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Abstract— During the tokamak discharge, especially the
ramp-up phase, the plasma state equilibrium continually
evolves. As a consequence, the plasma response model should
evolve as well. We first identified a linear plasma response
model of the rotational transform ι profile and βN around a
desired equilibrium. Then, an uncertainty is introduced to the
identified model to partially account for the dynamic character
of the plasma state equilibrium evolution. A robust controller
is designed to stabilize this family of plasma models, which are
reformulated into a nominal model with uncertainty. A singular
value decomposition (SVD) of the nominal identified model is
carried out to decouple and identify the most relevant control
channels in steady-state. The DK-iteration method, combining
H∞ synthesis and µ analysis, is applied to synthesize a closed-
loop controller that minimizes the tracking error and input
effort. The feedback controller is then augmented with an anti-
windup compensator, which keeps the given profile controller
well-behaved in the presence of magnitude constraints in
the actuators and leaves the nominal closed-loop unmodified
when no saturation is present. PTRANSP simulations and
experimental results in DIII-D illustrate the performance of
the model-based controller.

I. INTRODUCTION

The goal of advanced tokamak (AT) research in the DIII-
D tokamak is to develop the scientific basis for steady
state, high-performance operation in ITER. Setting up a
desirable current profile in the device is essential to certain
AT operating scenarios. The plasma rotational transform ι
profile is related to the current profile in the tokamak, and
the shape of the ι profile is related to the development of a
self generated, non-inductive source of current in the plasma.
Another key performance parameter, βN , defined as a ratio
between the internal kinetic pressure of the plasma and the
external pressure of the magnetic field, represents a measure
of efficiency of confinement in the tokamak. This paper aims
at designing a robust ι profile and βN controller for high-
confinement mode (H-mode) discharges in DIII-D.

As an alternative to the first-principles-driven methods,
system identification techniques [1] have the potential to
develop low-complexity, linear, dynamic models around a
particular equilibrium. A two-time-scale linear current profile

This work was supported by the National Science Foundation CA-
REER Award program (ECCS-0645086), and the U.S. Department
of Energy (DE-FG02-09ER55064 and DE-FC02-04ER54698). W. Shi
(wenyu.shi@lehigh.edu), W. Wehner, J. Barton, M.D. Boyer
and E. Schuster are with the Department of Mechanical Engineering &
Mechanics, Lehigh University, Bethlehem, PA 18015, USA. A. Kritz is with
the Department of Physics, Lehigh University, Bethlehem, PA 18015, USA.
D. Moreau is with CEA, IRFM, 13108 Saint-Paul-lez-Durance, France. T.C.
Luce, J.R. Ferron, M.L. Walker, D.A. Humphreys, B.G. Penaflor, and R.
Johnson are with General Atomics, San Diego, CA 92121, USA.

model with on-axis neutral beam injection has been identi-
fied for JET [2], and a toroidal rotation profile model has
been estimated for JT-60U [3], [4]. System identification
experiments with on-axis current drive (CD) have also been
carried out on the DIII-D tokamak [4], and we have previ-
ously proposed identified models of the rotational transform
profile [5], the toroidal rotation profile [6] and the rotational
transform profile combined with βN [7].

In this work, we extend our previous work [5], [7] in
many important areas. Firstly, the off-axis current drive is
introduced to the experiments, which could provide more
heating in the mid-radius of the tokamak that would not
be possible with only on-axis current drive. Secondly, the
start time of the control phase is moved backward from the
current flat-top phase to the current ramp-up phase. In order
to increase the validity range of the identified model, we
increase/decrease the singular values of the identified model
to form a series of models to cover a neighborhood of the
desired equilibrium. DK-iteration, combining H∞ synthesis
and µ analysis, is applied to synthesize a closed-loop con-
troller that minimizes the control error and optimizes input
effort. Then, the robust controller is successfully tested in
the PTRANSP code [8], a tokamak transport analysis code,
before experiments to evaluate the influence of the off-axis
current drive system in DIII-D. Finally, a profile control
experiment integrating magnetic and kinetic variables on
DIII-D illustrates the performance of the proposed controller.

This paper is organized as follows. In Section II, the
system identification process used for the DIII-D tokamak
is briefly described, and a linear dynamic model of the ι
profile and βN is developed. In Section III, the designs of the
plasma control algorithm and the anti-windup compensator
are described. Closed-loop PTRANSP simulated results with
off-axis CD are presented in Section IV, and experimental
results from the DIII-D tokamak are presented in Section V.
Section VI states the conclusions.

II. SYSTEM IDENTIFICATION ON DIII-D

The ι profile is defined as the inverse of the safety factor
q profile, where q is the ratio of the number of times a
magnetic field line goes toroidally around the tokamak to
the number of times it goes around poloidally. High qmin

scenario development at high βN has been limited in our
previous work [7] due to the overdrive of the central current
by the on-axis NBI. Off-axis NBI can provide a broad
current deposition at mid-radius without over-driving the
current near the axis [9]. To achieve higher βN and higher



qmin, the beam-line optical axes of 150L and 150R were
inclined up to 16.5◦, while the other beam-line optical axes
were unchanged. The available beam-lines and gyrotrons
were grouped to form, together with Ip, five independent
H&CD actuators: (i) plasma current Ip, (ii) on-axis co-current
NBI power PCO (330L), (iii) off-axis co-current NBI power
POA (150L and 150R), (iv) counter-current NBI power PCT

(210R), and (v) total EC power from all gyrotrons PEC.

Several shots (#140076, 140077, 140093, 140106, and
140107)) [6] were used to identify the plasma response to
the on-axis actuators. To collect the data for identifying the
response of the off-axis beams (150L and 150R), a new
shot #150082 with off-axis beams was run, while the other
actuators were modulated around the identical reference
values as the previous shots. System identification for the
plasma rotational transform profile ι(ρ̂) was carried out
with 5 Galerkin coefficients computed at normalized radial
coordinates ρ̂ = 0.2,0.4,0.5,0.6,0.8, starting at t = 2.5s. The
parameter ρ̂ is the normalized effective minor radius, which
is denoted as ρ̂ = ρ

ρb
, where ρ is the mean effective minor

radius of the flux surface, i.e., πBφ ,0ρ2 =Φ. The parameter Φ

is the toroidal magnetic flux, and Bφ ,0 is the magnetic field at
the geometric major radius. The parameter ρb is the effective
minor radius of the last closed magnetic flux surface.

The relation between inputs and outputs for any discharge
is assumed in the form of

y(t) = yFF +∆y(t) = PFF(uFF)+P∆u(t), (1)

where PFF represents the relationship between the reference
(feedforward) input uFF and the reference (feedforward)
output yFF . The variable ∆y(t) denotes the deviation out-
put defined as ∆y(t) = [∆ι(t), ∆βN(t)] = y(t)− yFF , with
y(t) = [ι(0.2, t) ι(0.4, t) ι(0.5, t) ι(0.6, t) ι(0.8, t), βN(t)]T .
The variable ∆u(t) denotes the deviation input defined as
∆u= u−uFF with u= [Ip, PCO, POA, PCT , PEC]. By subtract-
ing the feedforward value from our data set, we only consider
the linear dynamics ∆y(t) = P∆u(t). The linear model P is
identified from experimental data using the prediction error
method (PEM) according to a least squares fit criterion [1].
The identified feedback model P can be expressed in the
state space form

ẋ = Ax(t)+B∆u(t), ∆y(t) =Cx(t) (2)

where the state x(t) is defined as x(t) = ∆ι(t) = ι(t)− ιFF .
More details of the system identification process can be
obtained from our previous work [5], [6], [7].

III. CONTROL SYSTEM DESIGN

A. Singular Value Decomposition

The relation between the inputs and the outputs in the
linear dynamic model (2) can be expressed in terms of its

transfer function P(s), i.e.,
∆Y (s)
∆U(s) = P(s) = C(sI − A)−1B,

where s denotes the Laplace variable and ∆Y (s) and ∆U(s)
denote the Laplace transforms of the output ∆y and the input
∆u respectively. Assuming a constant target ∆ȳtar and closed-
loop stabilization, the system will reach steady state as t →∞.
It is possible to define ∆ȳ= limt→∞ ∆y(t), ∆ū= limt→∞ ∆u(t),

Fig. 1. Mixed-sensitivity H∞ control problem.

and ē = limt→∞ e(t) = ∆ȳtar − ∆ȳ. Therefore, under these
assumptions the closed-loop system is specified by

∆ȳ = P̄∆ū =−CA−1B∆ū ∆ū = ¯̂Kē, (3)

where K̂(s) represents the transfer function of the to-be-

designed controller and ¯̂K = K̂(0).
In order to weight the control effort and tracking error, two

positive definite weighting matrices R∈ℜm×m and Q∈ℜp×p

are introduced to the system, where p = 6 is the number
of outputs and m = 5 is the number of inputs. We then
define the “weighted” steady-state transfer function, and its
singular value decomposition (SVD) as P̃ = Q1/2P̄R−1/2 =
USV T , where S = diag(σ1,σ2, · · · ,σm) ∈ ℜm×m, U ∈ ℜp×m

(UTU = I), and V ∈ ℜm×m (V TV = VV T = I). By invoking
the properties of the SVD, the matrix Q−1/2US defines
a basis of the steady-state output values, and the matrix
R−1/2V defines a basis of the steady-state input values. By
defining ∆ȳ∗ = S−1UT Q1/2∆ȳ, ∆ȳ∗tar = S−1UT Q1/2∆ȳtar, and
∆ū∗ =V T R1/2∆ū, a square decoupled system is obtained:

∆ȳ∗= S−1UT Q1/2∆ȳ= S−1UT Q1/2Q−1/2USV T R1/2∆ū=∆ū∗.

Substituting these expressions into the performance index
J̄ = ēQēT , we can obtain the steady state cost function:

J̄ = (∆ȳ∗tar −∆ȳ∗)T S2(∆ȳ∗tar −∆ȳ∗) =
m

∑
i=1

σ2
i (∆ȳ∗tari

−∆ȳ∗i )
2.

It is usually the case where σ1 > · · ·σk ' σk+1 > · · · >
σm > 0. To avoid spending a lot of control effort for
a marginal improvement of the cost function value, we
partition the singular value set into significant singular
values Ss and negligible singular values Sn. We can write
U =

[

Us Un

]

, V =
[

Vs Vn

]

, S = diag(Ss, Sn), and
approximate the cost function J̄ by

J̄s =
k

∑
i=1

σ2
i (∆ȳ∗tari

−∆ȳ∗i )
2 = (∆ȳ∗tars

−∆ȳ∗s )
T S2

s (∆ȳ∗tars
−∆ȳ∗s ),

where ∆ȳ∗tars
= S−1

s UT
s Q1/2∆ȳtar, ∆ȳ∗s = S−1

s UT
s Q1/2∆ȳ, ē∗s =

∆ȳ∗tars
−∆ȳ∗s and ∆ū∗s =V T

s R1/2∆ū. The matrix bases reduce

to Q−1/2UsSs and R−1/2Vs, and the decoupled system,

PDC = S−1
s UT

s Q1/2PR−1/2Vs, (4)

represents a one-to-one relationship between the inputs ∆ū∗s
and the outputs ∆ȳ∗s . More details of SVD can be obtained
from our previous work [5], [7].



B. Design of µ Synthesis Controller

The plasma state continually changes during the plasma
current ramp-up phase, and as a result, the plasma response
model (2) should change. In order to partially account for
this, we define the decoupled identified model PDC (4) as
the nominal model, and assume the singular values of the
system PDC can increase/decrease to form a broad frequency
range covering a neighborhood of plasma states, which define
a range of uncertainty ∆P. The new plasma model can be
considered as the sum of PDC with uncertainty ∆P, which is
formulated into a robust control framework. There is always
a trade-off between the performance of the controller and
the robustness properties of the closed-loop system. The
maximum increasing/decreasing magnitude of the singular
values represents the desired robustness level of the closed-
loop system. In this work, the singular values Ss are assumed
to increase and decrease 20% to attempt to capture the
dynamic character of the plasma state equilibrium evolution
during the current ramp-up phase.

The decoupled system PDC (4) based on P (2) is chosen
as the nominal model, which is denoted as P0. The singular
values Ss decrease 20% to obtain a new system PDCt =
(0.8S−1

s )UT
s Q1/2PR−1/2Vs, which is denoted as Ptop, and has

the highest magnitude over the frequency range considered.
The singular values Ss increase 20% to obtain another new
system PDCb

= (1.2S−1
s )UT

s Q1/2PR−1/2Vs, which is denoted
as Pbot , and has the lowest magnitude. The top and bottom
uncertainty can be expressed in state-space form as:

∆Ai = Ai −A0 ∆Bi = Bi −B0

∆Ci =Ci −C0 ∆Di = Di −D0

where the subscript i ∈ 1,2 refers to the top and bottom
respectively. The state-space system matrices are now written
as uncertain matrices as

A = A0 +
2

∑
i=1

δi∆Ai B = B0 +
2

∑
i=1

δi∆Bi

C =C0 +
2

∑
i=1

δi∆Ci D = D0 +
2

∑
i=1

δi∆Di (5)

where δ1 ∈ [0,1] and δ2 ∈ [0,1].
By exploiting the structure of the state matrices (5) and

using SVD, the system can be expressed in the conventional
P′′ −∆ control framework (black dashed block in Fig. 1),
by employing the method outlined in [10]. See [11] for an
example of this technique. Using the partition of the gener-

alized plant P′′ =

[

P′′
11 P′′

12

P′′
21 P′′

22

]

, the input/output equations are

∆y∆ = P′′
11∆u∆ +P′′

12(∆u∗s +∆u∗ds
),

∆y = P′′
21∆u∆ +P′′

22(∆u∗s +∆u∗ds
),

where ∆u∗s =V T
s R1/2∆u, ∆u∗ds

=V T
s R1/2∆ud , and ∆ud is the

input disturbance.

The control goal is to design a k× k feedback controller
K, where k is the number of significant singular values.
The corresponding block diagram of the system is shown
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Fig. 2. Structured Singular Value µ versus Frequency

in Fig. 1 where the weight functions Wp(s) and Wu(s) are
parameterized as

Wp(s) = Kp

(

s
M1

+wb1

s+wb1A1

)2

,Wu(s) = Ku

(

s+wb2A2
s

M2
+wb2

)2

and the coefficients Mi, Ai, wbi, for i ∈ 1,2, as well as Kp

and Ku, are design parameters.
The feedback system can now be expressed in the con-

ventional ∆ − P∗ − K robust control framework, where ∆

is the uncertainty, P∗ is the generalized plant (red dot-
ted block in Fig. 1) , K is the feedback controller, and
[ZT

1 , ZT
2 ]

T = [(Wpe∗s )
T , (Wu∆u∗s )

T ]T is the weighted perfor-
mance signal. The closed-loop transfer function from the

input [∆y∗T
tars

, ∆u∗T
ds
]T to the output

[

ZT
1 ZT

2

]T
is defined as

Tzr = Fu(N,∆), (6)

where ∆y∗tars
= S−1

s UT
s Q1/2∆ytar, ∆y∗s = S−1

s UT
s Q1/2∆y, e∗s =

∆y∗tars
−∆y∗s , and the subsystem

N = Fl(P
∗,K) =

[

WpMs −WpMsP
′′
22

WuKMs −WuKMs

]

. (7)

The sensitivity transfer function Ms is defined as Ms = (I +
P′′

22K)−1. We seek a controller K(s) that robustly stabilizes
the system and minimizes the H∞ norm of the transfer
function Tzr(N,∆), i.e.,

min
K(s)

‖Tzr(N,∆)‖∞=min
K(s)

(sup
ω

σ̄ [Tzr(N,∆)( jω)]), (8)

where σ̄ represents the maximum singular value. The control
method employed in this work to achieve the control goal
(8) is the µ synthesis design technique.

There is no direct method to synthesize a µ-optimal
controller, however the DK-iteration method [10], which
combines H∞ synthesis and µ analysis, can be used to
obtain an iterative solution. This method starts with an upper
bound on µ in terms of the scaled singular value µ(N) ≤
min(σ̄(DND−1). Then, we seek a controller that minimizes
the peak value over frequency of this upper bound

min
K

(min
∥

∥DN(K)D−1
∥

∥

∞
).

To validate the designed controller, the robust stability of
the closed-loop system is determined. The system is written
in the N−∆ structure, and the robust stability is determined
by evaluating the structured singular value

µ(N11( jω)) =
1

min{km|det(I − kmN11∆) = 0}
(9)



Fig. 3. The architecture of the closed-loop PTRANSP simulation.

where N11 is the transfer function from the input ∆u∆ to the
output ∆y∆. The closed-loop system is robustly stable for all
allowable perturbations if and only if µ(N11( jω)) < 1,∀ω .
Fig. 2 shows a plot of the structed singular value µ versus
frequency, and as can be seen µ < 1 for all frequencies.
Therefore, the closed-loop system is robustly stable. In other
words, the controller stabilizes the whole family of models.

In practice, the control input and measured output of the
original system P are ∆u and ∆y, respectively. The measured
output is in turn used to compute the tracking error e =
∆ytar −∆y. As shown in Fig. 1, the overall ι-profile and βN

controller for system P can be computed as

K̂(s) =
∆U(s)

E(s)
= R−1/2VsK(s)S−1

s UT
s Q1/2 (10)

where ∆U(s) and E(s) denotes the Laplace transforms of ∆u

and e, respectively.

C. Design of the Anti-windup Compensator

At the moment of designing the robust MIMO con-
troller (10), the actuator saturations were not considered.
As a result of saturation, the actual plant input may be
different from the output of the controller. The goal is not
to redesign the proposed MIMO controller but to design
an anti-windup compensator that keeps the controller well-
behaved and avoid undesirable oscillations when saturation
is present. The anti-windup compensator must in addition
leave the nominal closed-loop unmodified when no saturation
is present. Details of the anti-windup compensation can be
obtained from our previous work [5], [7].

IV. CLOSED-LOOP PTRANSP SIMULATIONS

In PTRANSP, experimental data is used directly to cal-
culate the plasma state evolution without feedback. In or-
der to form the closed-loop simulation, we combined the
PTRANSP code with Matlab. A general framework for
closed-loop feedback control implemented in PTRANSP is
shown in Fig. 3. The PTRANSP solver is set to evolve
in time only the ι profile based on the updated Ip, beam
powers (PCO, POA, and PCT ), and EC power PEC output
by the feedback controller. The feedback portion of the
controller was implemented as a discrete time state-space
controller with a sampling time of 20 milliseconds, because

the controller implemented in DIII-D PCS has a sampling
time of 20 milliseconds. The PTRANSP calculation stops
every 20 milliseconds, and sends the calculated output y to
Matlab. Based on the tracking error, Matlab calculates the
next step input û, and sends it back to PTRANSP. Then
the PTRANSP code calculates the plasma state evolution for
the next 20 milliseconds. This configuration provides us the
ability to test the feedback controller in reference tracking
and disturbance rejection simulations before experiments.

The reference shot for PTRANSP is shot #147626, which
is a shot with off-axis neutral beam injection, and the
feedforward inputs and target ι profiles are shown in Fig. 4
(red dashed line). The feedback controller is turned on at
t = 2.5 s, and the disturbance is introduced at t = 3 s,
which are δ Ip = 0.1 MA, δPCO =−0.1 MW, δPOA = 0 MW,
δPCT = 0 MW, and δPEC = −0.3 MW. An important goal
of the model-based current profile controller is to regulate ι
profile in the center precisely, since this affects confinement
and stability for advanced scenarios. In order to reach this
goal, we take Q = diag([5, 2.5, 1.5, 1.5, 1.5, 0.5]) to weight
the tracking errors, and the control weight matrix is redefined
as R = diag([0.5, 0.1, 0.1, 0.1, 0.05]). The parameter c for
the anti-windup compensator is set as 0.1.

The simulated closed-loop-controlled inputs (solid blue
lines) are shown in Fig. 4 (a) and compared with the
reference open-loop inputs (red dashed lines) and another
feedforward open-loop inputs with disturbance (dot-dash
line). The simulated closed-loop-controlled ι profile at ρ̂ =
0.2,0.4,0.5,0.6,0.8 (solid blue lines) are shown in Fig. 4
(b) and compared with the target values (red dashed lines)
and the feedforward open-loop outputs with disturbance (dot-
dash line). By examining Fig. 4 (b) , we see that with
feedforward control only the target profile is not achieved
in the presence of the disturbance. In the first 0.5 second
of the closed-loop simulation, from t = 2.5 s to t = 3 s, the
controller works well, and the ι profile is regulated around
the target values. Then the disturbance is introduced into the
system at t = 3 s, and the plasma current, beam and gyrotron
powers are modulated around their reference values without
saturation by the feedback controller. Due to the design of
the weight matrix Q, the control effort is mainly applied to
ι(0.2, t) and ι(0.4, t), and the controller increases POA and the
total EC power PEC and requests the Ip to decrease to drive
the system towards the desired inner ι profile. Note that the
inner ι profile response is much slower than the boundary ι
profile response, and the effect of the control effort on the
inner ι profile is shown with a time delay. This is due to the
high temperature and slow diffusivity in the core relative to
the boundary. Improved performance can be observed from
the comparison between the controlled results (solid blue
line) and uncontrolled results (dotted-dashed line).

V. EXPERIMENTAL RESULTS ON DIII-D

In order to compare relevant experimental results with
PTRANSP simulation, the same controller was applied and
the same input disturbances were introduced in the experi-
ment. The target ι profile and βN obtained from shot #147634
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Fig. 5. Rotational transform ι profile and βN control experiment (shot #150749) with off-axis NBI: (a) Reference (feedforward) inputs (red dashed lines),
requested feedforward+feedback control inputs (blue solid lines) and achieved control inputs (magenta dashed-dotted lines); (b) Reference target profile at
ρ̂ = 0.2,0.4,0.5,0.6,0.8 and βN (red dashed lines) and experimental closed-loop-controlled ι profile at ρ̂ = 0.2,0.4,0.5,0.6,0.8 and βN (solid blue lines) .
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Fig. 6. Plasma ι(ρ̂) profile at time t= 1.318, 3.618, 4.618, 5.918 seconds from shot #150749 on DIII-D.

with these discharge parameters are shown in Fig. 5 (red
dashed line). The disturbance was introduced at t = 4.5
s, and the feedback controller was active in the interval
[ti, t f ] = [1, 5.8] during the experiment.

Fig. 5 (a) shows the reference (red dashed lines), requested
feedforward+feedback inputs (solid blue lines) and achieved
inputs (dotted-dashed lines) during the experiment (shot
#150749). As shown in Fig. 5 (a.1)-(a.4), the plasma current
and the beam powers successfully follow the requested
values. During the shot, the total EC power is limited to
around 2 MW, but the requested value goes up to 6 MW
(Fig. 5 (a.5)). The difference between achieved and requested
values of EC power can be interpreted as a large disturbance
that the controller must try to overcome. After t ≈ 2.5 s,
the PCO reaches saturation, which activates the anti-windup
compensator in an attempt to keep the states of the feedback
controller from winding up. The experimental closed-loop-
controlled ι profile at ρ̂ = 0.2,0.4,0.5,0.6,0.8 and βN (solid
blue lines) are shown in Fig. 5 (b) and compared with the
target values (red dashed lines). The controller regulates the
ι profile close to the target profile until the disturbance is
introduced, even in the current ramp-up phase. The controller
drives some of the beams into saturation and requests the
plasma current to decrease, which increases the tracking error
in the outer part of the ι profile, in order to try to reduce
the tracking error in the inner part of the ι profile. When the
controller is turned off at t = 5.8 s, the actuator values drift
away from the feedforward+feedback values immediately.
Because the outer ι profile is more quickly influenced by Ip,
the tracking errors at ρ̂ = 0.5, 0.6, and 0.8 become smaller
with the increasing of Ip.

The introduction of the off-axis NBI into the experiment
placed the plasma in a different operating state with respect
to the reference state around which the model was identified.
As a result, the validity of the linear plasma model may
limit the performance of the model-based controller in this
operating scenario. During the closed-loop experiment, the
EC power request was not achieved, therefore, the feedback
controller output was no longer driving the plant, and as a
result, the states of the controller were incorrectly updated.
Finally, the actuator saturation during the experiment limited
the ability of the feedback controller to manipulate the profile
evolution. In order to evaluate the whole ι profile, a series of
four plasma profiles at different times during shot #150749
are shown in Fig. 6. Although the model was identified using
only data after 2.5 s, the model-based controller performs
reasonably well in the current ramp-up phase, which is shown

in Fig. 6 (a). Before t = 4.2 s, the controller regulates the ι
profile close to the target profile (Fig. 6 (b)). After this time,
the tracking errors become larger. The input disturbances
are injected into the system at t = 4.5 s, and the controller
decreases the Ip to decrease the ι profile near the plasma
boundary in order to attempt to track the desired inner ι
profile as shown in Fig. 6 (c). However, the tracking errors
increase further as shown in Fig. 6 (d).

VI. CONCLUSION

A robust, model-based, MIMO, ι profile and βN controller
was designed for DIII-D. The design was based on a linear,
identified model for H-mode discharges, including uncer-
tainty. The proposed controller was simulated in PTRANSP,
and then the controller was experimentally tested in DIII-
D. More experimental tests are needed to assess the ap-
propriateness of using data-driven linear models for current
profile control. The sensitivity of the static component of the
controller to un-modeled or mis-modeled plasma response
and its impact on performance need further analysis.
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