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Abstract— In future burning-plasma tokamaks like ITER,
one of the main problems will be controlling the plasma density
and temperature during long pulses in order to regulate the
fusion power density. Such problem, known as burn control,
requires the development of control algorithms in which mod-
ulation of the deuterium (D) and tritium (T) fueling rates may
play an important role as an actuator. However, unmeasurable
variations of the D-T concentration are expected in the fueling
lines during such long-pulse operation. Therefore, there will
be a need for robust burn controllers that can regulate the
plasma density and temperature in spite of the presence of
uncertainties in the D-T concentration in the fueling lines. In
this work, a nonlinear controller is presented which is able
to regulate the burn condition even in the presence of the
aforementioned uncertainties. The controller performance is
tested in simulations for a burning-plasma ITER-like scenario.

I. INTRODUCTION

A tokamak is a torus-shaped device in which an ionized
gas (plasma) is confined by means of magnetic fields in order
to obtain energy from nuclear fusion reactions. In a nuclear
fusion reaction, two particle nuclei fuse together, forming a
bigger particle nucleus and generating energy in the process.
In ITER, the next experiment in nuclear fusion research,
long-pulse operation (with pulses of up to 1000 s) is planned
with deuterium (D) and tritium (T), two hydrogen isotopes,
as reactants. In order to achieve high-Q operation (where Q
is the ratio of fusion power to auxiliary power), regulation
of the plasma density and temperature around specific values
will be required to sustain the associated burn condition. This
control problem, known as burn control, will be of crucial
importance for the success of ITER.

Traditionally, different actuators have been considered in
the design of burn controllers. Modulation of the auxiliary
power is a simple and efficient way to control the plasma
energy [1]. Such scheme is appropriate as long as neither the
minimum auxiliary power required for current drive purposes
nor the maximum auxiliary power installed in the tokamak
are reached. Modulation of the reactant fueling rates, nor-
mally D and T, is another actuation method considered for
burn control [2]. This is a suitable method to control the
plasma energy as long as disruptive density limits are not
reached. In [3], a robust controller was designed based on
modulation of the fueling rates to deal with uncertainties in
the transport properties of the plasma particles. In [4], a non-
linear controller was proposed by combining both auxiliary
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power and fueling modulation with impurity injection. Also,
an efficient technique to control the plasma energy by means
of modulation of the fueling rates is the so-called isotopic
fuel tailoring [5], in which the tritium fraction (a measure of
the D-T mix) is regulated to modify the fusion power. This
technique may also have other advantages, such as reducing
the tritium inventory of the plasma facing components and
improving the T particle confinement [6].

Although gas puffing is the main fueling technique in
present-day tokamaks, it will not be the primary fueling
technique in ITER because of its poor fueling efficiency
due to the high plasma density and plasma-edge pressure
gradient. Instead, the principal fueling technique will be
pellet injection [7]. It is planned that two pellet injectors
will be available in the initial phase of ITER: a D-T pellet
injector with pellets of mainly T (with up to a 10%D -
90%T concentration), and a D pellet injector with pellets
of 100% D. In conjunction with gas puffing (which will
mainly inject D at the plasma edge), pellet injection can be
employed to supply D and T at different rates. However, T
is a hydrogen isotope which has a high solubility in many
materials, tending to diffuse easily into the plasma facing
components and tritium-processing systems. Due to such
behavior, keeping a fixed D-T concentration in the fueling
injectors will be a challenging problem. The T concentration
may fall well below the nominal 90% in the D-T pellet
injector, and a content up to 15% in T may be found in
the D pellet injector. Moreover, measurements of the D-T
concentrations in the fueling lines may not be available in
real-time or accurate enough for control purposes. Therefore,
controllers that can regulate the plasma temperature and
density in the presence of unknown variations in the D-T
concentrations in the fueling lines need to be developed.

In this work, a nonlinear, model-based controller for burn
control is proposed. The controller synthesis makes use of
modulation of the auxiliary power as the primary actuation
method to regulate the plasma energy, while modulation of
the fueling rates is used as backup method to control the
plasma energy by means of isotopic fueling, or to directly
control the plasma density when no isotopic fueling is
required. In order to find a nonlinear controller that is robust
to uncertainties in the D-T concentration in the fueling lines,
Lyapunov redesign techniques [8] are used.

This paper is organized as follows. In Section II, the model
is introduced. Section III describes the control algorithm. In
Section IV, the controller is tested in simulations. Finally,
some conclusions are presented in Section V.



II. BURNING PLASMA MODEL

The model considers the existence of four different types
of particles in the burning plasma: the reactants (D and T),
the product of the reaction (α particles), and impurities.
This is a simplified, zero-dimensional model, in which all
variables represent volume-averaged magnitudes.

The balance equations for the D and T densities, nD and
nT, are given by

dnD

dt
= −nD

τD
+ Sinj

D − Sα,
dnT

dt
= −nT

τT
+ Sinj

T − Sα, (1)

where the terms −nD
τD

and −nT
τT

represent the transport of D
and T particles out of the plasma core, respectively, τD and τT
are the D and T confinement times, respectively, Sinj

D and Sinj
T

are the controllable D and T injection rates, respectively, and
Sα is the source of α particles arising from nuclear fusion
reactions, which is given by

Sα = nDnT〈σv〉 = γ(1− γ)(nD + nT)2〈σv〉, (2)

where γ is the tritium fraction, defined as γ = nT/(nD +nT),
and 〈σv〉 is the cross section of the D-T reaction, which is
modeled as 〈σv〉 = exp( a1

T r + a2 + a3T + a4T
2 + a5T

3 +
a6T

4), where ai and r are constant scaling parameters [9],
and T is the plasma temperature. The balance equation for
the α-particle density, nα, is given by

dnα
dt

= −nα
τα

+ Sα, (3)

where the term −nατα represents the transport of α particles
out of the plasma core, and τα is the confinement time of
the α particles.

For simplicity, only one type of impurity particle is con-
sidered in this work, although a more complex model with
more types of particles could be used. The time evolution of
the impurity particle density, nI, is given by

dnI

dt
= −nI

τI
+ Ssp

I + Sinj
I , (4)

where the term −nI
τI

represents the transport of impuri-
ties out the plasma core, τI is the confinement time of
the corresponding impurity particle, Ssp

I is the source of
impurities arising from sputtering, and Sinj

I is the source
of impurities injected for control purposes. In this work,
controlled impurity injection is not considered (Sinj

I = 0),
and Ssp

I is modeled as

Ssp
I = f sp

I

(
n

τI
+
dn

dt

)
, (5)

where f sp
I is a constant parameter, and n is the total plasma

density,

n = ni + ne = 3nα + 2nD + 2nT + (1 + ZI)nI, (6)

where ni = nα+nD +nT +nI is the ion density, and ne is the
electron density, which is related to the density of the ions
by the quasi-neutrality condition, ne = 2nα+nD+nT+ZInI,
where ZI is the atomic number of the impurities.

The plasma energy, E, is related to n and T by

E =
3

2
(niTi + neTe) =

3

2
nT, (7)

where it is assumed that the ion temperature and the electron
temperature are the same, Ti = Te = T . The energy balance
in the plasma is given by
dE

dt
= − E

τE
+ P , − E

τE
+ Pα + POhm − Prad + Paux, (8)

where τE is the energy confinement time, P , Pα+POhm−
Prad + Paux is the total plasma power, Pα is the α-particle
heating power, POhm is the ohmic heating power, Prad is the
radiative power, and Paux is the auxiliary power injected to
the plasma. The α-particle power is given by Pα = QαSα,
where Qα = 3.52 MeV. The ohmic power is given by
POhm = 2.8× 10−9(ZeffI

2
p )/(a4T 3/2), where Zeff = (4nα +

nD + nT + Z2
I nI)/ne is the effective atomic number of the

plasma ions, Ip is the plasma current, a is the minor radius
of the tokamak and T has to be given in keV. The radiative
power is composed by three terms, Prad = Pbrem+Pline+Prec,
where Pbrem is the Bremsstrahlung term, Pline is the line
radiation term, and Prec is the recombination term. Each
term is given by Pbrem = 4.8 × 10−37

(∑
i niZ

2
i

)
ne
√
T ,

Pline = 1.8 × 10−38
(∑

i niZ
4
i

)
neT

−1/2, and Prec = 4.1 ×
10−40

(∑
i niZ

6
i

)
neT

−3/2, where the summation in i is done
for all types of particles in the plasma, and T has to be given
in keV [10]. For τE , the IPB98(y,2) scaling is used [11],

τE = HHI
0.93
p B0.15

T n0.41
e19 M

0.19R1.97ε0.58κ0.78
95 (PV )−0.69,

where HH is a constant in this model, Ip has to be given in
MA, BT is the toroidal magnetic field, ne19 is the electron
density in 1019m−3, M = 3γ + 2(1 − γ) is the effective
mass of the plasma, R is major radius of the tokamak, ε =
a/R is the aspect ratio, κ95 is the elongation at the 95%
flux surface/separatrix and V is the plasma volume. It is
assumed that all particle confinement times scale with τE ,
i.e., τα = kατE , τD = kDτE , τT = kTτE , τI = kIτE , where
kα, kD, kT and kI are constant parameters.

In this work, it is considered that the two fueling lines
available in the initial phase of ITER are employed: the D-T
pellet injector with a nominal 10%D - 90%T concentration,
and the D pellet injector with a nominal 100 % D concen-
tration. Their fueling rates are denoted as Sinj

DT-line and Sinj
D-line,

respectively, and are the directly controllable. Sinj
D and Sinj

T
can be expressed as

Sinj
D = (1− γDT-line)S

inj
DT-line + (1− γD-line)S

inj
D-line, (9)

Sinj
T = γDT-lineS

inj
DT-line + γD-lineS

inj
D-line, (10)

where γDT-line ∈ [0, 1] and γD-line ∈ [0, 1] are parameters
that characterize the T concentration in the D-T and D
pellet injectors, respectively. Therefore, in the nominal case,
γDT-line = γnom

DT-line = 0.9 and γD-line = γnom
D-line = 0. However,

as introduced above, unknown variations over time in the
D-T concentrations are expected in the fueling lines. Such
uncertainties are modeled as

γDT-line = γnom
DT-line + δDT-line, γD-line = γnom

D-line + δD-line, (11)



where δDT-line and δD-line are the unknown variations in
the D-T concentration in the D-T and D pellet injectors,
respectively. From its definition, it is found that δDT-line ∈
[−0.9, 0.1] and δD-line ∈ [0, 1], so these uncertainties are
bounded. Using (9), (10) and the definitions for γDT-line and
γD-line, the balance equations (1) can be expressed compactly
in matrix form as[
ṅD
ṅT

]
=

[
−nD
τD
− Sα

−nT
τT
− Sα

]
+

[
1− γnom

DT-line 1− γnom
D-line

γnom
DT-line γnom

D-line

][
Sinj

DT-line
Sinj

D-line

]

+

[
−δDT-line −δD-line
δDT-line δD-line

][
Sinj

DT-line
Sinj

D-line

]
. (12)

III. CONTROL ALGORITHM

A. Control Objective
As introduced above, the burn-control objective is to

operate at working points characterized by particular values
of plasma temperature and density. Those working points are
defined by the equilibrium of the dynamic equations, (3), (4),
(8) and (12), in the nominal case (δDT-line = δD-line = 0),

0 = − n̄α
τ̄α

+ S̄α, 0 = − n̄I

τ̄I
+ f sp

I
n̄

τ̄I
,

0 = − n̄D

τ̄D
− S̄α+(1− γnom

DT-line)S̄
inj
DT-line+(1− γnom

D-line)S̄
inj
D-line,

0 = − n̄T

τ̄T
− S̄α + γnom

DT-lineS̄
inj
DT-line + γnom

D-lineS̄
inj
D-line, (13)

0 = − Ē
τ̄E

+ P̄α + P̄Ohm − P̄rad + P̄aux,

where the bar in all variables indicates equilibrium values.
The set of equations (13) that characterizes the equilibrium
consists of five equations and eight unknowns. Hence, it
is necessary to specify three variables to solve for the
equilibrium. By introducing nα = n̄α + ñα, nD = n̄D + ñD,
nT = n̄T + ñT, nI = n̄I + ñI and E = Ē + Ẽ, where the
tilde in all variables indicates deviations with respect to the
equilibrium values, (3), (4), (8) and (12) are rewritten as

˙̃nα=− n̄α
τα
− ñα
τα

+ Sα, ˙̃nI = − n̄I

τI
− ñI

τI
+ Ssp

I ,

˙̃nD=− n̄D

τD
−ñD

τD
−Sα+(1−γDT-line)S

inj
DT-line+(1−γD-line)S

inj
D-line,

˙̃nT=− n̄T

τT
− ñT

τT
−Sα + γDT-lineS

inj
DT-line + γD-lineS

inj
D-line, (14)

˙̃E=− Ē
τE
− Ẽ

τE
+ Pα + POhm − Prad + Paux,

where d/dt , ˙( ). Driving (14) to zero equates to driving the
system (3), (4), (8) and (12) to a particular equilibrium.

B. Nominal Control Law
In this section, a feedback controller for the nominal

system (δDT-line = δD-line = 0) is designed. This nominal
control law is necessary for the subsequent derivation of the
robust controller via Lyapunov redesign. First, the controller
attempts to regulate Ẽ by modulating Paux. By setting

− Ē
τE

+ P = −KEẼ, (15)

the equation for Ẽ in system (14) is reduced to ˙̃E = −
(

1
τE

+

KE

)
Ẽ, where KE > 0 is a design parameter, so it can be

assured that Ẽ → 0 in time as long as (15) is fulfilled [8].
Therefore, when possible, Paux is set to

P unsat
aux = −KEẼ −

Ē

τ∗E
− Pα − POhm + Prad. (16)

However, it may not be possible to set Paux = P unsat
aux because

there exist saturation limits, which are denoted as Pmax
aux and

Pmin
aux . If P unsat

aux > Pmax
aux , the control algorithm keeps Paux =

Pmax
aux , but it cannot be assured that Ẽ → 0. The only possible

ways to cope with this limitation are either to increase Pmax
aux

or to improve the machine parameters (Ip, BT, etc.). On the
other hand, if P unsat

aux < Pmin
aux , the control algorithm keeps

Paux = Pmin
aux , and again it cannot be assured that Ẽ → 0. In

that case, the controller is designed to use isotopic fueling
to regulate Ẽ. Control laws for Sinj

D and Sinj
T are sought to

drive γ to a particular value, γ∗, such that Ẽ is stabilized.
Such value γ∗ is obtained from (15), which is rewritten as

Ē

τE
+ Pα + Pmin

aux + POhm − Prad =−KEẼ. (17)

Using (2), it is found that Pα = Qαγ(1−γ)(nD +nT)2〈σv〉,
and solving for γ∗ in (17),

γ∗(1−γ∗) =
−KEẼ − Ē/τE − Pmin

aux − POhm + Prad

Qα(nD + nT)2〈σv〉
, (18)

where the least-tritium solution (γ∗ ≤ 0.5) is taken. The
balance equation for γ can be obtained from (1) and the
definition of γ, and it is given by

γ̇ = γ(1− γ)

(
1

τD
− 1

τT

)
+

1

nD + nT

[
− Sα + Sinj

T

− γ
(
− 2Sα + Sinj

D + Sinj
T

)]
. (19)

By setting Sinj
T as

Sinj, unsat
T =

γ[−2Sα +Sinj
D ]

1− γ
+
Sα + λ

1− γ
, (20)

where λ = −(nD + nT)
[
γ(1− γ)/τD + γ2/τT − ξ

]
and ξ is

an auxiliary variable, (19) becomes

γ̇ = − γ

τT
+ ξ. (21)

By defining γ̂ = γ−γ∗, and by taking ξ = γ∗/τT+γ̇∗−Kγ γ̂,
where Kγ > 0 is a design parameter, (21) is reduced to
˙̂γ = −(1/τT +Kγ)γ̂. Therefore, γ̂ → 0. For Sinj

D , by taking

Sinj, unsat
D = Sα +

n̄D

τD
−KDñD, (22)

the ñD equation in (14) is reduced to ˙̃nD = −(1/τD+KD)ñD,
and it can be assured that ñD → 0 in time. Therefore, γ → γ∗

and nD → n̄D, and then nT → γ∗

1−γ∗ n̄D
.
= n∗T. In general,

γ∗ 6= γ̄, so the value n∗T is not the equilibrium value n̄T (but
is a bounded value). Therefore, it is expected that n does
not go to its equilibrium value under isotopic fueling control.
When possible, the controller sets Sinj

D = Sinj, unsat
D and Sinj

T =



Sinj, unsat
T as in (22) and (20). However, the fuel injectors may

reach their saturated values, which are denoted as Sinj,max
D/T

and Sinj,min
D/T , and then it cannot be assured that Ẽ → 0. In

such situation, the controller attempts to regulate Ẽ with the
saturated values Sinj,max

D/T and Sinj,min
D/T only if ne ≤ nG, where

nG = Ip/(πa
2)× 1014m3 is the Greenwald electron density

limit. If ne > nG, isotopic fueling is abandoned.
When isotopic fueling is not used, nT is directly con-

trolled, and (20) is substituted by

Sinj, unsat
T = Sα +

n̄T

τT
−KTñT, (23)

where KT > 0 is a design parameter, so ñT → 0. The
controller sets Sinj

D = Sinj,unsat
D and Sinj

T = Sinj,unsat
T as in

(22) and (23) when possible, and in case of saturation, the
minimum or maximum values are set. Barring situations in
which the fueling injectors are saturated for too long periods
of time, (22) and (23) assure that ñD → 0 and ñT → 0
in time. The nominal control laws for the injection rates
Sinj

DT-line and Sinj
D-line are obtained from (9) and (10) by making

δDT-line = δD-line = 0 and taking into account the control laws
for Sinj

D and Sinj
T , i.e., (22) and (20)/(23).

Finally, it is shown that, for the nominal system, nα → n̄α
and nI → n̄I in time, provided that nD → n̄D, nT → n̄T
and E → Ē. First, by defining n̂I = nI − f sp

I n, (4) can
be rewritten as ˙̂nI + f sp

I ṅ = − n̂I+f
sp
I n

τI
+ Ssp

I , and using (5),
it is found that ˙̂nI = − n̂IτI

. Then, n̂I → 0 (τI > 0), and
nI → f sp

I n. Second, from (3), it can be noted that positive
perturbations in nα (ñα > 0) decrease the first term −nα/τα.
For the second term Sα, it can be noticed that as nD → n̄D
and nT → n̄T, then from (2) it is found that Sα → n̄Dn̄T〈σv〉.
For the range of interest, 〈σv〉 is an increasing function of
T [9]. Taking into account that nI → f sp

I n, (6) yields

lim
nI→f sp

I n
n =

3(n̄α + ñα) + 2(n̄D + n̄T)

1− f sp
I (1 + ZI)

. (24)

It can be noted that ñα > 0 implies an increase in n. Thus,
using E → Ē, equation (7) becomes T = Ē

3
2n

, and it can be
concluded that T decreases, and also that 〈σv〉 decreases.
Then, Sα decreases too. On the other hand, for negative
perturbations in nα (ñα < 0), −nα/τα increases, and n
decreases, T increases, 〈σv〉 increases and Sα increases. (3)
can be rewritten as ˙̃nα = −φαñα, where φα is some positive
function. As φα > 0, the α-particles density subsystem
is exponentially stable. Therefore, it can be concluded that
ñα → 0. To finish the proof, from (24), it can be seen that,
n→ 3n̄α+2(n̄D+n̄T)

1−f sp
I (1+ZI)

= n̄, and finally, that nI → f sp
I n̄ = n̄I.

C. Robust Control Law

In this section, a robust controller for the uncertain system
(δ 6= 0) is designed from the nominal controller using the
Lyapunov redesign technique [8]. The robust control law for
the modulation of Paux is the same as the nominal control
law (16), as there is no uncertainty in the energy subsystem.
To design robust control laws for Sinj

D and Sinj
T , the ñD-ñT

and ñD-γ̂ subsystems are rewritten in matrix form. Using
nD = n̄D + ñD and nT = n̄T + ñT, (12) becomes[

˙̃nD
˙̃nT

]
= f +G

[
u+ δ

]
, (25)

where

f=

[
− n̄D
τD
− ñD

τD
− Sα

− n̄T
τT
− ñT

τT
− Sα

]
, u=

[
Sinj

DT-line
Sinj

D-line

]
, δ=G−1

[
−β
β

]
, (26)

G =

[
1− γnom

DT-line 1− γnom
D-line

γnom
DT-line γnom

D-line

]
, β = [δDT-line δD-line]u. (27)

Using (9), (10), (26) and (27), (19) can be rewritten as ˙̂γ =
(γ−γ2) τT−τD

τDτT
+ (2γ−1)Sα

nDT
+
[−γ
nDT

1−γ
nDT

]
G[u+δ], where nDT =

nD +nT. By combining this expression with the equation for
ñD in (12), it is possible to write[

˙̃nD
˙̂γ

]
= f∗ +G∗[u+ δ], (28)

where

f∗=

[
− n̄D
τD
− ñD

τD
− Sα

(γ − γ2)
τT−τD
τDτT

+
(2γ−1)Sα

nDT

]
, G∗=

[
1− γnom

DT-line 1− γnom
D-line

γnom
DT-line−γ
nDT

γnom
D-line−γ
nDT

]
,

and nT is related to nD and γ by nT = γnD/(1− γ). From
(26) and (27), it is found that

δ = β

[
C
−C

]
, (29)

where C = 1/(γnom
DT-line − γnom

D-line) is a constant that depends
on the nominal system parameters.

1) Robust Control Law for Density Control: For the
nominal ñD-ñT subsystem, i.e., equation (25) with δ = 0,
it has been shown that u = ψn , [Sinj

DT-line, S
inj
D-line]

T ,
given by the solution of (9)-(10), where Sinj

D and Sinj
T are

given by the control laws (22) and (23), is a stabilizing
control law. The Lyapunov function V = 1

2 ñ
2
D + 1

2 ñ
2
T yields

V̇ = −
(

1
τD

+ KD
)
ñ2

D −
(

1
τT

+ KT
)
ñ2

T, which is < 0 for all
ñD, ñT 6= 0. The robust control law for the modulation of
the fueling rates u is expressed as u = ψn + v, where v is
the part to be designed for robustness. First, a bound must
be found for ||δ(ψn + v)||. Taking 2-norm in (29) and using
the definition for β in (27), it is found that

||δ(ψn+v)||2 =
√

2|C|
∣∣∣∣[δDT-line δD-line]ψn+[δDT-line δD-line]v

∣∣∣∣
2

≤
√

2|C|
(∣∣∣∣[δDT-line δD-line]ψn

∣∣∣∣
2
+
∣∣∣∣[δDT-line δD-line]v

∣∣∣∣
2

)
≤
√

2
(
δ2

DT-line + δ2
D-line

)
|C|
(
||ψn||2 + ||v||2

)
, (30)

where the triangular and Cauchy-Schwarz inequalities and
the 2-norm properties have been used. Furthermore, it
is possible to bound

√
2(δ2

DT-line + δ2
D-line) from above by√

2((δmax
DT-line)

2 + (δmax
D-line)

2), where δmax
DT-line and δmax

D-line are the
maximum uncertainties, in absolute value, in the D-T con-
centrations of the pellet injectors. Then, it is possible to write

||δ(ψn + v)||2 ≤ κ0

(
||ψn||2 + ||v||2

)
, (31)

where κ0 =
√

2
(
(δmax

DT-line)
2 + (δmax

D-line)
2
)
|C|. If v is taken as

v = −κ0||ψn||2
1− κ0

w

||w||2
, (32)



where wT = [ ∂V∂ñD

∂V
∂ñT

]G, then the closed-loop system is
robustly stable [8]. The control law for u is given by

u = ψn −
κ0||ψn||2
1− κ0

w

||w||2
. (33)

However, it can be noted that (33) is not defined at ñD
= ñT = 0. To avoid that problem, the control law (33) is
slightly modified to make it continuous. By following a
similar approach to the one in [8], u is taken as

u = ψn −
κ0||ψn||2
1− κ0

w

||w||2
, (34)

if κ0||ψn||2||w||2 ≥ ε, and

u = ψn −
(
κ0||ψn||2
1− κ0

)2
w

ε
, (35)

if κ0||ψn||2||w||2 < ε, where ε > 0 is a design parameter
that is small. The modified laws (34) and (35) do not assure
that ñD → 0 and ñT → 0 in time, but guarantee that |ñD|
and |ñT| are bounded by class K functions of ε [8].

2) Robust Control Law for Isotopic Fueling: For the
nominal ñD-γ̂ subsystem, i.e., equation (28) with δ = 0, it
has been shown that u = ψγ , [Sinj

DT-line, S
inj
D-line]

T , given
by the solution of (9)-(10) where Sinj

D and Sinj
T are given

by the control laws (22) and (20), is a stabilizing control
law. The Lyapunov function V ∗ = 1

2 ñ
2
D + 1

2 γ̂
2 yields

V̇ ∗ = −
(

1
τD

+ KD
)
ñ2

D −
(

1
τT

+ Kγ

)
γ̂2, which is < 0 for

all ñD, γ̂ 6= 0. Then, a robust control law with a shape given
by u = ψγ + v∗ is sought in this case. The bound for δ is
given by (31) where ψn is substituted by ψγ . Therefore, by
taking

v∗ = −κ0||ψγ ||2
1− κ0

w∗

||w∗||2
, (36)

where w∗T = [∂V
∗

∂ñD

∂V ∗

∂γ̂ ]G∗, a robust control law for isotopic
fueling control is obtained which assures stability of the
closed-loop system. Again, (36) is not defined at ñD = γ̂
= 0, and a continuous, modified version is used instead. The
modified control law for u is given by

u = ψγ −
κ0||ψγ ||2
1− κ0

w∗

||w∗||2
, (37)

if κ0||ψγ ||2||w∗||2 ≥ ε∗, and by

u = ψγ −
(
κ0||ψγ ||2
1− κ0

)2
w∗

ε∗
, (38)

if κ0||ψγ ||2||w∗||2 < ε∗, where ε∗ > 0 is again a small
constant. The modified laws (37) and (38) guarantee that
|ñD| and |γ̂| are bounded by class K functions of ε∗ [8].

Finally, it can be concluded that |ñα| and |ñI| are bounded
by class K functions of ε or ε∗ provided that |ñD| and |ñT| are
also bounded by class K functions of ε or ε∗, and E → Ē.
Since it cannot be assured that ñD → 0 and ñT → 0 in time,
(24) becomes

lim
nI→f sp

I n
n=

3(n̄α + ñα) + 2(n̄D + n̄T) + 2(ñD + ñT)

1− f sp
I (1 + ZI)

. (39)

The proof for the density control case starts by assuming that
if the robust control law keeps |ñD| < c(ε) and |ñT| < c(ε),
then initially |ñα| > 4

3c(ε), for some class K function c(ε).
Under such assumption, an increase in ñα implies an increase
in n, and a decrease ñα implies a decrease in n, because
regardless of how ñα influences ñD and ñT, the bound
imposed through c(ε) implies that ñD and ñT can never
compensate the variations in n produced by ñα. Therefore,
it can be concluded that 〈σv〉 decreases if ñα increases, and
〈σv〉 increases if ñα decreases, when |ñα| > 4

3c(ε). For Sα,
it is found that Sα = (n̄Dn̄T + ñDn̄T + n̄DñT + ñDñT)〈σv〉 ≤
(n̄Dn̄T+|ñD|n̄T+n̄D|ñT|+|ñDñT|)〈σv〉 = (n̄Dn̄T+b(ε))〈σv〉,
where b(ε) = n̄Dc(ε) + c(ε)n̄T + c2(ε) > 0 is a class K
function of ε because c(ε) is a class K function, and n̄D > 0
and n̄T > 0. As the first term in (3), −nα/τα, varies with
ñα in the same way as in the proof for the nominal control
law, it is possible to write ˙̃nα ≤ −

(
φα + b′(ε)

)
ñα, where

−b′(ε)ñα = b(ε)〈σv〉 > 0 is also a class K function of ε
because 〈σv〉 > 0. Hence, it is possible to conclude that
ñα → 0 only while |ñα| > 4

3c(ε). After some time, |ñα|
decreases in such a way that |ñα| = 4

3c(ε) is reached, and
then ñα may evolve in two different ways. First, it could
happen that ñα decreased and remained below |ñα| ≤ 4

3c(ε).
On the other hand, it could happen that |ñα| grew until
|ñα| > 4

3c(ε) again, but ñα cannot grow without a limit; at
some point it would start decreasing again. This means that
it is always possible to find a class K function d(ε) > 4

3c(ε)
that bounds |ñα|. To finish this proof, from (39) it can be seen
that n → n̄ + 3ñα+2(ñD+ñT)

1−f sp
I (1+ZI)

≤ n̄ + 3d(ε)+4c(ε)
1−f sp

I (1+ZI)
, and finally,

nI → f sp
I n ≤ f sp

I (n̄+ 3d(ε)+4c(ε)
1−f sp

I (1+ZI)
) = n̄I + f sp

I ( 3d(ε)+4c(ε)
1−f sp

I (1+ZI)
),

so ñI is also bounded by a class K function of ε. The proof
for the isotopic fueling case follows the same arguments.

IV. SIMULATION STUDY

In this section, the controller is tested in simulations for
an ITER-like scenario [11]. The machine parameters are Ip
= 15 MA, BT = 5.3 T, R = 6.2 m, a = 2 m, κ95 = 1.7 and V
= 837 m3. The actuation limits are Pmax

aux = 73/V MW m−3,
Pmin

aux = 39/V MW m−3, Sinj,min
D/T = 0, Sinj,max

D/T = 3×1019 m−3

s−1, Ṡmax
D/T = 3×1019 m−3 s−2. The confinement parameters

are HH = 1.1, kα = 5 and kD = kT = 2.5. As discussed in
Section II, the only impurity considered is Carbon (ZI = 6)
with kI = 10 and fI = 0.01. In this simulation study, the
controller attempts to regulate the system around a nominal
equilibrium point defined by T̄ = 12 keV, γ̄ = 0.4 and β̄N
= 1.5, where βN , 100 4µ0Ea

3IpBT
(Ip must be given in MA

and µ0 is the vacuum magnetic permeability). The system
starts from a perturbed initial condition of +5% in E. Also,
variations in γDT-line and γD-line are introduced.

Fig. 1 shows the time evolution for T , βN, γ, nD and nT
in open loop, in closed loop under the nominal laws, and in
closed loop under the robust laws, together with the varia-
tions introduced in γDT-line and γD-line. Fig. 2 shows the inputs
to the system, Sinj

D , Sinj
T , Paux. The controller determines that

isotopic fueling is required to reject the perturbation in E at
the beginning of the closed-loop simulations until about t ≈
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Fig. 1. Time evolution for (a) temperature T , (b) βN, (c) tritium fraction γ, (d) γD-line and γDT-line, (e) deuterium density nD, and (f) tritium density nT.
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Fig. 2. Time evolution for (a) deuterium injection rate Sinj
D , (b) tritium injection rate Sinj

T and (c) auxiliary power Paux.

5 s. It can be seen that while in open loop the system evolves
to a different equilibrium point, both the nominal and robust
control laws drive T and βN close to their equilibrium values,
although the robust control law shows a faster response.
However, the nominal control law cannot drive nD, nT, γ,
Sinj

D , Sinj
T and Paux as close to their equilibrium values as

driven by the robust control law. In the case of the robust
control law, it can be seen that the control algorithm is
“smart” enough to compensate for the unknown uncertainties
and reach the nominal equilibrium.

V. CONCLUSIONS

A nonlinear-robust burn-controller has been proposed to
stabilize the burn condition even in the presence of un-
certainties that will most likely be found in the D-T fu-
eling system in ITER. The model-based character of the
robust controller enables a possible extension to different
scenarios including recycling effects and multiple sources of
impurities. This nonlinear controller is capable of rejecting
large perturbations and switching between distant working
points even in the presence of parametric uncertainties when
other linear robust-control approaches may fail. Moreover,
the controller synthesis is independent of the machine and
could be extended to other tokamaks beyond ITER.
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