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Abstract— There are many challenging control problems
critical to the success of burning fusion plasma experiments
like ITER. Among them, the most fundamental problem is the
control of plasma density and temperature, referred to as the
burn condition. While passively stable burn conditions exist,
economic and technological constraints may require future com-
mercial fusion reactors to operate at unstable burn conditions.
The instability is due to the fact that at low temperatures,
the rate of thermonuclear reaction increases as the plasma
temperature rises. To stabilize such operating points, it will
be essential to have active control of the system. Most existing
burn control efforts use control techniques based on linearized
models. Such models break down for large perturbations and
must be designed around a particular operating point. In
this work, we utilize a spatially averaged (zero-dimensional)
nonlinear transport model to synthesize a nonlinear feedback
controller that can stabilize the burn condition of a fusion
reactor. The nonlinear controller guarantees stability of the
plasma density and temperature for a much larger range
of perturbations than linear designs and is augmented with
an adaptive law that guarantees stability despite uncertainty
in particle confinement time parameters. A zero-dimensional
transport simulation study is presented to show the ability of the
controller to bring the system back to the desired equilibrium
from a given set of initial perturbations even when there is
significant uncertainty in the confinement parameters.

I. INTRODUCTION

Tokamak fusion reactors must be capable of operating
for extended periods of time in a burning plasma mode
characterized by a high ratio of fusion power to auxiliary
power in order to be economically viable as an alternative
energy source. For most confinement scalings, passively
stable operating points with this characteristic exist, however,
they are usually found in a region of high temperature and
low density. Due to economic and technological constraints
future commercial fusion reactors may be forced to run at
low temperature and high density operating points for which
the rate of nuclear reaction increases as the plasma temper-
ature rises. Under these conditions, small perturbations in
temperature or density will grow without the presence of an
active control system. Small increases in temperature lead
to thermal excursions in which the system moves to a new,
stable equilibrium at a higher temperature, and decreases in
temperature can possibly lead to quenching. In either case,
disruptive plasma instabilities could be triggered, stopping
operation and possibly causing damage to the walls of the
confinement vessel.

This work was supported by the NSF CAREER award program (ECCS-
0645086). M. D. Boyer (mdb209@lehigh.edu), and E. Schuster are
with the Department of Mechanical Engineering and Mechanics, Lehigh
University, Bethlehem, PA 18015, USA.

The physical and technological feasibility of several meth-
ods for controlling the burn condition have been studied
over the years. Prior work, including [1], [2], [3], considered
auxiliary power, fueling rate, and controlled injection of
impurities as actuators to the system. Most existing efforts
in the area of burn control make use of just one of theses
actuators (single-input control) and linearize the system
model to make use of linear control design techniques. In [4],
a diagonal multi-input, multi-output linear control scheme
was developed for controlling burning plasma kinetics. When
tested using nonlinear models, the linear controllers suc-
ceed in stabilizing the system against a limited set of
perturbations in initial conditions. In our previous work [5],
a zero-dimensional nonlinear model involving approximate
conservation equations for the energy and the densities of
the species was used to synthesize a nonlinear feedback
controller for stabilizing the burn condition of a fusion re-
actor. The controller utilizes all of the previously considered
actuators simultaneously, using auxiliary power modulation
to prevent quenching, impurity injection to increase radiation
losses and stop thermal excursions, and fueling modulation
to stabilize the density. Nonlinear burn control using multiple
actuators had only been done previously in works using non-
model based techniques, like neural networks [6], [7]. The
use of nonlinear control techniques removes the operability
limits imposed by linearization in other works.

The nonlinear controller designed in our work [5] guar-
antees a much larger region of attraction than the previous
linear controllers. However, the design model assumed an
optimal 50:50 mix of deuterium (D) and tritium (T) within
the plasma at all times. Because experiments indicate that
deuterium and tritium may have different transport properties
[8], the D and T systems should be actuated separately to
allow for control of the isotopic mix in the core. This scheme,
called isotopic fuel tailoring, will be possible on the ITER
device, an international collaboration designed to be the first
tokamak to explore the burning plasma regime [9], [10]. In
[11], we exploited this fueling scheme and used the mix of
tritium fuel in the plasma as a method to cool the plasma
during thermal excursions. In this way, the use of impurity
injection could be avoided. Despite showing good robustness
properties, neither of our controllers proposed in [5] or [11]
take into account model uncertainties.

The most significant sources of uncertainty in the model
are the scaling parameters for the particle confinement
times. These parameters are generally not well known and
uncertainty can degrade the performance of the nonlinear
controller. In this work, we design an adaptive law that
estimates the particle confinement times, based on the typical



assumption that the particle confinement times scale with the
energy confinement time. With the adaptive law in place,
stability of the plasma density, tritium ratio, and energy
can be guaranteed despite large uncertainties in the particle
confinement time scalings.

The paper is organized as follows. In Section II a 0-D
ODE model for the dynamics of the densities of alpha-
particles, deuterium, tritium, and impurity ions, as well as
the energy, is introduced. The desired equilibrium and the
control objective is stated in Section III. The design of
a nonlinear stabilizing controller and an adaptive law for
dealing with particle confinement uncertainty is presented in
Section IV. Simulation parameters and results, showing the
performance of the controller, are presented in Section V.
Finally, conclusions and plans for future work are stated in
Section VI.

II. BURNING PLASMA MODEL

In this work we use a zero-dimensional model for a
burning tokamak plasma which employs approximate energy
and particle balance equations. The model is fundamentally
the same as that used in [5] and [11]. The deuterium and
tritium ion density evolutions are accounted for separately,
as the two species are considered to have different transport
properties, and a conservation equation for impurity ion
density is included. The model is given by the following
system of equations

dnα
dt

=−nα
τα

+nDnT �σν� (1)

dnD

dt
=−nD

τD
−nDnT �σν�+SD (2)

dnT

dt
=−nT

τT
−nDnT �σν�+ST (3)

dE
dt

=− E
τE

+Qα nDnT �σν�−Prad +Paux (4)

dnI

dt
=−nI

τI
+SI (5)

where nα , nD, nT , and nI are the alpha-particle, deu-
terium, tritium, and impurity densities, respectively, and E
is the energy. Parameters τα , τD, τT , τE , τI are the (state-
dependent) alpha-particle, deuterium, tritium, energy, and
impurity confinement times, respectively. The control inputs
are the deuterium, tritium, and impurity injection rates, given
by SD, ST , and SI , as well as the auxiliary heating, Paux.
This approximate model implies that the alpha-particles slow
down instantaneously and deposit their energy (Qα = 3.52
MeV) in the flux surface in which they are born, which is a
reasonable approximation for reactor-size tokamaks.

The DT reactivity �σν� is a highly nonlinear, positive,
and bounded function of the plasma temperature T and is
calculated by

�σν�= exp
� a1

T r +a2 +a3T +a4T 2 +a5T 3 +a6T 4
�

(6)

where the parameters ai and r are taken from [12].

In this work, the radiation loss Prad is approximated as

Prad = Pbrem = AbZe f f n2
e
√

T (7)

where Ab = 5.5× 10−37 Wm3/
√

keV is the bremsstrahlung
radiation coefficient, Ze f f is the effective atomic number,
and ne is the electron density. No explicit evolution equation
is provided for the electron density as it can be obtained
from the neutrality condition ne = nD+nT +2nα +ZInI . The
effective atomic number, plasma density, and temperature are
given by

Ze f f =
�

i

niZ2
i

ne
=

nD +nT +4nα +Z2
I nI

ne
(8)

n = nα +nD +nT +nI +ne (9)
= 2nD +2nT +3nα +(ZI +1)nI (10)

T =
2
3

E
n

(11)

where Zi is the atomic number of the different ions. The
energy confinement time scaling used in this work is
ITER90H-P [13] because it allows for performance compar-
ison with previous work, however, this choice only affects
the simulation study. The controller design is independent of
the scaling used. The scaling used for simulations is

τE = fτ 0.082I1.02R1.6B0.15A0.5
i κ−0.19

χ P−0.47 = fτ kA0.5
i P−0.47

(12)
The scale factor fτ depends on the confinement mode and is
determined by comparing the net plasma heating power P to
the L-H transition power (low confinement (L-mode) to high
confinement (H-mode) transition power). For the simulations
studied, the system remains in H-mode, for which we use
fτ = 0.85. If a transition to L-mode were to occur, fτ would
be reduced to reflect the transition. Parameters I,R,B,κχ , are
assumed to be kept constant by a magnetic control algorithm,
such that they can be collapsed into a single constant, k.
The isotopic number Ai is given by the expression Ai = 3γ +
2(1−γ) = γ +2 with γ being the tritium fraction. This is the
fraction of hydrogenic ions in the plasma that are tritium ions
and can be expressed as γ = nT/(nD +nT ). The net plasma
heating power P is defined as P = Pf usion −Prad +Paux. The
fusion power is given by

Pf usion = Qα nDnT �σν�= Qα γ(1− γ)n2
H�σν� (13)

where nH = nD+nT is the total hydrogenic density. We note
here that the relationship between fusion power and tritium
fraction γ is parabolic with a maximum fusion power at 0.5,
making it important to regulate the tritium fraction about this
point for reactor efficiency.

The confinement times for the different species are scaled
with the energy confinement time τE as

τα = kα τE , τD = kDτE , τT = kT τE τI = kIτE (14)

In Section IV, the parameters kα , kD, kT , and kI are estimated
online using an adaptive law. The reactor parameters used in
this simulation are given in Table I.



TABLE I
REACTOR PARAMETERS

Symbol Description Value

I Plasma current 22.0 MA
R Major radius 6.0 m
a Minor radius 2.15 m
B Magnetic field 4.85 T
κχ Elongation at the x-point 2.2
βmax Beta limit 2.5I/aB=5.3%
V Plasma volume 1100 m3

III. CONTROL OBJECTIVE AND APPROACH

The equilibria of the dynamic equations (1) through (5)
give the possible steady-state operating points of the reactor.
The equilibrium values of the energy Ē, the density variables
n̄α , n̄D, n̄T , the fueling source terms S̄D, S̄T , and the aux-
iliary heating P̄aux, are determined by solving the nonlinear
algebraic equations obtained by setting the left side of Eqs.
(1) through (5) to zero when three of the plasma parameters,
such as temperature T , β 1 and γ , for example, are chosen
arbitrarily, i.e., we solve

0 =− n̄α
τ̄α

+ n̄Dn̄T �σ̄ν� (15)

0 =− n̄D

τ̄D
− n̄Dn̄T �σ̄ν�+ S̄D (16)

0 =− n̄T

τ̄T
− n̄Dn̄T �σ̄ν�+ S̄T (17)

0 =− Ē
τ̄E

+Qα n̄Dn̄T �σ̄ν�− P̄rad + P̄aux (18)

0 = n̄I (19)

Ideally, the equilibrium sources P̄aux, S̄D, and S̄T would force
the plasma to the desired equilibrium (T̄ , β̄ , γ̄), however,
certain equilibria are unstable and require active control to be
maintained. Additionally, because the particle confinement
parameters kα , kD, kT , and kI are uncertain, the calculated
equilibrium sources may not achieve the desired conditions,
even for stable equilibria. The objective, therefore, is to
design a controller that stabilizes T̄ , β̄ , and γ̄ despite uncer-
tainty in the particle confinement parameters. It is assumed
that all of the states are available from either measurement
or estimation. Paux is used to stabilize the energy of the
system during negative perturbations, however, since Paux
cannot be reduced below zero, large positive perturbations
in temperature require the use of another actuator. In this
work, controlled injection of impurities is used to increase
radiation losses and stabilize such excursions. The remaining
actuators, SD and ST , are used to stabilize the plasma density
and tritium ratio. An adaptive law is used to overcome
uncertainty in the particle confinement parameters.

By defining the deviations from the desired equilibrium
values as ñα = nα − n̄α , ñD = nD− n̄D, ñT = nT − n̄T , ñI = nI ,
and Ẽ = E− Ē, the dynamic equations for the deviations can

1The plasma β is the ratio of plasma pressure to magnetic pressure β =
knT

(B2/2µ0)
where B is the magnetic field strength, µ0 is the permeability of

free space, and k is the Boltzmann constant.

be written as
dñα
dt

=− ñα
τα

− n̄α
τα

+Sα (20)

dñD

dt
=− ñD

τD
− n̄D

τD
−Sα +SD (21)

dñT

dt
=− ñT

τT
− n̄T

τT
−Sα +ST (22)

dẼ
dt

=− Ẽ
τE

− Ē
τE

+Qα Sα −Prad +Paux (23)

dñI

dt
=− ñI

τI
+SI (24)

where the nonlinear α generation term has been written as

Sα(E,nD,nT ,nα) = nDnT �σν�= γ(1− γ)n2
H�σν� (25)

to simplify the presentation. Recall from equations (6) and
(11) that �σν� is a function of E,nD,nT , nα and nI .

IV. ADAPTIVE NONLINEAR CONTROLLER DESIGN

The design begins by looking for a control which stabilizes
Ẽ. By satisfying the condition

Qα Sα −Prad +Paux =
Ē
τE

(26)

equation (23) is reduced to

dẼ
dt

=− Ẽ
τE

(27)

and the Ẽ subsystem is then exponentially stable since τE >
0. Condition (26) is met by modulating the impurity density
nI and the auxiliary heating Paux. Modulation of the impurity
density is done through altering the impurity injection rate SI .
We calculate the auxiliary power needed to satisfy condition
(26) as

Paux =
Ē
τE

−Qα γ∗(1− γ∗)n2
H�σν�+Prad (28)

If this value is negative, we set Paux = 0. For such cases,
condition (26) cannot be met by modulation of auxiliary
heating alone, and impurity injection is needed. The desired
impurity density n∗I is calculated as the value satisfying

AbZe f f n2
e
√

T =− Ē
τE

+Qα Sα (29)

where we note that Ze f f , ne, and T are functions of nI .
Based on the control objectives and the previous steps,

we now have desired reference values for the energy, Ē, the
tritium fraction, γ̄ , the plasma density, n̄, and the impurity
density n∗I , along with a controller request for the auxiliary
heating Paux. We now seek a stabilizing control law using
the fueling terms SD, ST , and SI . We begin by defining

n̂I = nI −n∗I (30)

f (n̂I , Ẽ, ñα , ñD, ñT ) =− Ē
τE

+Qα Sα −Prad +Paux (31)

f (n∗I , Ẽ, ñα , ñD, ñT ) = 0 (32)



where the last relation is a consequence of our choice of Paux
and n∗I in (28) and (29). We can then write f = n̂Iφ , where
φ is a continuous function. This allows us to rewrite (23) as

dẼ
dt

=− Ẽ
τE

+ n̂Iφ (33)

Along with the nonlinear controller, we seek an adaptive
scheme for estimating the particle confinement scaling con-
stants. To facilitate the design process, we define a matrix of
the nominal parameters

θ ∗ =
�
1/kα 1/kD 1/kT 1/kI

�T (34)

We define our estimate of the confinement parameters as θ̂
and the error of the estimate as θ̃ = θ̂ −θ ∗. Next, we use the
elements of θ ∗ to write the dynamic equations for the to-be-
controlled variables n̂I , γ̃ , and ñ. We can write the dynamics
of n̂I by noting that

ṅI = ˙̂nI + ṅ∗I =−θ ∗
4

nI

τE
+SI (35)

˙̂nI =−θ ∗
4

nI

τE
+SI − ṅ∗I (36)

Recalling the definition of the tritium ratio, γ = nT/nH , we
can write the equation governing its dynamics as

γ̇ = ˙̃γ =
ṅT nH −nT ṅH

n2
H

=
ṅT

nH
− γ ṅH

nH
(37)

We recall (21) and (22) to write

ṅT = ˙̃nT =−θ ∗
3

nT

τE
−Sα +ST (38)

ṅH = ˙̃nH = ˙̃nT+ ˙̃nD=−θ ∗
3

nT

τE
−θ ∗

2
nD

τE
−2Sα +SD +ST (39)

˙̃γ =
1

nH

�
−θ ∗

3
nT

τT
−Sα +ST

−γ
�
−θ ∗

3
nT

τE
−θ ∗

2
nD

τE
−2Sα +SD +ST

��
(40)

In addition, we recall (20) and (24) to write

ṅ = ˙̃n = 3 ˙̃na +2 ˙̃nT +2 ˙̃nD +(ZI +1) ˙̃nI (41)

=−3θ ∗
1

na

τE
−2θ ∗

3
nT

τE
−2θ ∗

2
nD

τE
− (ZI +1)θ ∗

4
nI

τE
−Sα +2SD +2ST +(ZI +1)SI (42)

We take as a Lyapunov function

V =
k2

1Ẽ2 + k2
2 γ̃2 + n̂2

I + ñ2

2
+ θ̃ T Γ−1

2
θ̃ (43)

where k1 = 1015, k2 = 1020 (recall that Ẽ = O(105), γ̃ =
O(10−1), and ñ = O(1020)) and Γ is a positive definite

matrix. The derivative can be written as

V̇ =k2
1Ẽ ˙̃E + k2

2 γ̃ ˙̃γ + ñ ˙̃n+ n̂I ˙̂nI + θ̃ T Γ−1 ˙̃θ (44)

=− k2
1Ẽ2

τE
+

k2
2 γ̃

nH

�
−θ ∗

3
nT

τE
−Sα +ST

−γ
�
−θ ∗

3
nT

τE
−θ ∗

2
nD

τE
−2Sα +SD +ST

��

+ ñ
�
−3θ ∗

1
na

τE
−2θ ∗

3
nT

τE
−2θ ∗

3
nD

τE
− (ZI +1)θ ∗

4
nI

τE

−Sα +2SD +2ST +(ZI +1)SI ]

+ n̂I

�
k2

1Ẽφ −θ ∗
4

nI

τE
+SI − ṅ∗I

�
+ θ̃ T Γ−1 ˙̃θ (45)

Since the the nominal parameter θ ∗ is uncertain, we use the
certainty equivalence approach and take as control laws

SI =θ̂4
nI

τE
+ ṅ∗I − k2

1Ẽφ −KIn̂I (46)

SD =
1
2

�
3θ̂1

na

τE
+2θ̂3

nT

τE
+2θ̂2

nD

τE
+Sα −2ST

−(ZI +1)
�

SI − θ̂4
nI

τE

�
−Knñ

�
(47)

ST =−Kγ γ̃ +θ ∗
3

nT

τE
+Sα + γ

�
θ ∗

1
3na

2τE
− 3

2
Sα

− (ZI +1)
2

�
SI −θ ∗

4
nI

τE

�
− Knñ

2

�
(48)

where θ̂ is the current estimate of the confinement param-
eters and the constants KI , Kn, and Kγ are positive. Given
exact knowledge of the nominal parameters, i.e., θ̂ = θ ∗,
this choice would result in

V̇ =− k2
1Ẽ2

τE
−Kγ

k2
2 γ̃2

nH
−Knñ2 −KIn̂2

I ≤ 0 (49)

which would guarantee that the energy, plasma density, and
tritium fraction subsystems were stabilized, and that the
impurity density could converge to n∗I . In general, there will
be some error in the estimate of the confinement parameters,
such that after substituting (46), (47), and (48), and gathering
terms, the expression (45) becomes

V̇ =− k2
1Ẽ2

τE
−Kγ

k2
2 γ̃2

nH
−Knñ2 −KIn̂2

I + θ̃ T Γ−1 ˙̃θ

3ñθ̃1
na

τE
+

�
2ñ− (γ −1)

k2
2 γ̃

nH

�
θ̃3

nT

τE

+

�
2ñ− k2

2 γ̃
nH

γ
�

θ̃2
nD

τE
+[ñ(ZI +1)+ n̂I ] θ̃4

nI

τE
(50)

We take as an adaptive law:

˙̃θ =
1
τE

Γ





−3ñnα

−
�
2ñ− k2

2 γ̃
nH

γ
�

nD

−
�
2ñ− (γ −1) k2

2 γ̃
nH

�
nT

− [ñ(ZI +1)+ n̂I ]nI




(51)

which reduces (50) to

V̇ =− k2
1Ẽ2

τE
−Kγ

k2
2 γ̃2

nH
−Knñ2 −KIn̂2

I ≤ 0 (52)
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Fig. 1. Actuators during open loop (dash-dot), closed loop (dot), and
adaptive (solid) cases.

and guarantees that the n, E, nI , and γ are all driven to the
desired values. Note that this scheme does not guarantee that
the parameter estimates converge to the actual values, only
that the states are stabilized.

V. SIMULATION RESULTS

In this section we show, through a simulation study, the
ability of the controller to stabilize an equilibrium character-
ized by T̄ = 8.2 keV, β̄ = 3%, and γ̄ = 0.5. We consider the
nominal confinement parameters and initial estimates given
in Table II. We utilize the initial estimates of the confinement
parameters to synthesize the closed loop controller as well
as to calculate the open loop inputs (S̄D, S̄T , S̄I , P̄aux).
We perform one open-loop simulation and two closed-loop
simulations: one with Γ= 0, i.e., without adaptation, and one
with Γ = .5I, i.e., with adaptation. The simulations all use
the initial perturbations T (0) = 1.43T̄ , β (0) = 1.20β̄ , and
γ(0) = 0.88γ̄ .

Figure 1 compares the inputs during the simulations. Note
how the impurity injection and auxiliary power work in
tandem to control the system in closed loop. Initially, the
controller determines that an increase in radiation losses
is necessary and injects impurities. After the excursion,
the impurity density within the plasma slowly decays and
auxiliary heating is used to overcome the excess radiation
losses and fuel dilution caused by the impurities. Figure
2 shows how the estimates of the elements of θ evolve
over time compared with the actual values θ ∗. The adaptive
controller does not guarantee that the estimates converge
to the actual values, which is reflected in the results. We
note, however, that the control objective is to reach the
desired equilibrium, not to identify model parameters. Figure
3 shows the response of the variables of interest (T,n,γ,β ),
during the three simulation cases. It can be seen that in open
loop, the system moves far from the desired equilibrium. This
is mainly because the desired equilibrium is unstable, but
also a result of the error in the estimated particle confinement
parameters used to calculate the open loop inputs. This il-
lustrates the importance of implementing feedback control of
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Fig. 2. Adaptive estimation of θ (blue-solid) and θ ∗ (red-dashed).

TABLE II
PARTICLE CONFINEMENT PARAMETERS

Parameter Nominal Initial Estimate

kα 9.8 7
kD 1.44 3.6
kT 1.56 2.6
kI 8 10

the burn condition, even when operating at stable equilibria.
The figures also show that in the closed loop simulation
without the adaptive law activated, the controller improves
upon the plasma performance, but still does not reach the
desired equilibrium in steady state. This is due to the particle
confinement estimation error. Finally, when the adaptive law
is active, it can be seen that the desired equilibrium is
stabilized despite the instability of the equilibrium, the initial
perturbations, and the uncertainty in confinement parameters.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a nonlinear controller that is capable
of stabilizing the temperature, density, and tritium ratio of a
burning tokamak plasma despite uncertainty in the particle
confinement parameters. By using the full nonlinear model,
the controller can deal with a larger set of perturbations
in initial conditions than previous linear controllers and the
multi-input scheme allows it to reject initial conditions lead-
ing to both thermal excursion and quenching. The adaptive
law guarantees stability for arbitrarily large uncertainty in
confinement parameters. In addition, the effectiveness of
the controller does not depend on whether the operating
point is an ignition or subignition point. Since the nonlinear
controller depends parametrically on the equilibrium point,
it can be used to drive the system from one working point
to another, allowing in this way for changes in power and
other plasma parameters without the need for scheduled
controllers. The system was simulated in open loop, closed
loop without adaptation, and closed loop with adaptation to
show the need for and the effectiveness of the proposed
scheme. The simulations show that the adaptive controller
can effectively force the system back to the desired states
despite uncertain particle confinement times.
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Fig. 3. Comparison of (a) temperature, (b) plasma density, (c) tritium fraction, and (d) β for open loop, closed loop, and adaptive cases.

This approach could be used for any other energy con-
finement time scalings (12) and is not restricted to the ITER
scaling used here. Note that the expressions for confinement
time used here were derived experimentally under time-
stationary states. Thus, it is not clear whether the empirical
scaling can be safely applied for large excursions away from
equilibrium (i.e., when (1/Ẽ)(dẼ/dt > 1/τE). In this case,
an adaptive scheme for estimating τE could be developed
or perhaps a one-dimensional model could be used to in-
corporate plasma profile and transport information during
transients. Use of such a model will be a step towards
kinetic profile control in burning plasmas, an issue with
implications for other fusion control problems, like transport,
improvement of energy confinement, and MHD stability.
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