
Toroidal Rotation Profile Control for the DIII-D Tokamak

William Wehner, Justin Barton, and Eugenio Schuster

Abstract— A model-based control approach for the combined
regulation of the plasma toroidal angular rotation profile and
stored energy for the DIII-D tokamak is proposed in this work.
We consider, a first-principles-driven (FPD), control-oriented
model of the toroidal rotation profile evolution which incorpo-
rates scenario-specific models of the momentum sources. Avail-
able rotation control mechanisms include the non-axisymmetric
field coils, which provide rotation damping, and the neutral
beam injectors (NBI). The plasma stored energy is regulated
by the total injected auxiliary power. Optimal state feedback
control with integral action is used to regulate the profile around
a target while rejecting disturbances. The controller is designed
to be robust against uncertainties in the anomalous momentum
diffusivity term.

I. INTRODUCTION

To initiate a fusion reaction on earth, temperatures on
the order of 107 � 109 K are required to overcome the
Coulomb repulsion between like-charged nuclei. The con-
ventional fusion plasma, i.e. a hot gas of hydrogen ions
and electrons, must be confined by magnetic fields because
the high temperatures required would otherwise melt the
confining structure. The motion of ionized particles are tied
to the magnetic field lines by the Lorentz force. Therefore,
to contain the plasma, a common solution is to close the
magnetic field lines in on themselves, forming a torus. When
the magnetic field is configured such that the field lines
follow a helical path through the torus, the confinement
device is called a tokamak. Following any magnetic field
line a number of times around the torus maps out a closed
flux tube, a so called magnetic-flux surface (Fig. 1) [1].

In a tokamak, each individual particle has its own velocity.
The net sum of velocities of a particle species, hydrogen
ions for example, is the fluid velocity of that species. The
fluid velocity can be separated into components parallel
and perpendicular to the flux surfaces. Fluid velocity per-
pendicular to a flux surface is called convection, and fluid
velocity parallel to the flux surface is called rotation [2]. The
toroidal shape of a tokamak produces strong poloidal rotation
damping [3]. Thus, we consider the toroidal component, V�,
or the angular frequency ⌦� = V�/R, where R is the plasma
major radius (Fig. 1).

It is generally accepted that plasma rotation can contribute
to both stability and confinement in tokamak plasmas. The
confinement in a tokamak is governed by the radial transport
of energy from the plasma center to the plasma edge. A
large part of this transport is driven by turbulence, which

This work was supported in part by the U.S. Department of Energy
(DE-SC0010661). W. Wehner (wehner@lehigh.edu), J. Barton, and
E. Schuster are with the Department of Mechanical Engineering and
Mechanics, Lehigh University, Bethlehem, PA 18015, USA.

is substantially reduced by rotational shear. Plasma toroidal
rotation, or its shear, has also been recognized as a stabilizing
mechanism for deleterious magnetohydrodynamic (MHD)
instabilities such as the neoclassical tearing mode (NTM) [4]
and the resistive wall mode (RWM) [5], [6].

NBI is the dominant source of momentum (and therefore
rotation) in present-day tokamaks [7]. NBI consists of in-
jecting beams of highly energetic neutral particles into the
plasma, heating the plasma through collisions, and naturally
transferring momentum. The NBI system at DIII-D [8]
consists of eight beam-lines, each of which can inject a
maximum of 2.5 MW of power into the plasma. Four NBI are
configured to inject in the co-current direction (in the same
direction as the plasma current) aligned with the magnetic
axis, two beams are configured to drive co-current with
alignment off-axis, and the last two beams are configured
to inject counter-current (opposite to the plasma current
direction) with on-axis alignment. The configuration of each
beam type is shown in Fig. 1.

Ambient or purposely imposed non-axisymmetric mag-
netic fields break down the perfect toroidal symmetry of the
containing magnetic field. The toroidal asymmetry leads to
a radial current across the plasma which creates an E ⇥ B
force in the toroidal direction by interacting with the poloidal
magnetic field [9]. Both resonant and non-resonant magnetic
field perturbations can affect plasma rotation. However, in
this work, we consider only non-resonant magnetic fields
(NRMF) since they dominate the impact on rotation [6].
Recent experiments have observed that static NRMF fields
tend to drag the rotation to a negative offset [10].

In addition to the NBI and NRMF torque sources, six
radio-frequency (RF) wave generators are available to inject
energy into the plasma. The RF waves resonate with the
gyro-kinetic orbit of the electrons, heating the plasma by an
effect known as electron cyclotron resonant heating (ECRH).

In previous work [11], simultaneous control of the bulk
rotation and stored energy was considered. In this work,
we extend the modeling and control design to consider
the entire rotation profile. We focus on high confinement
(H-mode) advanced tokamak (AT) plasma scenarios, those
characterized by a transport barrier just inside the plasma
boundary [12]. The model structure is described in Section II,
details of the model order reduction using the finite ele-
ment method and the modeling of the uncertain momentum
diffusivity are given in Section III, model-based control
design for simultaneous regulation of the rotation and stored
energy is performed in Section IV, robust stability analysis is
carried out in Section V, and, finally, the effectiveness of the
controller is examined in Section VI via a simulation study.



Fig. 1. Tokamak toroidal geometry with toroidal (B�) and poloidal (B✓)
field components and toroidal (�̂) and poloidal (✓̂) directions indicated. The
plasma current, Ip, is the primary source of the poloidal field. Also shown
are the configurations of various neutral beam injectors relative to the plasma
current direction. From the indicated direction of V�, it is apparent that the
co-current NBI drive rotation and the counter-current NBI slow rotation.

II. MODELING THE TOROIDAL ANGULAR ROTATION

As a spatial coordinate, this work makes use of the mean
effective minor radius, ⇢. It can be expressed in terms of
the toroidal magnetic flux, �, and the toroidal field strength
at the plasma center, B�,0, i.e. ⇡B�,0⇢

2 = �. Normalized
⇢, denoted by ⇢̂, is defined as ⇢/⇢b, where ⇢b is the value
of ⇢ at the last closed magnetic flux surface. To model the
rotation profile evolution we make the following simplifying
assumptions: i) the angular momentum associated with the
electrons is negligible, ii) the plasma shape is fixed, iii) the
plasma ions can be modeled as a single fluid species, and
iv) the momentum transport is purely diffusive. With these
assumptions the evolution of toroidal angular momentum,
P� = minihR2i⌦� reduces to [13]
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where mi and ni, are the single fluid ion mass and ion
density, �� is the effective angular momentum diffusivity
coefficient, ⌘(·) represents the local torque density from
NBI and NRMF sources, the operator h·i stands for flux
surface average, R is the major radius of the plasma (see
Fig. 1), and Ĥ is a spatial geometric factor specific to the
magnetic configuration in the DIII-D tokamak. The boundary
conditions are determined from symmetry at the plasma
center and an assumed no slip condition1 at the plasma edge,

@⌦�/@⇢̂(0, t) = 0, ⌦�(1, t) = 0. (2)

Scenario-specific empirical models of the ion density and
temperature profiles, and torque sources are used to obtain
a control-oriented model of the toroidal rotation profile
evolution.

1) Ion Density Modeling: Assuming rotation control is
limited to the H-mode regime, the control action employed
to regulate the line-averaged ion density can be fairly ap-
proximated as only weakly affecting the radial distribution

1The rotation at the edge is negligible compared to the bulk rotation for
typical H-mode, NBI heated plasmas.

of the ions. Therefore, the ion density ni(⇢̂, t) is modeled as

ni(⇢̂, t) = nprof
i (⇢̂)n̄i(t), (3)

where nprof
i (⇢̂) is a reference profile, and n̄i is the line

averaged density.
2) Ion Temperature Modeling: The slowly evolving ion

temperature profile evolution can be modeled according to
the scaling law [14]

Ti(⇢̂, t) = kprof
Ti
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T prof
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p
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where T prof
i (⇢̂) is a reference ion temperature profile, Ip(t) is

the total plasma current, Ptot(t) is the total power absorbed
by the plasma, and kprof

Ti
(⇢̂) is a constant scaling profile. The

total absorbed power is equal to the auxiliary power injected
into the plasma by NBI and ECRH, Paux =

PnNB
⇠ PNB,⇠ +

PEC, plus the power from the ohmic coil, Pohm, minus the
radiative power, Prad. The ohmic and radiative powers are
functions of the poloidal flux and electron temperature and
density for which mature control-oriented models have been
developed [15].

3) NBI Torque: For the torque density deposited by each
neutral beam line we propose the scaling law,

⌘NB,⇠(⇢̂, t) = kprof
NB,⇠(⇢̂)⌘

prof
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where PNB,⇠(t) is the power for each neutral beam line,
⌘prof

NB,⇠(⇢̂) is the torque density reference profile for each
beam, and kprof

NB,⇠(⇢̂) is a constant scaling profile. The scalings
�n = �1.1 and �T = 0.1 are determined by a linear
regression fit to data based on DIII-D shot 147634. The
individual beam lines are labeled according to their orien-
tation with the plasma (30L, 30R, 150L, 150R, 210L, 210R,
330L, 330R). Of these, 30L and 30R are used for diagnostics
and, therefore, not considered available for rotation control.
Throughout the paper, the label ⇠ = 1, . . . , nNB is used to
index the beam lines: ⇠ = 1 refers to 30L, ⇠ = 2 refers to
30R, etc.

4) NRMF Torque: The NRMF torque density is depen-
dent on the collisionality regime of the plasma [16], thus
dependent on temperature and density,
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(6)

where INRMF(t) is the current in the perturbation field coils,
⌦⇤

�(⇢̂) is an offset rotation, !E(⇢̂) is the toroidal component
of the E ⇥ B drift velocity, ⌘prof

NR (⇢̂) is a reference profile,
kprof

NR (⇢̂) is a constant scaling profile, and the scalings are
↵n = 3.6, ↵T = 2.6, and ↵! = �0.6 [17].

The parameters hR2i(⇢̂), hR2(r⇢̂)2i(⇢̂), and Ĥ(⇢̂) do not
change significantly during the plasma current flattop phase
of a discharge, thus we elect to approximate them as fixed
spatial profiles. The profiles are obtained from a TRANSP
simulation of DIII-D shot 147634. Modeling of the effective
diffusivity term, ��, which is partly composed of turbulent



effects, is not considered in this work. Instead, we select a
constant nominal profile shape based on the time average of
the measured diffusivity from DIII-D shot 147634 as shown
in Fig. 2(c). In the control development sections that follow,
variations of �� from the nominal profile will be modeled
as an uncertainty.

5) Plasma Stored Energy: The volume averaged plasma
stored energy balance is given by

dE/dt = �E/⌧E + Ptot(t), (7)

where ⌧E is a the global energy confinement time. The
IPB98(y, 2) scaling law ([18]) has been adopted to model
energy confinement time scaling.

III. MODEL ORDER REDUCTION

A. Toroidal Rotation Evolution: Control Form

To simplify the control development, the rotation evolution
model (1) is combined with the scenario specific models for
density (3), temperature (4), and momentum sources (5)-(6)
and rewritten in the form
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where the functions f(·)(⇢̂) incorporate constant profile
shapes and u(·)(t) are a set of nonlinear input functions,
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B. Discretization by Finite Element Method

The infinite-dimensional model (8) in ⇢̂ is transformed into
a finite-dimensional model using the finite-element method.
First, the rotation and diffusivity term are approximated by

⌦�(⇢̂, t) ⇡
l!X

k=1

!k(t)�k(⇢̂), ��(⇢̂, t) ⇡
l�X
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�↵'↵(⇢̂), (10)

where the basis {�k | k = 1, 2, . . . , l!}, is chosen as a set of
cubic splines (Fig. 2(a)) on a finite support that satisfy the
boundary conditions (2). The basis {'↵ | ↵ = 1, 2, . . . , l�}
is obtained by the proper orthogonal decomposition (POD)
method [19]. The basis obtained for �� based on DIII-D shot
147634 is shown in Fig. 2(b), as well as the expected range
modeled as a linear combination of the modes in Fig. 2(c).
The POD method has the capability of obtaining a basis with
relatively lower dimension than a spline basis.

Substituting (10) into the evolution for ⌦� (8), we have
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where dependencies on ⇢̂ and t have been dropped for
notational convenience. Next, we construct the weak form

by multiplying both sides with ⇢̂, projecting onto the trial
functions �j , j = 1, . . . , l! and integrating over the domain,
to obtain

l!X

k=1

d!k

dt
Mjk = �

l!X

k=1

!kMjkun̄i + !kSjk

+
nNBX

⇠=1

BNB,j⇠uNB,⇠ +
l!X

k=1

!kBNR,jkuNR �B?
NR,juNR,

(12)

where F 0 = @F
@⇢̂ . Introducing the notation hhg1, . . . , gN ii ,R 1

0 g1(⇢̂) . . . gN (⇢̂)⇢̂d⇢̂, we have

Mjk = hh�j ,�kii, BNB,j⇠ = hh�j , fNB,⇠ii, (13)
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which allows the system to be written in the matrix form
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C. Uncertainty Modeling for Momentum Diffusivity (��)

Since the effective diffusivity, ��, is assumed to include
contributions of turbulent effects which are not sufficiently
understood to obtain a reliable model, we chose to represent
it as an uncertainty. The parameter � = (�1, ..., �l�) 2
Rl� of (10) is the uncertainty vector representing a finite
dimensional approximation of ��(⇢̂, t) with respect to the
basis {'↵ | ↵ = 1, . . . , l�}. Each �↵ has the form �↵ =
�0
↵ + �1

↵�↵, where �0
↵ and �1

↵ are constants and |�↵|  1 for
all ↵.

To make the uncertainty in the state-space system explicit,
the matrix S (13) can be decomposed as

S = Ŝ0 +
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Combining (14) and (15), we obtain a nonlinear, finite
dimensional, ordinary differential equation model defined by

!̇ = F (!, u, �) (16)

where ! = (!1, . . . ,!l! ) 2 Rl! , � = (�1, . . . , �l�) 2 Rl� ,
and u = ( ˙̄ni, n̄i, PEC, PNB,1, . . . , PNB,nNB , INRMF) 2 R4+nNB .

IV. CONTROL SYSTEM DESIGN

In this section, a multi-input-multi-output (MIMO) feed-
back controller based on the FPD model (1)-(2) is proposed
for the simultaneous regulation of the toroidal angular rota-
tion profile and stored energy for DIII-D.
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Fig. 2. (a.) Cubic splines which serve as a basis for ⌦�. (b.) POD modes which serve as a basis for ��. (c.) The time average of �� (black line) based
on DIII-D shot 147634 over the time period t = 2� 5 s, i.e. the current flattop phase and the expected range of �� (grey area).

A. Model Linearization

The plasma density in tokamaks is extremely difficult to
control with any real precision, therefore deviations of the
density from the desired operating point will be treated as an
input disturbance. To account for this we split the input u into
the controlled input u1 = (PEC, PNB,3, . . . , PNB,nNB , INRMF)
and the uncontrolled input u2 = (PNB,1, PNB,2, ˙̄ni, n̄i). Lin-
earizing the system (16) with respect to the state and control
input around a nominal equilibrium point (!eq, ueq), we
obtain the linear time-invariant model given by

ẋ! = A!x! +B!uFB +B!,dud, (17)

where x! = !�!eq, uFB(t) = u1(t)�u1,eq, ud(t) = u2(t)�
u2,eq(t), A! = r!F |!eq,ueq , B! = rvFru1v|!eq,ueq , and
B!,d = rvFru2v|!eq,ueq , where v represents the nonlinear
input functions, v = (un̄i , uNB,1, . . . , uNB,nNB , uNR). For
control design we consider the nominal system, i.e. � = 0.

The stored energy evolution (7) is approximated by
dE/dt = �E/⌧Eeq + Paux(t), where the contributions of
ohmic power and radiative power are dropped since they
are relatively small compared to the auxiliary power for H-
mode plasmas, and ⌧Eeq is the global energy confinement
time associated with the equilibrium point (!eq, ueq). An
augmented state-space system, x = (E, x!) 2 R1+l! , is
obtained by lumping the energy evolution together with the
linearized rotation evolution,

d
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E
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B
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, (18)

where 1 is a column of 1 + nNB ones.

B. Singular Value Decomposition

For a requested target state, xt, let xss
1 represent the

closest stationary state achievable according to the model.
This can be determined from the pseudo-inverse, K†

sg, of
the model static gain matrix Ksg = �A�1B. The input
associated with the desired target is determined from the
pseudo-inverse of the static gain matrix, uss

FB,1 = K†
sgxt,

which is used to determine the closest achievable stationary
state given by xss

1 = Ksgu
ss
FB,1 = KsgK

†
sgxt. Because several

of the actuators have similar effects on the profile, the matrix
Ksg = W⌃V T is ill-conditioned, i.e. the ratio of the largest

singular value to the smallest one is much larger than one.
Therefore small deviations in the profile associated with
the directions of the smaller singular values can result in
unreasonably large control requests. Thus, we use a truncated
(Tr) singular value expansion of the static gain matrix given
by, Ksg,Tr = WTr⌃TrV

T
Tr , where the matrices WTr, ⌃Tr, and

VTr are the components of the SVD associated with the nSV
largest singular values,

W =
⇥
WTr Wn

⇤
, ⌃ =


⌃Tr 0
0 ⌃n

�
, V =

⇥
VTr Vn

⇤
, (19)

and Wn, ⌃n, and Vn are the components associated with the
smaller, neglected singular values. Therefore,

uss
FB,1

⇠=uFB,1=K†
sg,Trxt, xss

1
⇠=x1=Ksg,TrK

†
sg,Trxt. (20)

We use the theory of linear quadratic optimal control
to obtain a control law which regulates the system to the
closest achievable stationary state while minimizing the cost
function

J =

Z 1
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⇥
x̃T (t) ⇣T (t)

⇤
Q


x̃(t)
⇣(t)

�
+ ũT (t)Rũ(t)dt, (21)

where x̃ = x�x1, ũ = uFB�uFB,1, Q positive semidefinite,
R positive definite, and ⇣ represents the integral states
introduced for integral control. The added integral states
are expressed as ⇣ = K⇣

R t
0 x̃(⌧)d⌧ , where K⇣ is a design

matrix.

C. Choice of Matrix K⇣

With the choice K⇣ = WT
Tr , we have K⇣Ksg,TrK

†
sg,Tr =

K⇣ , since
⇥
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⇤
·
⇥
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T
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⇤
·
⇥
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�1
Tr WT
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⇤
= WT

Tr = K⇣ , (22)

which ensures K⇣xt ! K⇣x1, since x1 = Ksg,TruFB,1 =
Ksg,TrK

†
sg,Trxt. Here, we have made use of the fact that

WT
TrWTr = I , and V T

Tr VTr = I , but WTrW
T
Tr 6= I .

D. Proportional plus integral control

Written in terms of the requested target (x̃(t) = x(t) �
Ksg,TrK

†
sg,Trxt(t)), the control law that minimizes (21) re-

duces to a proportional plus integral controller of the form

ũ(t) = �Kp

h
x(t)�Ksg,TrK

†
sg,Trxt(t)

i

�KiK⇣

Z t

0
d⌧
h
x(⌧)�Ksg,TrK

†
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i
,

(23)
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Fig. 3. (a.) The �� P ⇤ �Ktf robust control design framework. (b.) The structured singular value µ. (c.) The Range of �� for which robust stability
criterion is satisfied.

where the proportional gain, Kp, and integral gain, Ki, are
given by

⇥
Kp Ki

⇤
= R�1B̂S, where S = ST is the

unique positive semi-definite solution to the algebraic Ricatti
equation, ÂTS+SÂ�SB̂R�1B̂TS+Q = 0, and the system
(Â, B̂) is constructed by augmenting the model (17) with the
integrator states, i.e.


˙̃x
⇣̇

�
=


A 0
K⇣ 0

�

| {z }
Â


x̃
⇣

�
+


B
0

�

|{z}
B̂

ũ. (24)

The design parameters include K⇣ = WT
Tr , Q and R. The

state weighting matrix, Q, is chosen as Q =


Q̂ 0
0 ↵2

⇣InSV

�
,

where ↵⇣ is a constant that weights the integrator states
relative to the model states, Q̂ is the weighting on the model
states and R is chosen diagonal.

V. MODEL IN ROBUST CONTROL FRAMEWORK

The transfer function of a linear state-space system with
representation A, B, C, D can be written as an upper linear
fractional transformation (LFT), G(s) = FU (Ma, 1/sI) =
D+C(sI �A�1)B, where FU denotes the upper LFT, s is
complex variable, and the matrix Ma is defined as

Ma =


A B
C D

�
. (25)

For robustness analysis, the linearized state space system (17)
can be written as the general linear state-space uncertainty

Ma =

"
A0 +

Pl�
↵=1 �↵A↵ B0 +

Pl�
↵=1 �↵B↵

C0 +
Pl�

↵=1 �↵C↵ D0 +
Pl�

↵=1 �↵D↵

#
, (26)

where

A0 = diag
⇢
� 1

⌧Eeq

, �un̄i �M�1(Ŝ0 +BNRuNR)
���
!eq,ueq

�
,

A↵ = diag{0,�M�1Ŝ↵}, B0 = B, B↵ = 0, C0 = I ,
C↵ = 0, D0 = 0, and D↵ = 0.

Let Ktf represent the transfer function of the controller
obtained in Section IV-D and let � = diag{�}, then we can
form the standard � � P � Ktf configuration (Fig. 3(a))
by employing the method outlined in [20], which exploits
the structure of the state matrices in (26). See [21] for

an example of this technique. If the generalized plant is
partitioned as

P ? =


P̄ ?
11 P̄ ?

12

P̄ ?
21 P̄ ?

22

�
,

y� = P̄ ?
11u� + P̄ ?

12u,
e = P̄ ?

21u� + P̄ ?
22u,

(27)

the system can be written in the N �� form by using the
definition of lower LFT between P ? and Ktf ,

N = FL(P
?,Ktf ) = P̄ ?

11+P̄ ?
12Ktf (I�P̄ ?

22Ktf )
�1P̄ ?

21. (28)

We can compute the structured singular value µ(N11(j!))
to determine the robust stability of the closed-loop system,
where N11 is the transfer function between y� and u�.
The closed-loop system is robustly stable for all allowable
perturbations if and only if µ(N11(j!)) < 1, 8! [22]. To
analyze the robust stability of the closed-loop system, a plot
of µ versus frequency is shown in Fig. 3(b). To obtain this
µ value, the value of �� is allowed to vary throughout the
range shown in Fig. 3(c) with profile shapes equal to a linear
combination of the POD modes in Fig. 2(c).

VI. SIMULATION RESULTS

In this section, we present a simulation study of the
controller’s effectiveness. The target for ⌦� is obtained
from (1) with the input values and parameter profiles of
DIII-D shot 147634, and the stored energy target is simply
set to 1 MW, a typical value for H-mode plasmas. Constant
feedforward values are used for the NBI, and the feedforward
value of the NRMF coil current is set to a ramping function.
The selected feedforward input values constitute a large input
disturbance from the input values of DIII-D shot 147634 used
to determine the target profile shape.

The tuning problem consists of the selection of the diago-
nal elements of Q and R and the constant ↵⇣ to regulate the
profile as close as possible to the target while maintaining
constant stored energy.

In Fig. 4, we test the controller’s tracking performance
with feedback ON throughout the simulation. The target
profile and simulated closed-loop profile response are plotted
in 4(a), and the feedforward and requested actuator powers
are plotted in Fig. 4(b). The controller performs well, en-
abling tight profile regulation while maintaining a nearly flat
stored energy. At t = 4 s, the rotation profile target switches
discretely to a lower target value. Note, the controller obtains
the second, lower rotation target by increasing the counter
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Fig. 4. Feedback control simulation. (a.) ⌦� and E, where the solid line is the target and the achieved profile is marked by circles. The stored energy
set point is marked by the blue dashed line. (b.) Input values, where the green line marks the controller requested power, the blue dashed line marks the
feedforward power, and the pink dashed line marks the actuators limits.

NBI power (P210L and P210R) while reducing the co NBI
power (P330L and P150L) to maintain the stored energy around
the set point of 1 MW. The additional power from the
ECRH is quite advantageous in maintaining the stored energy
value and the NRMF provides some advantage over NBI in
regulating the rotation at the plasma edge.

VII. SUMMARY AND CONCLUSIONS

A robust feedback control algorithm for the simultaneous
regulation of toroidal angular rotation and stored energy in
advanced plasma scenarios was designed by employing a
physics-based model of the plasma dynamics. Using the
theory of linear-quadratic optimal control, we synthesized
a controller to minimize the weighted tracking error of the
rotation profile while maintaining constant stored energy. The
simulations show promise of an effective controller for the
combined control of rotation and energy using NBI, ECRH,
and NRMF coils as actuators.
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