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Abstract— The tokamak is a high order, distributed param-

eter, nonlinear system with a large number of instabilities.

Therefore, accurate theoretical plasma models are difficult to

develop. However, linear plasma response models around a

particular equilibrium can be developed by using data-driven

modeling techniques. This paper introduces a linear model of

the rotational transform ι profile evolution based on experi-

mental data from the DIII-D tokamak. The model represents

the response of the ι profile to the electric field due to induction

as well as to heating and current drive (H&CD) systems. The

control goal is to use both induction and H&CD systems to

regulate the plasma ι profile around a particular target profile.

A singular value decomposition (SVD) of the plasma model at

steady state is carried out to decouple the system and identify

the most relevant control channels. A mixed sensitivity H∞
control design problem is formulated to synthesize a stabilizing

feedback controller without input constraint that minimizes

the reference tracking error and rejects external disturbances

with minimal control energy. The feedback controller is then

augmented with an anti-windup compensator, which keeps

the given profile controller well-behaved in the presence of

magnitude constraints in the actuators and leaves the nominal

closed-loop unmodified when no saturation is present. Finally,

computer simulations and experimental results illustrate the

performance of the model-based profile controller.

I. INTRODUCTION

The planned ITER tokamak [1] will be capable of ex-
ploring advanced tokamak (AT) modes of operation, which
allow for steady-state operation. The tight requirements of
AT modes motivates researchers to improve the modeling
of the plasma response as well as the design of feedback
controllers. The shape of the plasma current profile, which
is intimately related to the rotational transform ι profile, is
critical for the the creation of self-generated non-inductive
current, which in turn serves as the enabler for steady-
state operation. Recent experiments in different tokamaks
(JET [2], JT-60U [3], DIII-D [4]) have demonstrated sig-
nificant progress towards current profile control.

As an alternative to first-principles modeling, data-driven
modeling methods [5] have been successfully used to de-
velop linear dynamic models around a particular plasma
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equilibrium. In the JET tokamak, a two-time-scale linear
system has been used to describe the magnetic and kinetic
profiles around certain quasi-steady-state trajectories [2]. In
discharges at the JT-60U tokamak, the momentum transport
equation of the toroidal rotation profile has been estimated
from transient data obtained by modulating the momentum
source [3], [6]. System identification experiments have also
been carried out on the DIII-D tokamak [6], and a data-driven
model for the toroidal rotation profile [7] has been proposed.

In this paper, a data-driven linear dynamic model for the
plasma rotational transform ι profile is identified from DIII-
D data [6], and a robust, model-based, multi-input-multi-
output (MIMO) controller for ι profile regulation during the
current flat-top phase in a H-mode discharge is proposed.
A singular value decomposition (SVD) [8], [9] is used to
decouple the system and identify the most relevant control
channels. The mixed sensitivity H∞ control method [10] is
applied to synthesize a closed-loop controller that minimizes
the reference tracking error and rejects external disturbances
with minimal control energy. The feedback controller is
then augmented with an anti-windup compensator [11], [12],
which keeps the given ι profile controller well-behaved in
the presence of actuator constraints and leaves the nominal
closed-loop unmodified when no saturation in the actuators
is present. The proposed controller is successfully tested in
computer simulations and experiments in DIII-D.

This paper is organized as follows. In Section II, the
system identification process of the DIII-D tokamak is briefly
described, and a linear model relating the safety factor ι
profile to the plasma current (Ip), neutral beam injection
(NBI), and electron cyclotron current drive (ECCD) is de-
veloped. In Section III, the design of the plasma control
algorithm and the anti-windup compensator is described.
Computer simulation and experimental results from DIII-D
are presented in Section IV. Section V states the conclusions.

II. SYSTEM IDENTIFICATION ON DIII-D
System identification for the plasma rotational trans-

form profile ι(ρ̂) was carried out with 5 Galerkin co-
efficients computed at normalized radius coordinate ρ̂ =
0.2,0.4,0.5,0.6,0.8, starting at t = 2.6s. The ι(ρ̂) profile is
defined as the inverse of the safety factor q(ρ̂) profile, where
q is the ratio of the number of times a magnetic field line
goes toroidally (the long way) around the tokamak to the
number of times it goes around poloidally (the short way).
The parameter ρ̂ is the normalized minor radius, which can
be denoted as ρ̂ = ρ

ρb
, where ρ is the mean geometric minor



radius of the flux surface, i.e., πBφ ,0ρ2 = Φ. The parameter
Φ is the enclosed toroidal magnetic flux, and Bφ ,0 is the
magnetic field at the geometric major radius. The parameter
ρb is the minor radius of the last closed magnetic flux surface.

To collect the data for system identification a number
of discharges were run with identical ramp-up phases and
during the flat-top phase various actuators were modulated
around the reference values [6]. The neutral beam injection
(NBI) and electron cyclotron (EC) heating and current drive
(H&CD) systems were used in these experiments. Avail-
able beam-lines (NBI) and gyrotrons (EC) were grouped to
form, together with Ip, five independent H&CD actuators:
(i) plasma current Ip, (ii) co-current NBI power PCO, (iii)
counter-current NBI power PCT , (iv) balanced NBI power
PBL, and (v) total ECCD power from all gyrotrons PECCD. All
actuators were modulated individually in open loop while the
other actuators were held at their respective reference values.

The relation between inputs and outputs for any shot can
be assumed in the form of

ι(t) = ῑ +∆ι(t) = Ḡ(ū)+P∆u(t), (1)
where Ḡ represents the relationship between the refer-
ence feedforward input ū and reference feedforward out-
put ῑ , ∆ι is the feedback output defined as ∆ι = ι −
ῑ , and ∆u is the feedback input which is defined as
∆u = u − ū = [∆Ip ∆PCO ∆PCT ∆PBL ∆PECCD]T for u ∈
{Ip, PCO, PCT , PBL, PECCD}. By subtracting the feedforward
value from our data set, we only consider the linear dynamics
∆ι(t) = P∆u(t). The linear model P according to a least
squares fit criterion is identified from experimental data
using the prediction error method (PEM) [5]. The identified
feedback model P can be expressed in the state space form

ẋ = Ax(t)+B∆u(t), ∆y(t) =Cx(t) (2)
where the state vector x(t) and output vector ∆y(t) are
defined as x(t) = ∆y(t) = ∆ι = ι(t)− ῑ , and the C matrix is
the identity matrix. More details on the system identification
procedure can be obtained from our previous work [6], [7].

III. CONTROL SYSTEM DESIGN

A. Control System Structure
A MIMO robust controller based on the linear data-

driven model (2) is described in this section. The ι profile
control design procedure is summarized by the following
steps: (1) decouple the system and identify the most relevant
control channels, described in Section III-B, (2) design a H∞
controller K ignoring control input saturation, described in
Section III-C, (3) add the anti-windup compensator AW to
minimize the adverse effect of any control input saturation
on closed loop performance, described in Section III-D.

B. Singular Value Decomposition
The purpose of the feedback controller is to force

the control output ∆y = y − ȳ to follow the target
∆ytar = ytar − ȳ, therefore the tracking error is defined
as e(t) = ∆ytar(t)− ∆y(t)− ∆yd . The parameter y is the
ι value at the normalized radius coordinate, i.e., y(t) =
[ι(0.2, t) ι(0.4, t) ι(0.5, t) ι(0.6, t) ι(0.8, t)]T , ytar(t) is the

desired target trajectory, ȳ is the reference values obtained
from the reference shot, and ∆yd is the output disturbance.
The control goal is to guarantee closed-loop stability and
improve performance while minimizing a quadratic cost
function that weights the tracking error.

The relation between the inputs and the outputs in the
linear model (2) can be expressed in terms of its transfer
function P(s), i.e.,

∆Y (s)
∆U(s)

= P(s) =C(sI −A)−1B (3)

where s denotes the Laplace variable and ∆Y (s) and ∆U(s)
denote the Laplace transforms of the output and the input
vectors respectively. Assuming a constant target ∆ȳtar and
closed-loop stabilization, the system can be maintained at
steady state around the equilibrium. Therefore, the closed-
loop system is specified by

∆ȳ = P̄∆ū =−CA−1B∆ū ∆ū = ¯̂Kē = ¯̂K (∆ȳtar −∆ȳ) , (4)

where ∆ȳ is the steady state output, ∆ū is the steady state
input, P̄ is the steady state transfer function (i.e. s → 0), and
K̂(s) represents the transfer function of the to-be-designed
controller and ¯̂K = K̂(0).

We consider the problem of minimizing a steady-state cost
function given by

J̄ = lim
t→∞

eT (t)Qe(t) = ēT Qē (5)

where ē = ∆ȳtar −∆ȳ, and Q ∈ ℜp×p is a symmetric positive
definite weighting matrix and p is the number of outputs. In
order to weight the control effort, another positive definite
weighting matrix R ∈ ℜm×m is also introduced where m
is the number of inputs. We then define the “weighted”
steady-state transfer function, and its singular value de-
composition (SVD), as P̃ = Q1/2P̄R−1/2 = USV T , where
S = diag(σ1,σ2, · · · ,σm)∈ℜm×m, U ∈ℜp×m (UTU = I), and
V ∈ ℜm×m (V TV =VV T = I). The steady-state input-output
relation is now expressed as

∆ȳ = Q−1/2P̃R1/2∆ū = Q−1/2USV T R1/2∆ū. (6)

By invoking the properties of the SVD, we note that
the columns of the matrix Q−1/2US define a basis for the
subspace of obtainable steady-state output values. Therefore,
we can always write

∆ȳ = Q−1/2US∆ȳ∗ ⇐⇒ ∆ȳ∗ = S−1UT Q1/2∆ȳ (7)

where ∆ȳ∗ ∈ ℜm. This implies that we will only be able
to track the component of the reference vector ∆ȳtar that
lies in this subspace. We now write the reference vector as
the sum of trackable components ∆ȳtart and non-trackable
components ∆ȳtarnt , i.e., ∆ȳtar = ∆ȳtart +∆ȳtarnt , where

∆ȳtart = Q−1/2US∆ȳ∗tar ⇐⇒ ∆ȳ∗tar = S−1UT Q1/2∆ȳtar (8)

with ∆ȳ∗tar ∈ ℜm and S−1UT Q1/2∆ȳtarnt = 0. By defining
∆ū∗ = V T R1/2∆ū, the relationship between ∆ȳ∗ and ∆ū∗ is
obtained by using (6) as

∆ȳ∗ = S−1UT Q1/2∆ȳ = S−1UT Q1/2Q−1/2USV T R1/2∆ū = ∆ū∗



Fig. 1. H∞ control formulation.

and a one-to-one relationship between the inputs and outputs
is obtained. The new system is a square decoupled system.
The steady state error is now written as

ē = ∆ȳtar −∆ȳ = Q−1/2US(∆ȳ∗tar −∆ȳ∗). (9)
Substituting this expression into (5), the performance index
is expressed as

J̄ = (∆ȳ∗tar −∆ȳ∗)T S2(∆ȳ∗tar −∆ȳ∗) =
m�

i=1

σ2
i (∆ȳ∗tari

−∆ȳ∗i )
2.

The goal of the profile controller is to minimize the perfor-
mance index J̄.

C. Design of the Mixed Sensitivity H∞ Controller

The mixed sensitivity H∞ method is used to design the
plasma ι profile controller. The design is based on the
decoupled plasma model described above and ignores control
input saturation. The structure of the proposed controller is
shown in Fig. 1, where two frequency-dependent weighting
functions Wp and Wu are introduced. The signals of the
general control configuration are defined as the control input
ũ = ũc, the tracking error ẽ = e∗ = ∆y∗tar − ∆y∗ − ∆y∗d , the
exogenous reference r̃ = ∆ytar, and the external performance
signal z̃ = [Z1, Z2]T .

The feedback system shown in Fig. 1, now expressed
in the conventional P∗ − K robust control framework, is
shown in Fig. 2, where P∗ is the generalized plant and K
is the feedback controller. Using the Laplace Transform we
can obtain a frequency-domain representation of the overall
system. The plant P∗(s) is the transfer function from the
input signals [∆yT

tar, ∆uT
d , ∆yT

d , ũT , ]T to the output signals
[ZT

1 , ZT
2 , ẽT ]T and expressed as




Z1
Z2
ẽ



=P∗(s)





∆ytar
∆ud
∆yd

ũ



=

�
P̃11(s) P̃12(s)
P̃21(s) P̃22(s)

�




∆ytar
∆ud
∆yd

ũ





ũ = K(s)ẽ (10)

The closed-loop transfer function from [∆yT
tar, ∆uT

d , ∆yT
d ]

T

to z̃ is given by the lower linear fractional transformation
(LFT), i.e.,

Tzw = Fl(P∗,K) = P̃11 + P̃12K(I − P̃22K)−1P̃21 (11)

Fig. 2. Model in P∗ −K control framework.

where

P̃11 = [P∗
11, P∗

12, P∗
13]

=

�
WpS−1UT Q1/2 −WpS−1UT Q1/2P −WpS−1UT Q1/2

0 0 0

�

P̃12 = P∗
14 =

�
−WpS−1UT Q1/2PR−1/2V

Wu

�

P̃21 = [P∗
21, P∗

22, P∗
23]

= [S−1UT Q1/2 −S−1UT Q1/2P −S−1UT Q1/2]

P̃22 = P∗
24 =−S−1UT Q1/2PR−1/2V.

We define the transfer function Ms as

Ms = (I +S−1UT Q1/2PR−1/2V K)−1S−1UT Q1/2, (12)

and write the closed-loop transfer function as

Tzw = Fl(P∗,K) =

�
WpMs −WpMsP −WpMs

WuKMs −WuKMs −WuKMs

�
. (13)

We seek a controller K(s) that stabilizes the system and
minimizes the H∞ norm of the transfer function Tzw(P∗,K)
between [∆yT

tar, ∆uT
d , ∆yT

d ]
T and z̃, i.e.,

min
K(s)

�Tzw(P∗,K)�∞=min
K(s)

(sup
ω

σ̄ [Tzw(P∗,K)( jω)])

where σ̄ represents the maximum singular value. This state-
ment defines a mixed sensitivity H∞ control problem, where
the goal is to minimize both the tracking error (WpMs), the
control effort (WuKMs) and the input disturbance (WpMsP)
at the same time. The weighting functions Wp and Wu are
parameterized as

Wp(s) = (
s

M1
+wb1

s+wb1A1
)2Kp, Wu(s) = (

s+wb2A2
s

M2
+wb2

)2Ku

where the coefficients Mi, Ai, wbi, for i = 1,2, as well as Kp
and Ku, are design parameters in the H∞ control synthesis.

Finally, the overall plasma rotational transform ι profile
controller can be written as

K̂(s) =
Uc(s)
E(s)

= R−1/2V K(s)S−1UT Q1/2 (14)

where Uc(s) denotes the Laplace transform of uc(t), and E(s)
denotes the Laplace transform of e(t). The contribution to the
plant input by the ι profile controller is written as

uc = [∆Ip ∆PCO ∆PCT ∆PBL ∆PECCD]
T

= L −1{K̂(s)E(s)} (15)
where L −1 denotes the inverse Laplace transform.



Fig. 3. DIII-D ι-profile control system architecture.

D. Design of the Anti-windup Compensator
The DIII-D tokamak is a nonlinear complex system,

which is subject to actuator saturation. The input saturation
of each channel is shown in Table I. At the moment of
designing the H∞ controller, the actuator saturations were not
considered. As a result of saturation, the actual plant input
may be different from the output of the controller. When this
happens, the controller output does not drive the plant and
as a result, the states of the controller are wrongly updated,
which can cause the behavior of the system to deteriorate
dramatically, or even become unstable.

The goal is not to redesign the MIMO controller but to
design an anti-windup compensator that works with the H∞
controller to keep it well-behaved and avoid undesirable
oscillations when saturation is present. The anti-windup
compensator must in addition leave the nominal closed-loop
unmodified when no saturation is present.

The saturation function ∆û is defined as

∆û = satǔmax
ǔmin

(uc) =






ǔmax if ǔmax < uc
uc if ǔmin < uc < ǔmax
ǔmin if uc < ǔmin

. (16)

where ǔmax and ǔmin is the maximum and minimum satura-
tion limit. From this, the dead-zone function can be defined
as Dz(u) = ∆û−uc. The plant P is the transfer function from
the actual control input to the output, and plays an important
part in anti-windup synthesis. The controller K is the original
H∞ controller, which has been designed such that its closed
loop interconnection with P is stable.

When control signal saturation occurs, the anti-windup
hides the saturation in magnitude from the nominal con-
troller [11] and guarantees in this way that the controller
remains well behaved. The anti-windup augmentation to the
controller can be written as

ẋaw = Aawxaw +BawDz(u)
s =Cawxaw +DawDz(u)

When ∆û = ∆u we do not want the anti-windup to affect
the system. To achieve this goal, we must have s = 0 and
therefore xaw = 0. However, due to the time scale of the
model, the system will be affected by the anti-windup for an

TABLE I
ACTUATOR LIMITS IN DIII-D

Channel Actuator Min Max Units
1 Ip 0.3 1.5 MA
2 Co-beam Power 0 12.5 MW
3 Ct-beam Power 0 2.5 MW
4 Blanced-beam Power 0 5.0 MW
5 Total ECCD Power 0.3 3.0 MW

TABLE II
THE H∞ CONTROL PARAMETERS

Weight Function Mi wbi Ai Ki
Wp 1 0.1 0.5 1
Wu 100 10 0.01 1

unnecessarily long time. The anti-windup augmentation can
be written now as

ẋaw = Aawxaw +BawDz(u)+ γ(∆u,∆û)λ
s =Cawxaw +DawDz(u) (17)

λ =−cxaw −Aawxaw −BawDz(u)
where c is positive constant and γ(∆u,∆û)= 1 if ∆u=∆û and
0 otherwise. By choosing Aaw, Baw, Caw, and Daw equal to the
matrix of the plant P (3), we guarantee that xaw will converge
to zero fast and smoothly (ẋaw =−cxaw) when ∆û = ∆u, and
so will s [11], [12].

The whole control system including the MIMO H∞ con-
troller and the anti-windup compensator is shown in Fig. 3.
The proposed feedforward + feedback control scheme has
been tested in simulations and experiments.

IV. SIMULATION AND EXPERIMENT RESULTS

In order to obtain relevant simulation results, we choose
the same feedforward inputs and input disturbances in both
experiment and simulation. In order to ensure that the target
profile is close to the equilibrium used to obtain our model,
a feedforward shot #146417 without feedback was run first
with the same reference inputs as the shots used to identify
the model. The reference inputs shown in Fig. 4 (dashed-
dotted magenta lines) are Ip = 0.9 MA, PCO = 1.9838 MW,
PCT = 0 MW, PBL = 2 MW, and PECCD = 1.4415 MW.
The target ι profile resulting from shot #146417 for these
reference inputs are shown in Fig. 5 (dashed-dotted magenta
lines). The input disturbances used to test the controller
are δ Ip = 0.02 MA, δPCO = −0.25 MW, δPCT = 0 MW,
δPBL = −0.25 MW, and δPECCD = −0.1 MW, and are
applied at t = 3.5s. In the experiment, the counter-beam is
not available, so it is off in the simulation too. The weight
matrices Q and R are chosen to minimize the tracking error
and optimize the control effort. Since the plasma current Ip
plays the most significant role in the ι profile control, and the
counter-current beam was not available in the experiment,
the matrices are set as Q = diag

�
1 1 1 1 1

�
and

R= diag
�

0.1 0.25 1000 0.5 0.25
�
. The parameter c

for the anti-windup compensator is set as 0.1. The co-beam
value is distributed equally to the 15L and 33L beams, and
the balanced-beam value is distributed to 15R and 21L beams
in both experiment and simulation. In order to compare
simulation and experimental results, we plot them in the
same pictures (Fig. 4 and Fig. 5).
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Fig. 4. Experimental and simulated control inputs.

A. Closed-loop Simulations

The closed-loop simulation is based on the linear data-
driven model, which represents the ι profile evolution during
the current flat-top phase in H-mode. In the closed-loop
simulation, two goals should be achieved: (i) driving the
system from an initial value to the target profile, and (ii)
rejecting the input disturbance. In each case, the parameters
for the H∞ controller are shown in Table II. The experimental
time interval associated with the plasma current flat-top
phase is [ti, t f ] = [2.5, 6], and this same time interval is
chosen for this simulation study.

In the first second of the simulation, the H∞ controller
effectively regulates ι around the target profile, afterwords
the controller tries to reject the input disturbance. The
simulated inputs (red dashed lines) are shown in Fig. 4. The
controller rejects the disturbance in the plasma current Ip
rather slowly, and the Ip nearly stays constant during the
simulation, as shown in Fig. 4 (a). Beam values are shown
in Fig. 4 (b), (c), (d) and (e), and they are not saturated.
The limits of the total ECCD power were changed during
the experiment, so the input of ECCD reaches the saturation
and activates the anti-windup compensator in the last one
second as shown in Fig. 4 (f). The simulated outputs (red
dashed lines) are shown in Fig. 5. In the first second, the
regulation results are very good for all control points. After
the disturbance is switched on at 3.5 s, the controller reduces
the tracking error to less than 10%.

B. Closed-loop Experiments on DIII-D

The controller described in Section III was active from
t = 2.5 s, i.e., after 1 s of a 0.9 MA current flat-top. During
the experiments, we concentrated on three main goals: (1)
regulation of the plasma current during the current flat-top
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Fig. 5. Experimental and simulated ι at ρ̂ = 0.2,0.4,0.5,0.6,0.8.

phase, (2) tracking control of the ι profile at 5 control points,
and (3) input disturbance rejection.

The experimental inputs (solid blue lines) are shown
in Fig. 4. The trend of all inputs is very similar to the
simulation results, which means the data-driven linear model
successfully approximates the DIII-D tokamak around the
target profile. The experimental outputs (solid blue lines) are
shown in Fig. 5. From t = 2.5 s to t = 3.5 s, there are no
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Fig. 6. Plasma ι(ρ̂) profile at time t= 2.538, 3.018, 3.498, 4.018, 5.018, 5.998 seconds from shot # 146419 on DIII-D.

input disturbances, and the tracking errors are less than 0.5%.
The input disturbances were added at the experimental time
t = 3.5s, and the influence is very clear from Fig. 4. The
tracking quality clearly deteriorates after t = 3.5 s. However,
the controller manages to drive the system within tolerable
margins around the target profile. As in the simulation study,
the plasma current Ip nearly keeps a constant value, which
indicates the need to reduce its associated weight in R in
future experiments for better tracking performance.

By requiring that the ι value be equal to the target value
at the five control points defined by ρ̂ = 0.2,0.4,0.5,0.6,0.8,
the controller forces the target ι profile to pass through the
control points. In order to evaluate the ι profile at other
points, a series of six plasma ι profiles at different times
during the experiment are shown in Fig. 6. The blue line is
the target profile, the red dash line is the measured profile,
and the blue circles are the control points. As can be seen
from Fig. 6 (a), (b), (c), the controller is able to keep the
ι profile close to the target when there is no external input
disturbance. After the input disturbances are applied to the
system, the tracking errors become larger. As the time goes
on, the controller attempts to reject the disturbance, and the
errors become smaller, which is shown in Fig. 6 (d), (e), (f).

V. CONCLUSION

A robust, model-based, MIMO, ι-profile controller was
designed for the DIII-D tokamak. The design was based
on a linear, data-driven, plasma-response model around a
reference profile during the current flat-top phase in H-mode.
The feedback controller can regulate the system to the target,
which is close to the reference equilibrium, even in the pres-
ence of various disturbances. Singular value decomposition
of the steady state transfer function is used to decouple
the system and identify the most relevant control channels.

The mixed sensitivity H∞ technique is used to minimize
the tracking error and optimize input effort ignoring the
saturation. Then an anti-windup compensator is applied to
minimize the effects of any control input constraint. The
proposed controller was tested experimentally in DIII-D,
and preliminary results show potential for expanding present
experimental control capabilities.
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