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Abstract— The matching problem for a low energy transport
system in a charged particle accelerator is approached using
the extremum seeking feedback method for non-model-based
adaptive control. The beam dynamics, used only for simulation
purposes, is modeled using the KV (Kapchinsky-Vladimirsky)
envelope equations. Extremum seeking is employed for the lens
adaptive tuning in both the matching and periodic channels.
Numerical simulations illustrate the effectiveness of this ap-
proach.

I. INTRODUCTION

In a particle accelerator, charged particles such as elec-
trons, protons, or heavy ions are accelerated by electro-
magnetic fields to serve as light source (e.g., synchrotron
radiation) or to collide with targets. In the last case, as a
result of the collision many other subatomic particles are
created and detected. From the information collected by the
detectors, properties of the particles and their interactions can
be determined. Accelerators are used for research in high-
energy and nuclear physics, synchrotron radiation, medical
therapies, and some industrial applications. The higher the
energy of the accelerated particles, the more closely the
structure of matter can be probed.

In this work we approach the beam matching problem,
where the beam must be matched to the acceptance ellipse
of an accelerating structure or transport section. Specifically
we consider a fixed-geometry matching section consisting
of six quadrupole lenses, an under-determined system. The
objective of the matching section is to take any arbitrary
initial beam state and “match” it to the acceptance ellipse of
the following section (a periodic section, for instance), i.e.,
any given initial state xini to a prescribed final state xfin,
through the control of the lens strengths in the matching
channel. We also consider that the matching section is
followed by a fixed-geometry periodic section, where initial
and final states are identical (xp). A review of beam transport
including matching was recently presented in [1]. We assume
the channels to be composed of discrete beamline elements,
such as quadrupole lenses, and drifts. These elements are
cascaded along the beam axis, considered the z axis, to form
the matching and periodic channels. The matching channel
configuration is depicted in Figure 1-a. The inputs to the
lenses, labeled θ1, θ2, θ3, θ4, θ5, and θ6 in the figure,
represent the focusing strengths of the lenses and are the
parameters of the matching channel that may be varied. The
periodic channel configuration is depicted in Figure 1-b. The

E. Schuster, N. Torres, and C. Xu are with the Department of Mechanical
Engineering and Mechanics, Lehigh University, 19 Memorial Drive West,
Bethlehem, PA 18015-0385, USA, schuster@lehigh.edu

focusing function in this channel must be symmetric, i.e., the
absolute values of the lens strengths must be identical and
equal to θp. This common lens strength is the parameter of
the periodic channel that may be varied.

Several codes based on model-based optimization tech-
niques are available to find a matching solution off-line.
As a mode of example, in [2] the problem was approached
for the six lenses case, as the one considered in this work,
using local (nonlinear programming) and global (dynamic
programming) methods. The major shortcoming of these
methods is their dependence on the model. The accuracy
of the calculation is limited by the uncertainties associated
with the initial beam conditions, magnet modeling, exact
beam current, emittances, magnet locations, etc. Therefore,
the implementation of the calculated element strengths in
a real experiment does not yield true matching conditions.
Under these circumstances, the “knobs” for the lens strengths
must be adjusted on-line. The success of such a procedure
relies at present completely upon the experience, judgement,
and intuition of the operator. In a previous work [3], one of
the authors showed the effectiveness of extremum seeking as
non-model-based optimization technique to find a matching
solution for a four-quadrupole-lens channel. Due to its non-
model-based nature, extremum seeking is well suited to
overcome the limitations described above for model-based
optimization methods in terms of uncertainty handling. A
hybrid scheme is now envisioned where the optimal lens
strengths are computed off-line using extremum seeking or
another optimization technique, and used as initial conditions
(θ(0)) for an on-line extremum seeking controller. Under this
framework, the extremum seeking algorithm will be playing
the role of a non-model-based adaptive controller, which is
one of its unique characteristics, that ensures a well-matched
beam at the end of the matching channel independently of
uncertainties or changes in the system parameters.

The paper is organized as follows. In Section 2 the control
problem is defined. Section 3 introduces the fundamentals of
extremum seeking. The results of the simulation study are
presented in Section 4. The paper is closed by a summary
in Section 5.

II. PROBLEM DEFINITION

Assuming a continuous, elliptically-symmetric particle
beam, we model its dynamics using the KV coupled-
envelope equations [4]. Let the z coordinate represent the
position along the design trajectory, and thus the xy plane
is the transverse plane for the particle beam. At each z
location, let X(z) and Y (z) represent the semi-axes of the
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Fig. 1. Matching and periodic channels.

beam envelope in the x and y planes, respectively. The KV
equations then appear as

X ′′ − θ(z)X − 2K

X + Y
− ε2X

X3
= 0 (1)

Y ′′ + θ(z)Y − 2K

X + Y
− ε2Y

Y 3
= 0 (2)

where the prime indicates differentiation with respect to z,
that varies from 0 to L (the combined length of both the
matching and the periodic channels) and plays the role of
“time”. K is the beam perveance, εX and εY are the effective
emittances of the beam in the x and y planes, respectively.
The focusing function θ(z), is shown in Figure 2-a, where κ
is a constant, Ld is the drift length, and Lq is the quadropole
lens length. The matching and periodic channel parameters
(lens strengths) must satisfy the following constraints:

|θi| ≤ 50 for i = 1, . . . , 6, 0 ≤ θp ≤ 50,
θj ≥ 0 for j = 1, 3, 5, θk ≤ 0 for k = 2, 4, 6.

(3)

We are given initial conditions for the beam at z = 0,
the transport system’s entrance location. These conditions
characterize the beam coming from the preceding section of
the transport or accelerator system. They may be translated
into initial conditions for the beam envelopes in the x plane
(Xini, X ′

ini) and in the y plane (Yini, Y
′
ini). In matching

systems we are also given desired final conditions, or target
conditions, at specific locations along the axis. For instance,
at z = Lm, the exit location of the matching channel. We
denote this target conditions as (Xtar,X

′
tar) and (Ytar, Y

′
tar).

They are prescribed by the acceptance requirements of the
next section of the transport or accelerator system.

Denoting x = [X X ′ Y Y ′]T , we define

xini =x(0) =




Xini

X ′
ini

Yini

Y ′
ini


 , xfin =x(Lm) =




Xfin

X ′
fin

Yfin

Y ′
fin


 (4)

In addition, we define a target value for x denoted as
xtar = [Xtar X ′

tar Ytar Y ′
tar]

T . Fixed θp = θm
p , the

acceptance requirement for the periodic channel, denoted
xm

p , is easily computed using numerical search algorithms.
Defining, xtar|z=Lm

= xm
p , the matching solution θm

i , for
i = 1, . . . , 6, that makes xfin = xtar|z=Lm

= xm
p , can

be computed off-line using extremum seeking in a simulated
environment or another model-based optimization technique.
Defining θ = [ θ1 θ2 θ3 θ4 θ5 θ6 θp ]T , Figure 2-
b shows the envelopes X and Y for the matched beam as

functions of z for

θm =
[

40 −40 30 −30 25 −25 38
]T

(5)

xini =




0.002887
−0.01239
0.001053
0.01292


 , xm

p =




0.001157
−0.004266

0.001962
0.006098


 . (6)

If θ is kept constant and equal to θm, Figures 3-a,b,c
show how the matching properties are lost when: (1) there
is an actuator fault (20% increase in the strength of the third
quadrupole (θ3), (2) there is a 50% increase for both the
horizontal and vertical emittances, (3) there is a 10% change
in the initial conditions Xini and Yini.

We are interested in developing a controller that can
successfully cope with these changes in operation condi-
tions, preserving the matching properties of the system,
by adaptively tuning the strengths of the lenses in the
matching section (and eventually in the periodic section),
and minimizing a functional that is a figure of the matching
error. The problem is formulated as finite-“time” optimal
adaptive control (0 ≤ z ≤ L), with bang-bang controls of
fixed durations but varying intensities (i.e., with a very coarse
discretization in “time” which results in a highly constrained
waveform for the control θ as it is shown in Figure 2-a, for
a plant that is nonlinear. This is far from being a standard
optimization problem. To add complexity to the problem, we
are seeking robustness against uncertainties of the system for
a successful practical implementation of the control method.

III. EXTREMUM SEEKING

Extremum seeking control, a popular tool in control appli-
cations in the 1940-50’s, has seen a resurgence in popularity
as a real time optimization tool in different fields of en-
gineering [5]. Extremum seeking is applicable in situations
where there is a nonlinearity in the control problem, and
the nonlinearity has a local minimum or a maximum. The
parameter space can be multidimensional. In this paper we
use extremum seeking for adaptive tuning of θ to preserve
good matching, i.e., to minimize the following functional:

J = {k1J1 + k2J2 + k3J3}
1
2 , (7)
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Fig. 2. Focusing function
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Fig. 3. Beam envelopes evolution. (a) nominal, (b) actuator fault, (c) emittance change, (d) initial conditions change.

where k1, k2, k3 are weight constants,

J1 =

7∑
i=1

Mi (8)

Mi = (X(Li) − Xtar)
2 + (Y (Li) − Ytar)

2 for i odd

Mi = (Y (Li) − Xtar)
2 + (X(Li) − Ytar)

2 for i even

J2 =

7∑
i=2

Ni (9)

Ni = (X(Li) − X(L1))
2 + (Y (Li) − Y (L1))

2 for i odd

Ni = (Y (Li) − X(L1))
2 + (X(Li) − Y (L1))

2 for i even

J3 = (X(L1) − Xtar)
2 + (Y (L1) − Ytar)

2, (10)

and Li, for i = 1, . . . , 7, are specific locations along the pe-
riodic channel as it is shown in Figure 2-a. Defining J1 as in
(8) we are asking the controller to make the maximums and
minimums of the periodic oscillation in the periodic channel
equal to prespecified values Xtar and Ytar. Defining J2 as
in (9) we are asking the controller to make all the envelop
maximums equal, and all the envelope minimums equal, but
without specifying values. In this way, when prespecified
values Xtar and Ytar are not achievable, at least we obtain
symmetric periodic oscillations of period 2Ld + 2Lq in the
periodic channel. The cost function component J3 in (10) is
usually used in combination with J2 with appropriate weights
to ask the controller to make the maximums and minimums
of the periodic oscillation achieved by J2 be as close as
possible to prespecified values Xtar and Ytar. We point
out that, since Xtar and Xtar may be given arbitrarily, the

dynamics of the transport channels are described by a system
of nonlinear differential equations, and the lens input applied
through θ is highly constrained in its waveform (Figure 2-a),
there may not exist θ such that perfect matching is achieved
(J = 0). Thus, we try to obtain the best possible approximate
matching (J = minimum).

We change θ after each beam “run.” Thus, we employ
the discrete time variant [6] of extremum seeking. The
implementation is depicted in Figure 4, where q denotes the
variable of the Z-transform. The high-pass filter is designed
as 0 < h < 1, and the modulation frequency ω is selected
such that ω = απ, 0 < |α| < 1, and α is rational. The
static nonlinear block J(θ) corresponds to one “run” of the
system. The objective is to minimize J . If J has a global
minimum its value is denoted by J∗ and its argument by
θ∗. Given X and Y at Li, for i = 1, . . . , 7, the output of
the nonlinear static map, J(k) = J(θ(k)), is then obtained
by evaluating (7) and used to compute θ(k + 1) according
to the extremum seeking procedure in Figure 4, or written
equivalently as

Jf (k) = −hJf (k − 1) + J(k) − J(k − 1) (11)

ξ(k) = Jf (k)b cos(ωk − φ) (12)

θ̂(k + 1) = θ̂(k) − γξ(k) (13)

θ(k + 1) = θ̂(k + 1) + a cos(ω(k + 1)) . (14)

We are dealing with a multi-parameter extremum seeking
procedure (6 or 7 parameters). Thus, we write



Fig. 4. Extremum seeking control scheme

θ(k) =




θ1(k)
θ2(k)
θ3(k)
θ4(k)
θ5(k)
θ6(k)
θ7(k)




, θ̂(k) =




θ̂1(k)
θ̂2(k)
θ̂3(k)
θ̂4(k)
θ̂5(k)
θ̂6(k)
θ̂7(k)




, ξ(k) =




ξ1(k)
ξ2(k)
ξ3(k)
ξ4(k)
ξ5(k)
ξ6(k)
ξ7(k)




.

The extremum seeking constants shown in Figure 4 are
written as

a = b = diag(
[

a1 a2 a3 a4 a5 a6 a7

]
),

γ = diag(
[

γ1 γ2 γ3 γ4 γ5 γ6 γ7

]
).

In addition, we denote

cos(ωk) =




cos(ω1k)
cos(ω2k)
cos(ω3k)
cos(ω4k)
cos(ω5k)
cos(ω6k)
cos(ω7k)




, cos(ωk−φ) =




cos(ω1k − φ1)
cos(ω2k − φ2)
cos(ω3k − φ3)
cos(ω4k − φ4)
cos(ω5k − φ5)
cos(ω6k − φ6)
cos(ω7k − φ7)




.

In a simulation environment, we understand by “run” the
integration of the KV equations. In each iteration of the
extremum seeking procedure, θ(k) is used to compute the
focusing function θ(z), shown in Figure 2, which is in turn
fed into the KV equations (1) and (2). Given xini, the KV
equations are integrated to obtain X(z), Y (z), and finally
X and Y at Li, for i = 1, . . . , 7, which are necessary to
evaluate the cost function, J(k) = J(θ(k)), in (7). In a
real experiment, we understand by “run” one pulse of the
accelerator, i.e., the passage of one beam bunch through the
envelope detectors located at Li, for i = 1, . . . , 7. In this
case, X and Y at Li, for i = 1, . . . , 7, are direct measures.

IV. SIMULATION RESULTS

The physical parameters used in the simulations presented
in this section are K = 2.7932 × 10−6, εX = 6 × 10−6,
εY = 6 × 10−6, κ = 2.6689, Ld = 0.1488, Lq = 0.0610,
and L = 13Ld + 12.5Lq = L7 (as shown in Figure 2).
In addition, the extremum seeking parameters are h = 0.4,
ωi = ωi

base × π, for i = 1, . . . , 6 or 7, where ωbase = 0.95,
γi = 0.1M(ω1)

M(ωi)
, and φi = −φ(ωi), for i = 1, . . . , 6 or 7,

where M(ω) and φ(ω) are respectively the magnitude and
phase of the frequency response of the extremum-seeking

high-pass filter shown in Figure 4. For all the simulations, the
nominal initial condition, xn

ini, of the beam at the entrance
of the channel is that given in (6). In addition, the nominal
values of the quadrupole strengths, θn, are equal to those
given in (5). The initial conditions for the extremum seeking
parameters in all the simulations are equal to the nominal
values, i.e., θ(0) = θn. The target values involved in the
computation of the cost function J in (7) are Xtar =
0.001092 and Ytar = 0.002055. Following we study the
performance of the extremum-seeking adaptive controller to
regulate the system around the nominal profile shown in
Figure 2-b in the presence of faults or changes.

a) Actuator Fault: In this case we study the response
of our controller to a drift in one of the quadrupoles of the
matching channel. We rewrite (14) as

θ(k + 1) =
k

D
d + θ̂(k + 1) + a cos(ω(k + 1)) (15)

where D is the drift rate and the column vector d is used
to correlate such drift with a specific quadrupole. In this
simulation study, presented in Figure 5, D = 10−2 and
d = [ 0 0 1 0 0 0 0 ]T , indicating that the drift
is present in the third quadrupole. In addition, we assume
θp = 38 = cte, i.e., we use the extremum-seeking controller
to tune only the strengths of the six quadrupoles in the
matching channel. The controller successfully sustain the
nominal beam profile shown in Figure 2-b in spite of the
actuator drift. Figure 5-a shows that the cost function (7),
which was defined taking k1 = 1, k2 = 0 and k3 = 0,
is kept at its minimum run after run. This is possible due
to the adaptive tuning of the quadrupole strengths θi, for
i = 1, . . . , 6. Figure 5-b shows how the outputs of the
extremum seeking controller, specially the output associated
with the third quadrupole (θ̂3), are varied to compensate
the drift, and therefore to keep θ in Figure 5-c close to its
nominal value.

b) Initial Conditions Change: In this case we study
the response of our controller to a change in the geometrical
characteristics of the beam at the entrance of the matching
section produced at the 100th run (Xini = 1.1Xn

ini and
Yini = 0.9Y n

ini). This change in initial condition may
be produced by a fault in the preceding section of the
accelerator. In this simulation study, presented in Figure 6,
we again assume θp = 38 = cte, i.e., we use the extremum-
seeking controller to tune only the strengths of the six
quadrupoles in the matching channel. The cost function (7),
whose evolution is shown in Figure 6-a, is also defined
here taking k1 = 1, k2 = 0 and k3 = 0. Figure 6-a
shows through the sudden increase in the value of the cost
function at the 100th run how the matching properties of
the system are transitorily lost. This can be also noted by
comparing Figure 6-b and Figure 6-c, showing the beam
profile before and after the change in initial conditions. The
controller successfully recovers the matching properties after
the transient, as it is shown in Figure 6-e, by adaptively
tuning the strengths of the quadrupoles in the matching
channel (Figure 6-d). Figure 6-f shows the matched beam
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Fig. 5. Actuator drift in the third quadrupole of the matching section.
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Fig. 6. Change of geometrical characteristics of the beam at the entrance of the matching channel at the 100th iteration.

profiles before and after the change in initial conditions.
It is possible to note how the profile within the matching
section is changed by the controller in order to preserve the
characteristics of the beam profile in the periodic section.

c) Multiple Faults or Changes: In this case we consider
simultaneous fault or change occurrences. At the 100th run, a
10% change in the third quadrupole of the matching section,
a 10 % change in the geometrical characteristics of the beam
at the entrance of the matching section (Xini = 1.1Xn

ini

and Yini = 0.9Y n
ini), and a 50% change in the emittance of

the beam produced (εX = 9 × 10−6, εY = 9 × 10−6) are
simulated. The cost function (7), whose evolution is shown
in Figure 7-a, is now defined taking k1 = 0, k2 = 1 and
k3 = 0.1. This selection (k1 = 0, k2 �= 0) is motivated
by the fact that given the properties of the beam (emittance
and perveance), and fixed the initial conditions of the beam
xini, it is not always possible to achieve arbitrary values

of Xtar and Ytar (desired minimum and maximum of the
symmetric beam profile in the periodic channel). Under these
circumstances, the symmetry of the beam is prioritized over
its geometrical measures, as it is manifested in the definition
of the cost function J . Basically, we give to the system one
more degree of freedom to accommodate the change in the
properties of the beam (emittance). In this simulation study,
presented in Figure 7, we do not assume θp = cte, i.e., we
use the extremum-seeking controller to tune not only the
strengths of the six quadrupoles in the matching channel but
also the common strength of the quadrupoles in the matching
section. The goal is to use the extra parameter θ7 = θp in the
extremum seeking controller to make the size of the beam as
close as possible to that defined by Xtar and Ytar (k3 �= 0).
Figure 7-a shows through the sudden increase in the value
of the cost function at the 100th run how the matching
properties of the system are lost transitorily. This can be
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Fig. 7. Multiple faults or changes at the 100th iteration: actuator step in the third quadrupole, change in the initial conditions and emittance of the beam.

also noted by comparing Figure 7-b and Figure 7-c, showing
the beam profile before and after the multiple changes. In
addition, Figure 7-a shows how the system is driven from
a minimum before the changes at the 100th run to another
different minimum after a transient that follows the changes.
By adaptively tuning the strengths of the quadrupoles in
both the matching and the periodic channels, as shown in
Figure 7-d, the controller successfully recovers the matching
properties after the transient (Figure 7-e). However, in this
case only the “shape”, and not the “value”, of the beam
profile can be preserved within the periodic section. We must
emphasize that this is not a constraint of the controller but
of the system itself. Figure 7-f shows the matched beam
profiles before and after the multiple changes. In this case,
not only the profile within the matching section must be
changed by the controller, but also the size of the beam
within the periodic section, in order to guarantee symmetry
of the beam (maximums of X and Y are identical, minimums
of X and Y are identical).

V. CONCLUSIONS

A multi-parameter, extremum-seeking, non-model-based,
adaptive controller has been designed, and successfully tested
in simulations, for the tuning of the lens strengths in a 6-lens
matching channel combined with a periodic channel. Based
on the promising results obtained in the simulation study, it is
anticipated that the scheme can play an important role in real-
time adaptive control of beam envelopes in particle acceler-
ators. Due to its non-model-based nature, which represents
an advantage with respect to other model-based optimization

techniques, the extremum-seeking controller can cope with
model uncertainties and system errors, faults, or changes.

Another unique property of this type of controller is the
flexibility that the designer has to define control goals by
the appropriate definition of the cost function J . Due to this
flexibility, constraints of the system as well as competing
objectives can be introduced into the controller. Present work
by the authors include the development of analytical expres-
sions for sensitivity of the matched beam (against “errors” in
the actuators (quadrupoles)) that can be incorporated into the
extremum-seeking adaptive controller functional in order not
only to converge to a matching solution but also to converge
to the least sensitive one (if the degrees of freedom allow
it).
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