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Abstract— When designing the control loops for tokamaks, Cryostat
it is important to acknowledge the effects of time delays. An
assumption sometimes made for tokamaks having supercon-

ducting coils is that these extra time delays will not have an
undesirable effects on control. In fact, introducing extradelays
into the axisymmetric control loops of certain superconduting
tokamaks can have significant detrimental consequences. ile
from qualitative observations, the detrimental effects ofextra
time delays in tokamak control loops are not always well
understood outside the control community. This study expass
and quantifies the detrimental effects imposed by time delagy/in
the control loop in superconducting tokamaks, by focusing o
plasma current control and radial position control in a vertically
stable circular plasma in the KSTAR tokamak. Delays in the

Gravity i Solenoid

Support ‘

L preL
PF5L

o000

power supplies, data acquisition, and vessel structure armken L : qu)ncre;eJFloodr y
into account. Extremum-seeking-based optimal tuning of FD
controllers is proposed as a possible method for remediatmthe Fig. 1. KSTAR tokamak.

negative effects of time delays. The Nyquist dual locus teaique ) ) o
is employed to assess stability of the optimally tuned cloddoop ~ change in shape-controlling magnetic field at the plasma.

system in the presence of time delays. Fewer control coils means fewer controllable degrees of
freedom, or conversely, less redundancy in controlling the

I. INTRODUCTION L LT
] ] ) ) most critical degrees of freedom. Increased conductivity i
With the introduction of fully superconducting tokamaksyassive structures implies longer delays in magnetic field

comes the need to understand how to operate and contil,eirating these structures and affecting the plasma.
plasmas within these devices, given new constraints imMpose |1 i sometimes assumed in the fusion community that,
by superconducting PF coils. There is a concern about AQ, .5 ;se superconducting tokamaks already have significant
losses triggering coil quench. The minimum distance ofcoiliyrinsic or imposed sources of control delay, introducing
from the plasma is increased due to cryogenic insulatiofyra delays into the axisymmetric control loops will have
requirements. There is a greater emphasis on minimizing theyjigible detrimental impact on the plasma control. Since
number of control coils due to cost. Passive structures afigis not obvious what constitutes an acceptable amount of
often more conductive, due to requirements for mcreasqﬂamy, we have begun a study of this issue in an attempt to
structural strength, multiple conducting walls, or intengl provide guidance to designers of external systems (primar-
placement of highly conductive passive conductors near the hower supplies, control computers, and communication
plasma to reduce the growth rate of |nstgb|l|t|es. networks) regarding acceptable pure delays (and also phase
All of these changes from present devices tend to changg,s) contributed by these systems. This study has been car-
the plasma shape control properties, several of them neggsq oyt using models of the KSTAR (Korea Superconducting
tively because of increased delays in responding t0 plasm@yamak Advanced Research) tokamak, which has recently
disturbances. One response to worries about AC 10SSeSyjgqn gperation in Daejon, Korea [1]. A cross-section of
to impose limits on the speed of response of the COil§he KSTAR Tokamak is shown in Fig. 1. The active control

(Contrary to sometimes-stated opinion, the natural respongjs outside of the vacuum vessel are superconducting and
of superconducting coils are not intrinsically slower tharn, .o ,sed to establish the plasma equilibrium.
conductive coils of the same cross-section and number Ofln this work we consider a vertically stable circular

turns, since the relevant response time is determined by te,sma. Two PID controllers are proposed for plasma cur-
coil inductance, which is defined purely by coil geometry. ent and radial position control. Extremum seeking [2] is

Larger distances between coils and plasma mean larget,nqseqd for optimal tuning of the PID gains in presence

changes in coil currents are needed to accomplish the sagyeime delays. Extremum seeking, which is a nonmodel-
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diagram (also called Satche diagram) method [4], [5]. L

dual-locus diagram method is an extension or a varie :I—> - |
the well-known Nyquist diagram, and is also based o EE I e e e I
celebrated argument principle in complex theory. The Yy BN —"
locus diagram method is simple, intuitive and quite effg  "e===r ToRamaK o

in assessing stability of time-delay systems when the V peona

delays appear in only one of the loci.

The paper is organized as follows. Section Il describe
control method for plasma current and radial position |
lation. Extremum seeking is briefly introduced in Sectidi
where in addition the method for PID tuning is descri
The effects of time delays are discussed in Section IV ar
effectiveness of extremum-seeking optimal PID tuning
method to counteract these effects is illustrated in Sedfi
Given the optimal PID gains, the stability of the feedl

Fig. 2. The feedback loop for radial and plasma current cantr

wheredT =T — T, for T € {I.,I,,1I,,y}. The subscript
“eq" denotes values at the equilibrium from which the model
(2)—(2) are derived. In the rest of the papewill be omitted

for simplicity, but it will be implicitly assumed that the
output equation is written in terms of deviation variables.
The matrice<C;,, for I, € {I., I,,, I, }, are defined as

Oy Oy Or. Oy 0z

loops is assessed using the dual locus method in Secti Cr. = , ©)
Conclusions and plans for future work are summariz: © Ol Ore 0l 0z 0l
Section VII. where the first term on the right hand side is the “direct”

. METHODOLOGY response, e.g., give_n by Green’s function calculation_s_in
' the case of magnetic probes or flux loops. The remaining
The system composed of plasma, shaping coils, anérms are responses due to motion of the plasmaand
passive structure can be described using circuit equations denote the radial and vertical positions of the plasma
derived from Faraday’s Law, and radial and vertical forcgurrent centroid, i.e., “center of mass” of the current.slt i
balance relations for a particular plasma equilibrium.ddia  common to include disturbance terms describing the regpons
tion, rigid radial and vertical displacement of the equili;n o variations in kinetic and current profile quantities siash
current distribution is assumed, and a resistive plasntai€ir poloidal beta 6,), and normalized internal inductancé)(
equation is specified. The result is a circuit equation descr [g]. However, disturbance terms are neglected in the ptesen
ing the linearized response, around a particular plasma eqytydy.
librium, of the conductor-plasma system to voltages applie For control design purposes, the linearized plasma re-

to active conductors. The model equations for poloidal fieldponse model (1)—(3) is written in state space form
(PF) coil current, vessel (passive conductor) currentd, an

plasma current are respectively &= Az + Bu, y=Cz+ Du (4)
M Do+ Rl + M0, + M3 0, = V. wherez = [I7 IT IT]T, u = [V 0 V,L]7. The system ma-
M, I, + RyI, + M} I.+ M I, = 0 (1) tricesareA=—-M"'R,B=M""', C=[C] C] C}Z]T,
M by + RyL, + My I, + M0, = Vi, D =0, where

wherel., I,, and I, represent currents in PF coils, vessel, M. M, Mg, R. 0 0

and plasma, respectively, is the vector of voltages applied M = | M;. M;, M;, |, R=| 0 R, 0 |,

to the PF coils, and/,, is the effective voltage applied My, Mg, My, 0 0 Ry

to drive plasma current by noninductive sourcés,, for s,qRris a diagonal matrix.

a € {c,v,p}, represents the resistance matrix of each one gjg,re 2 shows the feedback control architecture for
of the circuits. M7, = Map + Xqp are plasma-modified cqnirol of the circular plasma. Due to the vertical stapilit
mutual inductance, where,b € {c,v,p}. M is the o he circular plasma the two primary parameters of interes
usual conductor-to-conductor mutual inductance, 3 from a control point of view are the radial position and
describes a plasma motion-mediated inductance, lin@arizg|asma current. Each of these parameters is controlledsby it
around the plasma equilibrium. The plasma response mati,n PID controller.G” and G, stand for the proportional
Xap, representing changes in flux due to plasma motion, atg,q derivative gains,prespectively, of the radial positRiD
functions only of_the_ equilibrium currentd|_str!but|gg; and  ontroller (no integral action)G; and G! stand for the
vacuum magnetic field3.,. The X,, matrix is computed ,onortional and integral gains, respectively, of the plas
starting with an EFIT equilibrium [6], and added to theg,rrent Pi controller (no derivative action). The radiak po
mutual inductancell,, as part of the model construction gjsion of the plasma is controlled using poloidal field coil
process. In contrast to the dynamic equation (1), the m@ppibE7 (pF7U and PF7L connected in series; see Fig. 1). The
from currents to outputs (for example, diagnostic data ®ch b 135ma current is controlled using the ohmic current vector
flux loops, magnetic probes, Rogowskii loops) is expressed, 191 The 1,,,, vector of poloidal field currents ideally
explicitly in terms of current deviations from equilibrium produces zero field, or equivalently constant flux, acroes th
values [7]: plasma. This constant flux, usually referred to as ohmic flux,
oy = Cr,0l.+ Cp, 01, + C1, 61, (2) drives the plasma current without affecting the shape étadi



position in our case) of the original equilibrium. The copte . .
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of ohmic flux, which is common one in tokamak plasme
physics, ideally decouples the plasma current and radi e(k) l l .](e(k)

s . . ‘ )
position control loops. Practically, some coupling alway:s J(e) ¥
remains, but this coupling is treated as a disturbance by tl
“decoupled” control loops.

Y

A= N A YA |

r o>

=] &) J,E)[g-1
IIl. EXTREMUM SEEKING OPTIMAL CONTROL - ®+

Extremum seeking control, a popular tool in control appli- .
cations in the 1940—950’3, has seF:anpa resurgence in pogrl)JIIDar acos(@k) Mov-Pess peos(ok —¢) Hieh Pass
as a real time optimization tool in different fields of en-
gineering [2]. Extremum seeking is applicable in situation
where there is a nonlinearity in the control problem, an

Fig. 3. Extremum seeking control scheme.

q‘he extremum seeking constants shown in Figure 3 are

the nonlinearity has a local minimum or a maximum. Th?N'
- : ritten as
parameter space can be multidimensional. Here, we use ,
extremum seeking for iterative optimization of the PID gain a = b = diag (a1 a2 a3 a4))

Gr, G4, G and G! (9 in Fig. 3) of the radial position PD v = diag([n 2 vz ).
controller and the plasma current PI controller to minimizgn aqdition, we denote
the tracking error, i.e., to minimize the cost function

cos(w1 k) cos(wrk — 1)
ty ref _ 2 ref 2 ) | cos(wak) ) | cos(wak — ¢2)
J = J/ <7R = R> + <7Ip 7 Ip) dt. (5) cos(wk)= cos(wsk) |’ cos(wh — ¢)= cos(wsk — ¢3)
ti R I cos(wqk) cos(wak — dq)
The weighted tracking error in (5) was defined so thatr¥ Fig. 4 shows the extremum seeking result for the ideal

of error between the radial positidd and its reference value case without delayr = 0). Fig. 4(b) shows the evolution of

R/ gives the same tracking error value a§ kA of error  the cost function foR00 extremum seeking iterations. It is

between the plasma currefjtand its referenc&}*/” (Kr = possible to note from Fig. 4(c) that although (G’) keeps

.01 and K7, = 2500). evolving, the cost function does not vary much and reaches
We update the parametefis(i.e., controller gains) after g practical minimum very fast in less than iterations.

each simulated tokamak “discharge.” Thus, we employ theig. 4(a) shows acceptable tracking performance by the

discrete-time variant of extremum seeking [10]. The imcontrollers when tuned with the optimal gains provided by
plementation is depicted in Figure 3, wheredenotes the the extremum seeking optimization.

variable of theZ-transform. The high-pass filter is designed
as0 < h < 1, and the modulation frequency is selected IV. TIME DELAY EFFECTS

such thaty = am, 0 < |af <1, anda is rational. The static  Fig. 5 shows the effect of time delays in the Plasma
nonlinear blockJ(6) represents the tracking error of thecontrol System (PCS) when the optimal gains obtained for
discharge. It/ has a minimum, its value is denoted By and  the ideal no-time-delay are implemented for the contrsller
its argument by*. The objective is to minimize by driving By introducing a delay of 1 ms into the PCS we find that
0 to 6. Given the simulated plasma curreff and radial the responses of the radial position and plasma current do
position R evolutions for the closed-loop system in Fig. 2,not vary much from the no-time-delay case. However, at
the output of the nonlinear static map(k) = J(6(k)), for 3 ms, the time delay starts showing its effect on the system.
each simulated dischargeis obtained by evaluating (5) and wjith a delay of 5 ms, both responses have deteriorated. The
used to computé(k+1) according to the extremum seekingyadial position response and the plasma current respoese ar
procedure in Fig. 3, or written equivalently as both exhibiting a great deal of oscillation. However, both

parameters are still roughly tracking the reference vatres
Tr (k) gk = 1)+ J(k) = J(k=1) (6) average. With a time delay of 7 ms, control is essentially
) k) = {f(k)bCOS(Wk —9) (™) lost. The plasma current response is incapable of trackiag t
Ok+1) = 0(k)—~&(k) (8) reference value over the given time period of 1600 ms. Both
0(k+1) = O(k+1)+acos(w(k+1)). (9) responses become unstable. Studies considering phase lags

in the power supplies and artificially modified vessel elemen

We are dealing with a multi-parameter extremum seekingsistances show similar results. Note that the magnelit fie
procedure (4 parameters). Thus, we write generated by the induced vessel current will oppose and have
a partial canceling effect on the magnetic field generated by

zlgzg A zlgg ?EZ% the poloidal field coil currents. This in turn will cause the
0(k) = 92(k) , 0(k) = éz o | (k) = 52(k) . poloidal field to have a slower effect on the plasma current.

93 L A3( ) 3 i Therefore, we can consider varying vessel resistances as a

4(k) 04 (k) §a(k) parameter that causes a type of delay in the control loop.
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s that well-tuned PID controllers can handle. Fig. 7 illustea
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0.025 WMW . ms case.

0015 I T T VI. STABILITY ANALYSIS OF THE SYSTEM

© To prove the stability of the time-delayed closed-loop
system, we use the dual-locus method. The dual-locus tech-
Fig. 4. PID optimal tuning by extremum seeking £ 0): 67 = G, =  nique, an extension of the Nyquist diagram technique, was
144960, 63 = G’ = 0.7384, 03 = G = 0.0255,0; = G = 0.0007195. :
(a) Time Eespon(ée, (b) Cost function [dB], (c) Parameters. prole?nSn?; ]l_) y (i?éi:ﬁe[;'t] par?ndcit[i)hlgq 1(1?;/ gll(,l)g[je)gszytf?arpg?u[g(]:-

V. PID OPTIMAL TUNING IN PRESENCE OFDELAYS tion I is meromorphic in a simply connected domaiin
Suppose further thalf. is a Jordan curve iD, followed

The detrimental effects of time-delays in the control loopd the positive (anticlockwise) direction, and théthas no
were discussed in the previous section. In order to remedidiC!eS or zeros of’. If Z and P denote the number of
those effects the PID gains can be optimally tuned based Hie zeros and poles, respectively, fofin the interior ofT,,
the estimated time delays. Fig. 6 shows the time responsgunted with multiplities, then the variation of the argurne
of the system for the same values of time delays showff £(s) along the Jordan curve, is 2r(Z — P) and the
in Fig. 5. However, in these cases the PID gains were rd/inding number off’(s) round the point 0, i.e. the number
tuned based on the time delay present in the system insteXdfimes £'(s) winds round the origin, isZ — P.
of keeping the PID gains obtained for the ideal no-delay Both closed-loop transfer functions of our system can be
case. From this simulation study it is possible to concludeePresented as Gls)e—T5
that extremum-seeking-based optimal tuning of PID gains L
arises as an effective method to cope with the time delays. L+ G(s)e7re
In addition, and probably most importantly, it is also pb&si whereG(s) is an stable transfer function. Stability of (10)
to note from both time responses (but particularly from thbas been extensively studied using different approaches

(10)
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(see [12], [13] for instance). The characteristic equattbn 1) The equation|G(jw)|| = 1 has no positive real roots.

the closed loop system can be written Bés) = 0 with 2) The equatior||G(jw)| = 1 has one positive real root
F(s) = e™ + G(s). Let T'. be the Nyquist contour and atw = w,, and the inequality-m+7w,. < arg|G(jwe)]
thus enclose the entire right half of theplane with the holds.
exception of singularities on the imaginary axis. From the 3) The equatior|G(jw)|| = 1 has two positive real roots
Argument principle, and sincg'(s) has no pole inD (G(s) at the frequencies.; andw.s (w1 < wee), and
is stable andP = 0), the closed-loop system is stable (i.e., ]
Z = 0) if and only if the variation of the argument of =7+ fer < arg[Gjwen)] (11)
F(s) =e™ + G(s) is zero. or

To apply this stability criterion a plot of'(s) is needed, 1
which requires the addition aofi(s) ande™. To avoid the o arg[Gjwe)] + (2k + 1w <
summation of these two frequency-dependent functions, we et 1 (12)
plot separatelys(s) and—e™* (dual-locus). The Nyquist plot 0 < —arg|G(jwe)] + 2k + )7

of ¢ is always a counterclockwise unit circle starting at the 2

point —1 + jO for w = 0. Fig. 8 shows the dual-locus for Herek = 0, 1,2, ..., p,wherep is the maximal positive integer

both the radial position and plasma current loops. that makes the right term larger than the left one. In addljtio
Noting that the characteristic equation can be rewritten 48€ argument functioarg() € [, 7) by convention.
G(s) = —e™, the stability criterion can be evaluated from It can be noted from Fig. 8 that the Nyquist plot of

the dual-locus. The existence of an enclosure of the origiffe radial position delay-free loop gain crosses the unity
by F(s) (or alternatively of—e™ by G(s)), and therefore circle at frequencw,. = 59.682 rad/sec with crossing point
the stability of the system, can be evaluated from the duali—0-928, —0.378). Therefore,|G(jw)|| = 1 has only one
locus using the difference vector and frequency distringi 00t and the stability condition is given by

techniqgues [14]. Under the condition that > m and 7+ 59.6827 < arg[G(j 59.682)] = 7 < 0.0064 (13)
lam/bn]l < 1, where m and n denote the degrees of

numerator and denominator 6f(s), anda,,, andb,, denote Similarly, the Nyquist plot of the plasma current delay-
the leading coefficients of the numerator and denominatdree loop gain crosses the unit circle at frequencigs =

the stability criterion implies that the closed-loop istd&aif  1.61 x 10710 rad/sec and., = 5.3160 rad/sec with crossing
one of the following conditions holds [15]: points (0.00244,—1) and (0.2989, —0.9543) respectively.
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in the plasma control system, lags in the power supplies
and delays produced by the resistance of the vessel were
considered. The PID-based controllers were designed using
the concept of ohmic flux, which guarantees in the ideal case
that the regulation of the plasma current does not affect the
plasma radial position.

Extremum seeking was introduced as an effective method

for optimal tuning of the PID gains in the presence of time-
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delays. The simulation studies show that well-tuned PID
controllers can successfully handle significant amounts of
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Principle in complex theory was employed to assess stabilit
in the presence of time-delays of the overall closed-loop
system controlled by the optimized PIDs.

In Section V we concluded that in terms of performance
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Therefore,||G(jw)|| = 1 has two roots, and the stability

condition is given by (5]
(6]

(7]

—7 +5.31607 < arg[G(j 5.3160)] = 7 < 0.3525 (14)

From the above stability conditions, it can be easily con-
cluded that the whole system is stablerik 6.4 ms.

The simulations in Fig. 9 show consistency with the [8l
obtained stability condition (the system is stable ik 6.4
ms). The time delay is increased for the system controlled
with the gains optimally tuned for = 1 ms (see Fig. 7), [®
which were used to obtain the stability condition. The ctbse
loop system is reaching the marginal stability condition fo[10]
7 =6 ms and is already unstable for= 7 ms.

It is important to emphasize at this point that the partigh 1
decoupling of the radial position and plasma current loops
obtained through the ohmic-flux concept design allows t82
assess the stability of the whole system by studying indgrs
pendently the stability of the two control loops.

VII. CONCLUSIONS [14]

In this work we reported on the effect of time delays on thél5]
closed-loop behavior of radial position and plasma current
controllers in the superconducting KSTAR tokamak. Delays

controllers can handle. Beyond this limit an augmentation o

control loop is necessary. Our future work includes the

design of robust predictors to handle larger values of time
delays without deterioration of the tracking performance.
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