distances between coils and plasma mean larger
changes in coil currents are needed to accomplish the same
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Fig. 1. KSTAR tokamak.

change in shape-controlling magnetic field at the plasma.
Fewer control coils means fewer controllable degrees of
freedom, or conversely, less redundancy in controlling the
most critical degrees of freedom. Increased conductivity in
passive structures implies longer delays in magnetic field
penetrating these structures and affecting the plasma.

It is sometimes assumed in the fusion community that,
because superconducting tokamaks already have significant
intrinsic or imposed sources of control delay, introducing
extra delays into the axisymmetric control loops will have
negligible detrimental impact on the plasma control. Since
it is not obvious what constitutes an acceptable amount of
delay, we have begun a study of this issue in an attempt to
provide guidance to designers of external systems (primar-
ily power supplies, control computers, and communication
networks) regarding acceptable pure delays (and also phase
lags) contributed by these systems. This study has been car-
ried out using models of the KSTAR (Korea Superconducting
Tokamak Advanced Research) tokamak, which has recently
begun operation in Daejon, Korea [1]. A cross-section of
the KSTAR Tokamak is shown in Fig. 1. The active control
coils outside of the vacuum vessel are superconducting and
are used to establish the plasma equilibrium.

In this work we consider a vertically stable circular
plasma. Two PID controllers are proposed for plasma cur-
rent and radial position control. Extremum seeking [2] is
proposed for optimal tuning of the PID gains in presence
of time delays. Extremum seeking, which is a nonmodel-
based method, iteratively modifies the arguments of a cost
function (in this application, the PID parameters) so that the
tracking error is minimized [3] (see references therein for
alternative PID tuning methods). The stability analysis of
the closed-loop system is carried out using the dual-locus



diagram (also called Satche diagram) method [4], [5]. The
dual-locus diagram method is an extension or a variant of
the well-known Nyquist diagram, and is also based on the
celebrated argument principle in complex theory. The dual-
locus diagram method is simple, intuitive and quite effective
in assessing stability of time-delay systems when the time
delays appear in only one of the loci.

The paper is organized as follows. Section II describes the
control method for plasma current and radial position regu-
lation. Extremum seeking is briefly introduced in Section III,
where in addition the method for PID tuning is described.
The effects of time delays are discussed in Section IV and the
effectiveness of extremum-seeking optimal PID tuning as a
method to counteract these effects is illustrated in Section V.
Given the optimal PID gains, the stability of the feedback
loops is assessed using the dual locus method in Section VI.
Conclusions and plans for future work are summarized in
Section VII.

II. M ETHODOLOGY

The system composed of plasma, shaping coils, and
passive structure can be described using circuit equations
derived from Faraday’s Law, and radial and vertical force
balance relations for a particular plasma equilibrium. In addi-
tion, rigid radial and vertical displacement of the equilibrium
current distribution is assumed, and a resistive plasma circuit
equation is specified. The result is a circuit equation describ-
ing the linearized response, around a particular plasma equi-
librium, of the conductor-plasma system to voltages applied
to active conductors. The model equations for poloidal field
(PF) coil current, vessel (passive conductor) currents, and
plasma current are respectively

M∗

ccİc + RcIc + M∗

cv İv + M∗

cpİp = Vc

M∗

vv İv + RvIv + M∗

vcİc + M∗

vpİp = 0

M∗

ppİp + RpIp + M∗

pcİc + M∗

pv İv = Vno

(1)

whereIc, Iv, and Ip represent currents in PF coils, vessel,
and plasma, respectively.Vc is the vector of voltages applied
to the PF coils, andVno is the effective voltage applied
to drive plasma current by noninductive sources.Ra, for
a ∈ {c, v, p}, represents the resistance matrix of each one
of the circuits. M∗

ab = Mab + Xab are plasma-modified
mutual inductance, wherea, b ∈ {c, v, p}. Mab is the
usual conductor-to-conductor mutual inductance, andXab

describes a plasma motion-mediated inductance, linearized
around the plasma equilibrium. The plasma response matrix
Xab, representing changes in flux due to plasma motion, are
functions only of the equilibrium current distributioneq and
vacuum magnetic fieldBeq . The Xab matrix is computed
starting with an EFIT equilibrium [6], and added to the
mutual inductanceMab as part of the model construction
process. In contrast to the dynamic equation (1), the mapping
from currents to outputs (for example, diagnostic data suchas
flux loops, magnetic probes, Rogowskii loops) is expressed
explicitly in terms of current deviations from equilibrium
values [7]:

δy = CIc
δIc + CIv

δIv + CIp
δIp (2)
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Fig. 2. The feedback loop for radial and plasma current control.

whereδT = T − Teq, for T ∈ {Ic, Iv, Ip, y}. The subscript
“eq” denotes values at the equilibrium from which the model
(1)–(2) are derived. In the rest of the paper,δ will be omitted
for simplicity, but it will be implicitly assumed that the
output equation is written in terms of deviation variables.
The matricesCIs

, for Is ∈ {Ic, Iv, Ip}, are defined as

CIs
=

∂y

∂Is

+
∂y

∂rc

∂rc

∂Is

+
∂y

∂zc

∂zc

∂Is

, (3)

where the first term on the right hand side is the “direct”
response, e.g., given by Green’s function calculations in
the case of magnetic probes or flux loops. The remaining
terms are responses due to motion of the plasma;rc and
zc denote the radial and vertical positions of the plasma
current centroid, i.e., “center of mass” of the current. It is
common to include disturbance terms describing the response
to variations in kinetic and current profile quantities suchas
poloidal beta (βp), and normalized internal inductance (ℓi)
[8]. However, disturbance terms are neglected in the present
study.

For control design purposes, the linearized plasma re-
sponse model (1)–(3) is written in state space form

ẋ = Ax + Bu, y = Cx + Du (4)

wherex = [IT
c IT

v IT
p ]T , u = [V T

c 0 V T
no]

T . The system ma-
trices areA = −M−1R, B = M−1, C = [CT

Ic
CT

Iv
CT

Ip
]T ,

D = 0, where

M =





M∗

cc M∗

cv M∗

cp

M∗

vc M∗

vv M∗

vp

M∗

pc M∗

pv M∗

pp



 , R =





Rc 0 0
0 Rv 0
0 0 Rp



 ,

andR is a diagonal matrix.
Figure 2 shows the feedback control architecture for

control of the circular plasma. Due to the vertical stability
of the circular plasma the two primary parameters of interest
from a control point of view are the radial position and
plasma current. Each of these parameters is controlled by its
own PID controller.Gr

p and Gr
d stand for the proportional

and derivative gains, respectively, of the radial positionPD
controller (no integral action).Gi

p and Gi
i stand for the

proportional and integral gains, respectively, of the plasma
current PI controller (no derivative action). The radial po-
sition of the plasma is controlled using poloidal field coil
PF7 (PF7U and PF7L connected in series; see Fig. 1). The
plasma current is controlled using the ohmic current vector
Iohm [9]. The Iohm vector of poloidal field currents ideally
produces zero field, or equivalently constant flux, across the
plasma. This constant flux, usually referred to as ohmic flux,
drives the plasma current without affecting the shape (radial



position in our case) of the original equilibrium. The concept
of ohmic flux, which is common one in tokamak plasma
physics, ideally decouples the plasma current and radial
position control loops. Practically, some coupling always
remains, but this coupling is treated as a disturbance by the
“decoupled” control loops.

III. EXTREMUM SEEKING OPTIMAL CONTROL

Extremum seeking control, a popular tool in control appli-
cations in the 1940-50’s, has seen a resurgence in popularity
as a real time optimization tool in different fields of en-
gineering [2]. Extremum seeking is applicable in situations
where there is a nonlinearity in the control problem, and
the nonlinearity has a local minimum or a maximum. The
parameter space can be multidimensional. Here, we use
extremum seeking for iterative optimization of the PID gains
Gr

p, Gr
d, Gi

p andGi
i (θ in Fig. 3) of the radial position PD

controller and the plasma current PI controller to minimize
the tracking error, i.e., to minimize the cost function

J =

√

√

√

√

∫ tf

ti

(

Rref − R

KR

)2

+

(

Iref
p − Ip

KI

)2

dt. (5)

The weighted tracking error in (5) was defined so that “1 cm
of error between the radial positionR and its reference value
Rref gives the same tracking error value as2.5 kA of error
between the plasma currentIp and its referenceIref

p ” (KR =
.01 andKIp

= 2500).
We update the parametersθ (i.e., controller gains) after

each simulated tokamak “discharge.” Thus, we employ the
discrete-time variant of extremum seeking [10]. The im-
plementation is depicted in Figure 3, whereq denotes the
variable of theZ-transform. The high-pass filter is designed
as 0 < h < 1, and the modulation frequencyω is selected
such thatω = απ, 0 < |α| < 1, andα is rational. The static
nonlinear blockJ(θ) represents the tracking error of the
discharge. IfJ has a minimum, its value is denoted byJ∗ and
its argument byθ∗. The objective is to minimizeJ by driving
θ to θ∗. Given the simulated plasma currentIp and radial
position R evolutions for the closed-loop system in Fig. 2,
the output of the nonlinear static map,J(k) = J(θ(k)), for
each simulated dischargek, is obtained by evaluating (5) and
used to computeθ(k+1) according to the extremum seeking
procedure in Fig. 3, or written equivalently as

Jf (k) = −hJf(k − 1) + J(k) − J(k − 1) (6)

ξ(k) = Jf (k)b cos(ωk − φ) (7)

θ̂(k + 1) = θ̂(k) − γξ(k) (8)

θ(k + 1) = θ̂(k + 1) + a cos(ω(k + 1)) . (9)

We are dealing with a multi-parameter extremum seeking
procedure (4 parameters). Thus, we write
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
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
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Fig. 3. Extremum seeking control scheme.

The extremum seeking constants shown in Figure 3 are
written as

a = b = diag ([a1 a2 a3 a4])
γ = diag ([γ1 γ2 γ3 γ4]).

In addition, we denote

cos(ωk)=









cos(ω1k)
cos(ω2k)
cos(ω3k)
cos(ω4k)









, cos(ωk − φ)=









cos(ω1k − φ1)
cos(ω2k − φ2)
cos(ω3k − φ3)
cos(ω4k − φ4)









.

Fig. 4 shows the extremum seeking result for the ideal
case without delay (τ = 0). Fig. 4(b) shows the evolution of
the cost function for200 extremum seeking iterations. It is
possible to note from Fig. 4(c) that althoughθ3 (Gi

p) keeps
evolving, the cost function does not vary much and reaches
a practical minimum very fast in less than20 iterations.
Fig. 4(a) shows acceptable tracking performance by the
controllers when tuned with the optimal gains provided by
the extremum seeking optimization.

IV. T IME DELAY EFFECTS

Fig. 5 shows the effect of time delays in the Plasma
Control System (PCS) when the optimal gains obtained for
the ideal no-time-delay are implemented for the controllers.
By introducing a delay of 1 ms into the PCS we find that
the responses of the radial position and plasma current do
not vary much from the no-time-delay case. However, at
3 ms, the time delay starts showing its effect on the system.
With a delay of 5 ms, both responses have deteriorated. The
radial position response and the plasma current response are
both exhibiting a great deal of oscillation. However, both
parameters are still roughly tracking the reference valueson
average. With a time delay of 7 ms, control is essentially
lost. The plasma current response is incapable of tracking the
reference value over the given time period of 1600 ms. Both
responses become unstable. Studies considering phase lags
in the power supplies and artificially modified vessel element
resistances show similar results. Note that the magnetic field
generated by the induced vessel current will oppose and have
a partial canceling effect on the magnetic field generated by
the poloidal field coil currents. This in turn will cause the
poloidal field to have a slower effect on the plasma current.
Therefore, we can consider varying vessel resistances as a
parameter that causes a type of delay in the control loop.
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Fig. 5. Closed-loop time response with PID gains tuned by extremum seeking (τ = 0): Gr
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(a) τ = 1 ms, (b)τ = 3 ms, (c)τ = 5 ms, (d)τ = 7 ms.
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V. PID OPTIMAL TUNING IN PRESENCE OFDELAYS

.
The detrimental effects of time-delays in the control loops

were discussed in the previous section. In order to remediate
those effects the PID gains can be optimally tuned based on
the estimated time delays. Fig. 6 shows the time responses
of the system for the same values of time delays shown
in Fig. 5. However, in these cases the PID gains were re-
tuned based on the time delay present in the system instead
of keeping the PID gains obtained for the ideal no-delay
case. From this simulation study it is possible to conclude
that extremum-seeking-based optimal tuning of PID gains
arises as an effective method to cope with the time delays.
In addition, and probably most importantly, it is also possible
to note from both time responses (but particularly from the
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plasma current time response) that the tracking quality of the
controllers deteriorates as the time delay increases regardless
of the optimal setting of the PID gains. This implies that in
terms of performance there is a practical limit of time delays
that well-tuned PID controllers can handle. Fig. 7 illustrates
the extremum-seeking optimization procedure for theτ = 1
ms case.

VI. STABILITY ANALYSIS OF THE SYSTEM

To prove the stability of the time-delayed closed-loop
system, we use the dual-locus method. The dual-locus tech-
nique, an extension of the Nyquist diagram technique, was
proposed by Satche [4] and then developed by Smith [5].

Lemma 1: (Argument principle [11]) Suppose that a func-
tion F is meromorphic in a simply connected domainD.
Suppose further thatΓc is a Jordan curve inD, followed
in the positive (anticlockwise) direction, and thatF has no
poles or zeros onΓc. If Z and P denote the number of
the zeros and poles, respectively, ofF in the interior ofΓc,
counted with multiplities, then the variation of the argument
of F (s) along the Jordan curveΓc is 2π(Z − P ) and the
winding number ofF (s) round the point 0, i.e. the number
of timesF (s) winds round the origin, isZ − P .

Both closed-loop transfer functions of our system can be
represented as

G(s)e−τs

1 + G(s)e−τs
(10)

whereG(s) is an stable transfer function. Stability of (10)
has been extensively studied using different approaches
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Fig. 9. Closed-loop time response with PID gains tuned by extremum seeking (τ = 1 ms): Gr
p = 131635, Gr

d
= 0.7355, Gi

p == 0.0264,
Gi

d
= 0.000732. (a) τ = 3 ms, (b)τ = 5 ms, (c)τ = 6 ms, (d)τ = 7 ms.

(see [12], [13] for instance). The characteristic equationof
the closed loop system can be written asF (s) = 0 with
F (s) = eτs + G(s). Let Γc be the Nyquist contour and
thus enclose the entire right half of thes-plane with the
exception of singularities on the imaginary axis. From the
Argument principle, and sinceF (s) has no pole inD (G(s)
is stable andP = 0), the closed-loop system is stable (i.e.,
Z = 0) if and only if the variation of the argument of
F (s) = eτs + G(s) is zero.

To apply this stability criterion a plot ofF (s) is needed,
which requires the addition ofG(s) and eτs. To avoid the
summation of these two frequency-dependent functions, we
plot separatelyG(s) and−eτs (dual-locus). The Nyquist plot
of eτs is always a counterclockwise unit circle starting at the
point −1 + j0 for ω = 0. Fig. 8 shows the dual-locus for
both the radial position and plasma current loops.

Noting that the characteristic equation can be rewritten as
G(s) = −eτs, the stability criterion can be evaluated from
the dual-locus. The existence of an enclosure of the origin
by F (s) (or alternatively of−eτs by G(s)), and therefore
the stability of the system, can be evaluated from the dual-
locus using the difference vector and frequency distributions
techniques [14]. Under the condition thatn > m and
‖am/bn‖ < 1, where m and n denote the degrees of
numerator and denominator ofG(s), andam andbn denote
the leading coefficients of the numerator and denominator,
the stability criterion implies that the closed-loop is stable if
one of the following conditions holds [15]:

1) The equation‖G(jω)‖ = 1 has no positive real roots.
2) The equation‖G(jω)‖ = 1 has one positive real root

atω = ωc, and the inequality−π+τωc < arg[G(jωc)]
holds.

3) The equation‖G(jω)‖ = 1 has two positive real roots
at the frequenciesωc1 andωc2 (ωc1 < ωc2), and

−π + θωc2 < arg[G(jωc2)] (11)

or

1

ωc1

arg[G(jωc1)] + (2k + 1)π <

θ <
1

ωc2

arg[G(jωc2)] + (2k + 1)π
(12)

Herek = 0, 1, 2, ..., p,wherep is the maximal positive integer
that makes the right term larger than the left one. In addition,
the argument functionarg(·) ∈ [−π, π) by convention.

It can be noted from Fig. 8 that the Nyquist plot of
the radial position delay-free loop gain crosses the unity
circle at frequencyωc = 59.682 rad/sec with crossing point
(−0.928,−0.378). Therefore,‖G(jω)‖ = 1 has only one
root, and the stability condition is given by

−π + 59.682τ < arg[G(j 59.682)] ⇒ τ < 0.0064 (13)

Similarly, the Nyquist plot of the plasma current delay-
free loop gain crosses the unit circle at frequenciesωc1 =
1.61×10−10 rad/sec andωc2 = 5.3160 rad/sec with crossing
points (0.00244,−1) and (0.2989,−0.9543) respectively.
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Fig. 8. Dual-locus: (a) R loop, (b) Ip loop. The bottom graph in each
subfigure is a zoom of the top graph.

Therefore,‖G(jω)‖ = 1 has two roots, and the stability
condition is given by

−π + 5.3160τ < arg[G(j 5.3160)] ⇒ τ < 0.3525 (14)

From the above stability conditions, it can be easily con-
cluded that the whole system is stable ifτ < 6.4 ms.

The simulations in Fig. 9 show consistency with the
obtained stability condition (the system is stable ifτ < 6.4
ms). The time delay is increased for the system controlled
with the gains optimally tuned forτ = 1 ms (see Fig. 7),
which were used to obtain the stability condition. The closed-
loop system is reaching the marginal stability condition for
τ = 6 ms and is already unstable forτ = 7 ms.

It is important to emphasize at this point that the partial
decoupling of the radial position and plasma current loops
obtained through the ohmic-flux concept design allows to
assess the stability of the whole system by studying inde-
pendently the stability of the two control loops.

VII. C ONCLUSIONS

In this work we reported on the effect of time delays on the
closed-loop behavior of radial position and plasma current
controllers in the superconducting KSTAR tokamak. Delays

in the plasma control system, lags in the power supplies
and delays produced by the resistance of the vessel were
considered. The PID-based controllers were designed using
the concept of ohmic flux, which guarantees in the ideal case
that the regulation of the plasma current does not affect the
plasma radial position.

Extremum seeking was introduced as an effective method
for optimal tuning of the PID gains in the presence of time-
delays. The simulation studies show that well-tuned PID
controllers can successfully handle significant amounts of
time delay. The dual-locus technique based on the Argument
Principle in complex theory was employed to assess stability
in the presence of time-delays of the overall closed-loop
system controlled by the optimized PIDs.

In Section V we concluded that in terms of performance
there is a practical limit of time delays that well-tuned PID
controllers can handle. Beyond this limit an augmentation of
the control loop is necessary. Our future work includes the
design of robust predictors to handle larger values of time
delays without deterioration of the tracking performance.
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