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Abstract— Control of the spatial profile of plasma current
in tokamak plasmas has been demonstrated to be a key
condition for achieving advanced scenarios with improved
confinement and possible steady-state operation. The dynamics
of the current profile are nonlinear and coupled with several
other plasma parameters, motivating the design of model-based
controllers that can account for these complexities. In this
work, we consider a control-oriented model of the current
profile evolution in DIII-D and the problem of regulating the
current profile around a desired feed-forward trajectory. In
open-loop, the response of the system to disturbances and
perturbed initial conditions may be undesirable. To improve
the performance of the system, the PDE model is discretized
in space using a finite difference method and a backstepping
design is applied to obtain a discrete transformation from the
original system into an asymptotically stable target system with
desirable properties. Through a nonlinear transformation, the
resulting boundary control law utilizes the total plasma current,
total power, and line averaged density as actuators. A Simserver
simulation study is done to test the controller’s performance and
its implementation in the DIII-D plasma control system. Finally,
experimental results showing the ability of the controller to
reject input disturbances and perturbations in initial conditions
are presented.

I. INTRODUCTION

Nuclear fusion is the process by which two light nuclei
fuse together to form a heavier nucleus, and is accompanied
by a conversion of mass into energy. Extremely high tem-
peratures are needed in order for fusion reactions to occur
frequently enough to make a fusion reactor useful as a source
of energy. At these temperatures, the deuterium/tritium fuel
mixture becomes a plasma. One of the most promising
devices for confining and controlling this fusion plasma is
the tokamak, which uses helical magnetic fields to trap the
fuel particles. The ITER tokamak is the next experimental
step for fusion research, and will attempt to prove the
technical feasibility of a commercial nuclear fusion power
plant. However, several challenging control problems remain.

One such challenge is to operate the tokamak with suf-
ficiently long plasma discharges. A purely inductive plasma
current cannot be sustained for extended periods of time and
steady-state operation will require the plasma current to be
primarily generated by non-inductive means. In a tokamak
reactor, setting up a suitable toroidal current profile plays an
important part in enabling high fusion gain and non-inductive
sustainment of plasma current for steady-state operation [1].
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Progress towards current profile control at the JET toka-
mak can be found in [2], [3], [4] and profile control at Tore
Supra and JT-60U tokamaks is discussed in [5], [6], [7].
The approach to current profile control taken at the DIII-D
tokamak is to attempt to create the desired profile during
the plasma current ramp-up and early flattop phases of the
tokamak discharge and maintain this target profile during the
rest of the discharge. The current profile evolution is related
to the evolution of the poloidal magnetic flux, which can be
modeled in normalized cylindrical coordinates by a parabolic
partial differential equation (PDE) referred to as the magnetic
diffusion equation. The poloidal flux profile is related to the
safety factor q, which is the ratio of the number of times
a magnetic field line goes toroidally around the tokamak to
the number of times it goes around poloidally. Non-model-
based active control of the evolution of the safety factor at
the magnetic axis, q(0), and the minimum safety factor qmin

during the initial part of the plasma discharge has been tested
at DIII-D [8]. The controller utilized either electron cyclotron
heating (ECH) or neutral beam injection (NBI) equal to
a feedforward value plus a term proportional to the error
in q. Limitations, such as oscillations and instability under
certain operating conditions, along with the complexity and
nonlinearity of the system, motivate the design of a model-
based controller that takes into account the dynamics of the
q profile in response to the available actuators.

A control-oriented model of the current profile evolution in
DIII-D was developed in [9]. Self-generated, non-inductive
current sources were neglected in the model derivation,
making the model appropriate for the inductively driven
ramp-up and early flat-top phase of discharges or for L-mode
(low confinement) discharges, which typically have a small
fraction of self-generated non-inductive current. The dynam-
ics of the current profile evolution can be controlled using
three available actuators: total plasma current, non-inductive
power, and average plasma density. Nonlinear combinations
of these actuators enter the magnetic diffusion equation in
the form of interior, boundary, and diffusivity control terms.
Since the actuators are physically constrained in magnitude
and rate of change, experiments have shown that some of
the desired current profiles may not be achievable for all
arbitrary initial conditions. Therefore, the objective becomes
to minimize the profile error during the initial part of the
discharge, which can be treated as a finite-time constrained
optimal control problem for a nonlinear PDE system. Us-
ing this model, optimal open-loop (feed-forward) control
algorithms were designed based on nonlinear programming
[10] and extremum seeking [11] approaches. Since these
optimal control inputs are computed off-line, they cannot be



modified in real-time to account for external disturbances,
changes in the initial conditions, or model uncertainty. To
achieve desired performance and robustness properties, it is
necessary to close the loop with a feedback control law.
A robust control approach to the problem considering the
time-varying parts of the model as uncertainty, is proposed
in [12] using all three types of actuation. In this work, we
note the strong influence of the boundary control term on
the system and seek a boundary feedback control law. This
approach avoids the need to neglect any nonlinear terms or
time-varying model terms and can be extended in the future
to utilize the interior actuators. The PDE describing the
current profile evolution is discretized in space using a finite
difference method and a backstepping design is applied to
obtain a discrete transformation from the original system into
an asymptotically stable target system. This backstepping
technique has been applied to other fusion systems, specifi-
cally the problem of kinetic profile control, in our work [13],
[14], and [15]. Through a nonlinear transformation of the
boundary control law, we obtain a feedback control law for
the plasma current, non-inductive power, and line averaged
density which is used to complement the feedforward control
trajectories computed off-line. Numerical simulations show
that improved performance is achieved through the use of
this control scheme and the results are confirmed in an
experiment on DIII-D.

The paper is organized as follows, In Section II a PDE
model for the current profile evolution is introduced. The
control objective is discussed in Section III. In Section
IV, a backstepping feedback control law is presented and
the control law is studied in simulations in Section V.
Experimental results are presented in Section VI. Finally,
conclusions and future work are stated in Section VII.

II. CURRENT PROFILE EVOLUTION MODEL

Let ρ be an arbitrary coordinate indexing the magnetic
surfaces within the tokamak plasma. Any quantity constant
on each surface could be chosen as the indexing variable.
Here we choose the mean geometric radius of the magnetic
surface as the variable ρ , i.e., πBφ ,0ρ2 = Φ, where Φ is the
toroidal magnetic flux and Bφ ,0 is the reference magnetic
field at the geometric major radius R0 of the tokamak. We
normalize the quantity by ρb, the minor radius of the last
closed magnetic surface, to obtain ρ̂ = ρ/ρb. The poloidal
magnetic flux evolution along this normalized radial coordi-
nate is given by the magnetic diffusion equation [9]
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where ψ is the poloidal magnetic flux, t is time, η is
the plasma resistivity, which is dependent on the electron
temperature, Te, µ0 is the vacuum permeability, j̄NI is the
non-inductive current density (from NBI, ECH, etc.), B̄ is
the magnetic field, and <> denotes the flux-surface average
of a quantity. F̂ , Ĝ, and Ĥ are spatially varying geometric

factors of the DIII-D tokamak and are described in [9]. The
boundary conditions are given by
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where I(t) denotes the total plasma current.
From experimental observations at DIII-D, simplified

scenario-oriented models for the electron temperature, non-
inductive current density, and plasma resistivity were identi-
fied [9]. Using these models allows us to write the magnetic
diffusion equation (1) as
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where f1(ρ̂), f2(ρ̂), and f4(ρ̂) are functions of ρ̂ , k3 is a
constant, and
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We consider I(t), the total plasma current, Ptot(t) the to-
tal non-inductive power (NBI), and n̄(t), the line-averaged
plasma density, as actuators. Note that the waveforms gen-
erated by the controller proposed in this work represent
references to be sent to existing controllers for the respective
quantities.

The safety factor q(ρ, t) = −dΦ/dΨ(ρ, t) can be used
to specify the toroidal current density. Noting the constant
relationship between ρ and Φ, i.e., πBφ ,0ρ2 = Φ, and the
definition of ρb, the safety factor can be written as

q(ρ̂, t) =−
Bφ ,0ρ2

b
ρ̂

∂ψ/∂ ρ̂

As the safety factor q inversely depends on the spatial
derivative of the poloidal flux, we define

θ (ρ̂, t) = ∂ψ
∂ ρ̂

(ρ̂, t) (3)

and take this quantity as the to-be-controlled variable. To
obtain a PDE for θ (ρ̂, t) , we expand (2) using the chain
rule, and insert (3) to obtain

∂ψ
∂ t

= f1u1
1
ρ̂
�
ρ̂θ f

�
4 + f4θ + ρ̂ f4θ ��+ f2u2 (4)

where (·)� = ∂/∂ ρ̂ and the dependencies on time and space
have been dropped to simplify the representation. By dif-
ferentiating (4) with respect to ρ̂ , the PDE governing the
evolution of θ (ρ̂, t) is found to be

∂θ
∂ t

= h0u1θ ��+h1u1θ �+h2u1θ +h3u2 (5)
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Fig. 1: Control scheme.

with boundary conditions:

θ
����
ρ̂=0

= 0 θ
����
ρ̂=1

=−k3u3(t) (6)

where h0, h1, h2, and h3 are functions of ρ̂ .

III. CONTROL OBJECTIVE

Let u f f (t) represent a feedforward control trajectory and
θ f f (ρ̂, t) be the associated state trajectory for a nominal
initial condition θ f f (ρ̂,0). These variables satisfy

∂θ f f
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θ ��
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θ �
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Given errors in initial conditions or other perturbations, the
actual state will be θ = θ f f + θ̃ . In this work, we will
consider the design of a feedback law for the boundary
control term u3. We can then write u3 = u3 f f

+u3 f b
and the

PDE (5) can be written as
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Noting (7) and (8), these expressions can be reduced to

∂ θ̃
∂ t
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θ̃ ��+h1u1 f f
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θ̃ (9)
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=−k3u3 f b
(10)

The control objective is to drive θ̃ to zero through the use
of the boundary feedback term u3 f b

. The control scheme is
illustrated in Figure 1.

IV. BACKSTEPPING BOUNDARY CONTROLLER

A backstepping technique is used to transform a dis-
cretized version of the original system of equations into
an asymptotically stable target system. The technique is
illustrated in Figure 2.
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Fig. 2: Backstepping control technique.

By defining h = 1
N
, where N is an integer, and using the

notation x
i(t) = x(ih, t), the model (9) can be written as

˙̃θ i =h
i

0u1 f f

θ̃ i+1 −2θ̃ i + θ̃ i−1

h2 +h
i

1u1 f f

θ̃ i+1 − θ̃ i−1

2h

+h
i

2u1 f f
θ̃ i (11)

with boundary conditions (10) written

θ̃ 0 = 0 θ̃ N =−k3u3 f b
(12)

Since the open loop system is stable, we choose the target
system to be

˙̃wi =h
i
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i−1
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i
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i −C
i

w
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w̃
i (13)

with boundary conditions written as

w̃
0 = 0 w̃

N = 0 (14)

The design parameters C
i

w
> 0 are chosen based on a trade-off

between desired levels of robustness and performance and the
physical actuator limits. Next, a backstepping transformation
is sought in the form

w̃
i = θ̃ i −α i−1 �θ̃ 0, . . . , θ̃ i−1�

By subtracting (13) from (11), the expression α̇ i−1 = ˙̃θ i−
˙̃wi is obtained in terms of αk−1 = θ̃ k − w̃

k, k = i−1, i, i+1.
The resulting expression can then be solved for α i to yield
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(15)

where α0 = 0 and α̇ i−1 is calculated as

α̇ i−1 =
i−1

∑
k=1

∂α i−1

∂ θ̃ k

˙̃θ k (16)

Next, subtracting (14) from (12) and putting the resulting
expression in terms of αk−1 = θ̃ k − w̃

k, k = i−1, i, i+1, the
control law for u3 f b

can be defined as

u3 f b
=− 1

k3
αN−1 (17)

For any choice of grid size N, the control law (17) will be
a time-invariant linear combination of N − 1 measurements
from the interior of the plasma. The coefficients of this linear
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Fig. 3: Time trace of θ at various points comparing the feedforward simulation (blue-solid) and the closed loop, disturbed
simulation (red-dashed).

combination can be calculated ahead of time for a given set
of model parameters h0, h1, and h2, and are independent of
the feedforward inputs and trajectories.

The control law (17) gives the expression for the feedback
part of u3. The new value of u3 is then used with the value u2
and u1 in the following nonlinear transformation to calculate
the input requests Ip, Ptot , and n̄:

Ip = u3 Ptot = u
2
3u

2
2 f f

n̄ = u
2/3
1 f f

u
2
3u2 f f

(18)

These values are then sent as references to the respective
dedicated controllers on the DIII-D device.

In order to facilitate the proof of stability, we write the
target system as a matrix equation. By noting the boundary
conditions (6), and defining Cw as a square diagonal matrix
populated with the values of C

i

w
for 1 ≤ i ≤ N−1, the set of

ODEs describing the target system can then be expressed as

β̇ (t) = (M−Cw)β (t)u1 f f
(t) (19)

where β = [w1, . . . ,wN−1]
T ∈ RN−2×1 is the value of w̃

i at
the interior nodes, and M is a system matrix.

Taking V = 1
2 β T Γβ as a Lyapunov functional, where Γ is

a positive definite matrix, we note that the first condition of
Barbalat’s lemma is satisfied, as V > 0 for β �= 0. We can
compute the time derivative as

V̇ = β T Γβ̇ = β T Γ(M−Cw)u1 f f
(t)β

Since u1 f f
(t)> 0 ∀t and Γ is positive definite, (M−Cw) must

be negative definite in order to ensure that V̇ is negative
semidefinite. For the model parameters used in this work,
which are representative of a particular DIII-D discharge, and
a grid size N = 20, we find that max{eig{M}}=−6.7983×

10−16 (note that u1 f f
(t) ∼ 1015 ). As this is less than zero

and C
i

w
≥ 0 for 1 ≤ i ≤ N−1, we can be sure that the matrix

(M−Cw) is negative definite and the second condition of
Barbalat’s lemma is satisfied. We can show that

V̈ =2u
2
1 f f

(t)β T Γ(M−Cw)(M−Cw)β + u̇1 f f
(t)β T ΓMβ

which is bounded as long as u̇1 f f
(t) is bounded. Given this,

the conditions of Barbalat’s lemma are satisfied and we can
be sure that V̇ → 0 as t → ∞, and, as a result, β → 0. It can
be seen from this analysis how the choice of Cw can adjust
the speed of response of the system.

V. SIMULATION RESULTS

A simulation study was done using a Simserver [16],
which interfaces the DIII-D plasma control system with a
Simulink implementation of the control oriented current pro-
file evolution model. In this way, the controller performance
and real-time implementation code could be tested before
experimental testing. For the results presented here, as well
as for the experimental results, the controller was designed
using C

i

w
= 3.75×10−16 for 1 ≤ i ≤ 5 and C

i

w
= 7.5×10−16

for 6 ≤ i ≤ N and with N = 10. In the simulation study, a
particular set of feedforward inputs u f f was used to generate
a reference profile evolution θ f f . The simulation was then
run again, this time closing the loop with the feedback
controller and adding input disturbances and perturbations in
the initial conditions. An input disturbance of .1 MA in u3
was added from t = 0.5s to t = 2.5s. The feedback controller
was turned on from t = 0.5s to t = 2.0s to test disturbance
rejection and switched off from t = 2.0s to t = 2.5s to allow
the profile to drift away from the desired one under the
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Fig. 4: Time trace of θ at various points comparing the reference shot 145477 (blue-solid) and the closed loop, disturbed
shot 146454 (red-dashed).

influence of the input disturbance. Finally, at t = 2.5s the
controller was turned back on and the input disturbance was
removed to see if the controller could recover the desired
profile despite the error caused by the drift.

Time traces of θ at several points along the profile are
shown in Figure 3. The results of the closed loop simulation
are compared with the reference generated in the feedforward
simulation. A small steady state error is seen during the
disturbance rejection phase of the simulation (t = 0.5s to
t = 2.0s), which can be expected since there is no integral
action in the controller. During the drift phase (t = 2.0s to
t = 2.5s), the effect of the input disturbance can be seen
diffusing in from the edge of the plasma over time. Finally,
once the disturbance is removed and the controller is turned
back on at t = 2.5s, the desired profile is quickly recovered.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results showing
the controller’s performance on the DIII-D device. The same
feedforward inputs used in the simulation were used to gen-
erate a reference shot, 145477. The resulting θ profile was
then used as the target for the closed loop shot, 146454. For
shot 146454, both the disturbances added to the feedforward
inputs and the controller activation sequence were identical
to those used in the closed loop simulation study. Time
traces of θ at several points along the profile are given in
Figure 4. The results of the closed loop shot 146454 are
compared with the reference generated in the feedforward
shot 145477. The controller appears to successfully reject
the disturbance during the first phase (t = 0.5s to t = 2.0s)
and the error caused by the disturbance without the presence
of the feedback controller can clearly be seen moving in

from the edge of the plasma during the drift phase (t = 2.0s
to t = 2.5s). Finally, once the disturbance is removed and
the controller is turned back on at t = 2.5s, the target
values of θ are quickly recovered. By comparing Figures
3 and 4, it can be noted that the model makes a good
prediction of the exterior points of the profile, but is less
accurate at predicting the evolution of the interior points.
The experimental results indicate that the controller design
is robust to these modeling errors, however, performance
improvement could be realized through model improvement.
In Figure 5, the profiles achieved in the closed loop, disturbed
shot 146454 are compared with the desired reference profiles
obtained from shot 145477 at several times. Figure 5a shows
that the controller has mostly rejected the disturbance and
recovered the desired profile shortly before it is turned off
at t = 2.0s. Figure 5b shows the error resulting from the
disturbance after the uncontrolled drift phase (t = 2.0s to
t = 2.5s) and the successful recovery of the desired profile
after the controller is turned back on for a short time is shown
in Figure 5c. Finally, the actuator requests and achieved
values are compared in Figure 6. It should be noted that
while the total plasma current and total power requested
by the proposed controller are reproduced quite well, the
requests for density are often not achieved. This represents
an additional input disturbance aside from the intentional one
added to the feedforward input references. The controller
seems to be robust to this added disturbance.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a current profile controller design based
on the dynamic model for the evolution of the poloidal
magnetic flux during the ramp-up phase of a DIII-D dis-
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Fig. 5: Comparison of θ profiles at various times for reference shot 145477 (blue-solid) and the closed loop, disturbed shot
146454. Partial disturbance rejection is seen in (a), the effect of the uncontrolled disturbance can be noted in (b), and the
recovery of the target profile after the disturbance is removed and the controller is turned back on can be observed in (c).
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Fig. 6: Requested and achieved actuator values during feedforward shot 145477 and the closed loop, disturbed shot 146454.

charge. By employing a backstepping technique, a transfor-
mation was found from the spatially discretized system to an
asymptotically stable target system with desirable properties.
Through a nonlinear transformation, the resulting boundary
feedback control law provides stabilizing reference values for
the total plasma current, non-inductive power, and plasma
density. A simulation study and experimental results show
the performance of the controller when the initial conditions
are perturbed and input is biased.

In the future, model improvements will be needed to
extend the model to H-mode (high-confinement) discharges,
for which the self-generated non-inductive current source ne-
glected by the model used in this work becomes significant.
Work will also be done to include feedback on the interior
actuator terms u1 and u2. These extra degrees of freedom
should improve performance. Additionally, integral action
will be included in the control scheme to improve tracking
and disturbance rejection.
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